Synergistic antibacterial and anti-inflammatory activity of temporin A and modified temporin B in vivo(452 views) Capparelli R, Romanelli A, Iannaccone M, Nocerino N, Ripa R, Pensato S, Pedone C, Iannelli D
Department of Soil, Plant, Environment and Animal Production Sciences, University of Naples Federico II, School of Biotechnological Sciences, Napoli, Italy. capparel@unina.it
Department of Biological Sciences, University of Naples Federico II, School of Biotechnological Sciences, Napoli, Italy
References: Zasloff, M., Antimicrobial peptides of multicellular organisms (2002) Nature, 415, pp. 389-39
Boman, H.G., Antibacterial peptides: Basic facts and emerging concepts (2003) J Intern Med, 254, pp. 197-215
Levy, S.B., Marshall, B., Antibacterial resistance worldwide: Causes, challenges and responses (2004) Nat Med, 10, pp. S122-S129
Papagianni, M., Ribosomally synthesized peptides with antimicrobial properties: Biosynthesis, structure, function, and applications (2003) Biotechnol Adv, 21, pp. 465-499
Hancock, R.E., Cationic peptides: Effectors in innate immunity and novel antimicrobials (2001) Lancet Infect Dis, 1, pp. 156-164
Simmaco, M., Mignogna, G., Canofeni, S., Miele, R., Mangoni, M.L., Temporins, antimicrobial peptides from the European red frog Rana temporaria (1996) Eur J Biochem, 242, pp. 788-792
Lu, Y., Li, J., Yu, H., Xu, X., Liang, J., Two families of antimicrobial peptides with multiple functions from skin of rufous-spotted torrent frog, Amolops loloensis (2006) Peptides, 27, pp. 3085-3091
Giacometti, A., Cirioni, O., Ghiselli, R., Mocchegiani, F., Orlando, F., Interaction of antimicrobial peptide temporin L with lipopolysaccharide in vitro and in experimental rat models of septic shock caused by gram-negative bacteria (2006) Antimicrob Agents Chemother, 50, pp. 2478-2486
Rosenfeld, Y., Barra, D., Simmaco, M., Shai, Y., Mangoni, M.L., A synergism between temporins toward Gram-negative bacteria overcomes resistance imposed by the lipopolysaccharide protective layer (2006) J Biol Chem, 281, pp. 28565-28574
Shai, Y., Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides (1999) Biochim Biophys Acta, 1462, pp. 55-70
Shai, Y., Mode of action of membrane active antimicrobial peptides (2002) Biopolymers, 66, pp. 236-248
Rathinakumar, R., Walkenhorst, W.F., Wimley, W.C., Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: The importance of interfacial activity (2009) J Am Chem Soc, 131, pp. 7609-7617
Conlon, J.M., Al-Ghaferi, N., Abraham, B., Leprince, J., Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents (2007) Methods, 42, pp. 349-357
Carotenuto, A., Malfi, S., Saviello, M.R., Campiglia, P., Gomez-Monterrey, I., A different molecular mechanism underlying antimicrobial and hemolytic actions of temporins A and L (2008) J Med Chem, 51, pp. 2354-2362
Hujakka, H., Ratilainen, J., Korjamo, T., Lankinen, H., Kuusela, P., Synthesis and antimicrobial activity of the symmetric dimeric form of Temporin A based on 3-N,N-di(3-aminopropyl)amino propanoic acid as the branching unit (2001) Bioorg Med Chem, 9, pp. 1601-1607
Oh, H., Hedberg, M., Wade, D., Edlund, C., Activities of synthetic hybrid peptides against anaerobic bacteria: Aspects of methodology and stability (2000) Antimicrob Agents Chemother, 44, pp. 68-72
Cirioni, O., Giacometti, A., Ghiselli, R., Kamysz, W., Orlando, F., Temporin A alone and in combination with imipenem reduces lethality in a mouse model of staphylococcal sepsis (2005) J Infect Dis, 192, pp. 1613-1620
Edman, P., Method for determination of the amino acid sequence in peptides (1950) Acta Chemica Scandinavica, pp. 283-293
Becker, K., Roth, R., Peters, G., Rapid and specific detection of toxigenic Staphylococcus aureus: Use of two multiplex PCR enzyme immunoassays for amplification and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene (1998) J Clin Microbiol, 36, pp. 2548-2553
Bubert, A., Hein, I., Rauch, M., Lehner, A., Yoon, B., Detection and differentiation of Listeria spp. by a single reaction based on multiplex PCR (1999) Appl Environ Microbiol, 65, pp. 4688-4692
Hong, Y., Liu, T., Lee, M.D., Hofacre, C.L., Maier, M., Rapid screening of Salmonella enterica serovars Enteritidis, Hadar, Heidelberg and Typhimurium using a serologically-correlative allelotyping PCR targeting the O and H antigen alleles (2008) BMC Microbiol, 8, p. 178
Ananias, M., Yano, T., Serogroups and virulence genotypes of Escherichia coli isolated from patients with sepsis (2008) Braz J Med Biol Res, 41, pp. 877-883
Cormack, B.P., Bertram, G., Egerton, M., Gow, N.A., Falkow, S., Yeast-enhanced green fluorescent protein (yEGFP) a reporter of gene expression in Candida albicans (1997) Microbiology, 143 (PART 2), pp. 303-311
Lee, J., Choi, Y., Woo, E.R., Lee, D.G., Isocryptomerin, a novel membrane-active antifungal compound from Selaginella tamariscina (2009) Biochem Biophys Res Commun, 379, pp. 676-680
Zhao, H., Rinaldi, A.C., Di Giulio, A., Simmaco, M., Kinnunen, P.K., Interactions of the antimicrobial peptides temporins with model biomembranes. Comparison of temporins B and L (2002) Biochemistry, 41, pp. 4425-4436
Rinaldi, A.C., Mangoni, M.L., Rufo, A., Luzi, C., Barra, D., Temporin L: Antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles (2002) Biochem J, 368, pp. 91-100
Mangoni, M.L., Rinaldi, A.C., Di Giulio, A., Mignogna, G., Bozzi, A., Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin (2000) Eur J Biochem, 267, pp. 1447-1454
Terblanche, M., Almog, Y., Rosenson, R.S., Smith, T.S., Hackam, D.G., Statins: Panacea for sepsis? (2006) Lancet Infect Dis, 6, pp. 242-248
Feezor, R.J., Oberholzer, C., Baker, H.V., Novick, D., Rubinstein, M., Molecular characterization of the acute inflammatory response to infections with gram-negative versus gram-positive bacteria (2003) Infect Immun, 71, pp. 5803-5813
Xing, Z., Gauldie, J., Cox, G., Baumann, H., Jordana, M., IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses (1998) J Clin Invest, 101, pp. 311-320
Buras, J.A., Holzmann, B., Sitkovsky, M., Animal models of sepsis: Setting the stage (2005) Nat Rev Drug Discov, 4, pp. 854-865
Synergistic antibacterial and anti-inflammatory activity of temporin A and modified temporin B in vivo
Temporins are antimicrobial peptides secreted by the granular glands of the European red frog (Rana temporaria). They are 10-14 amino acid long polypeptides active prevalently against gram positive bacteria. This study shows that a synthetic temporin B analogue (TB-YK), acquires the capacity to act in synergism with temporin A and to exert antimicrobial and anti-inflammatory activity in vivo against gram positive and gram negative bacteria. Administration of 3.4 mg/Kg of temporin A (TA)+1.6 mg/Kg TB-YK, given to individual mice concurrently with a lethal dose of bacteria (gram positive or negative), rescued 100% of the animals. More importantly, the same doses of temporins, administered one week after experimental infection with a sub lethal dose of bacteria, sterilized 100% of the animals within 3-6 days. Also, it is described an animal model based on the use of sub lethal doses of bacteria, which closely mimics bacterial infection in humans. The model offers the possibility to test in a preclinical setting the true potential of TA and TB-YK in combination as antimicrobial and anti-inflammatory agents.
Synergistic antibacterial and anti-inflammatory activity of temporin A and modified temporin B in vivo
No results.
Synergistic antibacterial and anti-inflammatory activity of temporin A and modified temporin B in vivo
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(288 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote