Institute of Biostructure and Bioimaging (IBB), Italian National Research Council, via Pansini 5, 80131 Naples, Italy
SDN Foundation IRCCS, Naples, Italy
CEINGE, Advanced Biotechnologies, Naples, Italy
Department of Biomorphological and Functional Science, Federico II University, Naples, Italy
References: Weeissleder, R., Mahmood, U., Molecular imaging (2001) Radiology, 219, pp. 316-33
Hoffman, J.M., Gambhir, S.S., Molecular imaging: The vision and opportunity for radiology in the future (2007) Radiology, 244 (1), pp. 39-47. , DOI 10.1148/radiol.2441060773
Turnbull, D.H., Bloomfield, T.S., Baldwin, H.S., Foster, F.S., Joyner, A.L., Ultrasound backscatter microscope analysis of early mouse embryonic brain-development (1995) Proc Natl Acad Sci USA, 92, pp. 2239-2243
Aristizabal, O., Christopher, D.A., Foster, F.S., Turnbull, D.H., 40-MHZ echocardiography scanner for cardiovascular assessment of mouse embryos (1998) Ultrasound in Medicine and Biology, 24 (9), pp. 1407-1417. , DOI 10.1016/S0301-5629(98)00132-X, PII S030156299800132X
Srinivasan, S., Baldwin, H.S., Aristizabal, O., Kwee, L., Labow, M., Artman, M., Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography (1998) Circulation, 98, pp. 912-918
Turnbull, D.H., Ramsay, J.A., Shivji, G.S., Bloomfield, T.S., From, L., Sauder, D.N., Foster, F.S., Ultrasound backscatter microscope analysis of mouse melanoma progression (1996) Ultrasound in Medicine and Biology, 22 (7), pp. 845-853. , DOI 10.1016/0301-5629(96)00107-X
Olsson, M., Campbell, K., Turnbull, D.H., Specification of mouse telencephalic and mid-hindbrain progenitors following heterotopic ultrasound-guided embryonic transplantation (1997) Neuron, 19 (4), pp. 761-772. , DOI 10.1016/S0896-6273(00)80959-9
Liu, A.M., Joyner, A.L., Turnbull, D.H., Alteration of limb and brain patterning in early mouse embryos by ultrasound guided injection of Shh-expressing cells (1998) Mech Dev, 75, pp. 107-115
Gaiano, N., Kohtz, J.D., Turnbull, D.H., Fishell, G., A method for rapid gain-of-function studies in the mouse embryonic nervous system (1999) Nature Neuroscience, 2 (9), pp. 812-819. , DOI 10.1038/12186
Gee, M.S., Saunders, H.M., Lee, J.C., Sanzo, J.F., Jenkins, W.T., Evans, S.M., Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations (2001) Cancer Res, 61, pp. 2974-2982
Deng, C.X., Lizzi, F.L., A review of physical phenomena associated with ultrasonic contrast agents and illustrative clinical applications (2002) Ultrasound Med Biol, 28, pp. 277-286
Goldberg, B.B., Role of contrast agents in ultrasonography (1997) Appl Radiol, 27, pp. 4-7
Goldberg, B.B., Liu, J.B., Forsberg, F., Ultrasound contrast agents: A review (1994) Ultrasound Med Biol, 20, pp. 319-333
De Jong, N., Bouakaz, A., Frinking, P.J.A., Basic acoustic properties of microbubbles (2002) Echocardiography, 19, pp. 229-240
Cohen, J.L., Cheirif, J., Segar, D.S., Gillam, L.D., Gottdiener, J.S., Hausnerova, E., Bruns, D.E., Improved left ventricular endocardial border delineation and opacification with OPTISON (FS069), a new echocardiographic contrast agent: Results of a phase III multicenter trial (1998) Journal of the American College of Cardiology, 32 (3), pp. 746-752. , DOI 10.1016/S0735-1097(98)00311-8, PII S0735109798003118
Chomas, J.E., Dayton, P., Allen, J., Morgan, K., Ferrara, K.W., Mechanisms of contrast agent destruction (2001) IEEE Trans. Ultrason Ferroelectr Freq Control, 48, pp. 232-248
Torchilin, V.P., (1995) Handbook of Targeted Delivery of Imaging Agents, , Boca Raton, FL: CRC Press
Kremkau, W., (1989) Diagnostic Ultrasound, , Philadelphia, PA: W. B. Saunders Co
Lanza, G.M., Wallace, K.D., Scott, M.J., Cacheris, W.P., Abendschein, D.R., Christy, D.H., A novel-site targeted ultrasonic contrast agent with broad biomedical application (1996) Circulation, 94, pp. 3334-3340
Larson, S.M., Improving the balance between treatment and diagnosis a role for radioimmunodetection (1995) Cancer Handbook of Targeted Delivery of Imaging Agents, , Torchilin VP, editor. Boca Raton, FL: CRC Press
Klibanov, A.L., Hughes, M.S., Marsh, J.N., Hall, C.S., Miller, J.G., Wible, J.H., Brandenburger, G.H., Targeting of ultrasound contrast material: An in vitro feasibility study (1997) Acta Radiologica, Supplement, 38 (412), pp. 113-120
Dayton, P., Klibanov, A., Brandenburger, G., Ferrara, K., Acoustic radiation force in vivo: A mechanism to assist targeting of microbubbles (1999) Ultrasound in Medicine and Biology, 25 (8), pp. 1195-1201. , DOI 10.1016/S0301-5629(99)00062-9, PII S0301562999000629
Weller, G.E., Wong, M.K., Modzelewski, R.A., Lu, E., Klibanov, A.L., Wagner, W.R., Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine (2005) Cancer Res, 65, pp. 533-539
Lindner, J.R., Song, J., Xu, F., Klibanov, A.L., Singbartl, K., Ley, K., Kaul, S., Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes (2000) Circulation, 102 (22), pp. 2745-2750
Hauff, P., Reinhardt, M., Briel, A., Debus, N., Schirner, M., Molecular targeting of lymph nodes with L-selectin ligand-specific US contrast agent: A feasibility study in mice and dogs (2004) Radiology, 231 (3), pp. 667-673. , DOI 10.1148/radiol.2313030425
Ellegala, D.B., Leong-Poi, H., Carpenter, J.E., Klibanov, A.L., Kaul, S., Shaffrey, M.E., Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3 (2003) Circulation, 108, pp. 336-341
Leong-Poi, H., Christiansen, J., Heppner, P., Lewis, C.W., Klibanov, A.L., Kaul, S., Lindner, J.R., Assessment of endogenous and therapeutic arteriogenesis by contrast ultrasound molecular imaging of integrin expression (2005) Circulation, 111 (24), pp. 3248-3254. , DOI 10.1161/CIRCULATIONAHA.104.481515
Weiler, G.E., Wong, M.K., Modzelewski, R.A., Lu, E., Klibanov, A.L., Wagner, W.R., Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine (2005) Cancer Res, 65, pp. 533-539
Rychak, J.J., Graba, J., Cheung, A.M.Y., Mystry, B.S., Lindner, J.R., Kerbel, R.S., Foster, F.S., Microultrasound molecular imaging of vascular endothelial growth factor receptor 2 in a mouse model of tumor angiogenesis (2007) Molecular Imaging, 6 (5), pp. 289-296. , DOI 10.2310/7290.2007.00024
Willmann, J.K., Lutz, A.M., Paulmurugan, R., Patel, M.R., Chu, P., Rosenberg, J., Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo (2008) Radiology, 248, pp. 936-944
Linker, R.A., Reinhardt, M., Bendszus, M., Ladewig, G., Briel, B., Schirner, M., In vivo molecular imaging of adhesion molecules in experimental autoimmune encephalomyelitis (EAE) (2005) J Autoimm, 25, pp. 199-205
Nakashima, Y., Raines, E.W., Plump, A.S., Breslow, J.L., Ross, R., Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the apoE-deficient mouse (1998) Arteriosclerosis, Thrombosis, and Vascular Biology, 18 (5), pp. 842-851
Hamilton, A.J., Huang, S.-L., Warnick, D., Rabbat, M., Kane, B., Nagaraj, A., Klegerman, M., McPherson, D.D., Intravascular Ultrasound Molecular Imaging of Atheroma Components in Vivo (2004) Journal of the American College of Cardiology, 43 (3), pp. 453-460. , DOI 10.1016/j.jacc.2003.07.048
Alonso, A., Martina, A.D., Stroick, M., Fatar, M., Griebe, M., Pochon, S., Schneider, M., Meairs, S., Molecular imaging of human thrombus with novel abciximab immunobubbles and ultrasound (2007) Stroke, 38 (5), pp. 1508-1514. , DOI 10.1161/STROKEAHA.106.471391, PII 0000767020070500000026
Li, X., Wang, Z., Ran, H., Li, X., Yuan, Q., Zheng, Y., Ren, J., Experimental research on therapeutic angiogenesis induced by hepatocyte growth factor directed by ultrasound-targeted microbubble destruction in rats (2008) J Ultrasound Med, 27, pp. 453-460
Willmann, J.K., Paulmurugan, R., Chen, K., Gheysens, O., Rodriguez-Porcel, M., Lutz, A.M., US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice (2008) Radiology, 246, pp. 508-518
Lindner, J.R., Dayton, P.A., Coggins, M.P., Ley, K., Song, J., Ferrara, K., Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles (2000) Circulation, 102, pp. 531-538
Walzog, B., Schuppan, D., Heimpel, C., Hafezimoghadam, A., Gaehtgens, P., Ley, K., The leukocyte integral Mac-1 (Cd11b/ Cd18) contributes to binding of human granulocytes to collagen (1995) Exp Cell Res, 218, pp. 28-38
Davis, G.E., The Mac-1 and P150,95 Beta-2 integrins bind denatured proteins to mediate leukocyte cell substrate adhesion (1992) Exp Cell Res, 200, pp. 242-252
O'Brien, K.D., McDonald, T.O., Chait, A., Allen, M.D., Alpers, C.E., Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content (1996) Circulation, 93 (4), pp. 672-682
Stieger, S.M., Dayton, P.A., Borden, M.A., Caskey, C.F., Griffey, S.M., Wisner, E.R., Imaging of angiogenesis using CadenceTM contrast pulse sequencing and targeted contrast agents (2008) Contrast Media Mol Imaging, 3, pp. 9-18
Lanza, G.M., Wickline, S.A., Targeted ultrasonic contrast agents for molecular imaging and therapy (2001) Prog Cardiovasc Dis, 44, pp. 13-31
Lindner, J.R., Coggins, M.P., Kaul, S., Klibanov, A.L., Brandenburger, G.H., Ley, K., Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- And complement- mediated adherence to activated leukocytes (2000) Circulation, 101 (6), pp. 668-675
Kaufmann, B.A., Sanders, J.M., Davis, C., Xie, A., Aldred, P., Sarembock, I.J., Lindner, J.R., Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1 (2007) Circulation, 116 (3), pp. 276-284. , DOI 10.1161/CIRCULATIONAHA.106.684738, PII 0000301720070717000010
Denekamp, J., Angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy (1993) British Journal of Radiology, 66 (783), pp. 181-196
Folkman, J., Seminars in medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis (1995) N Engl J Med, 333, pp. 1757-1763
Gimbrone Jr., M.A., Leapman, S.B., Cotran, R.S., Folkman, J., Tumor dormancy in vivo by prevention of neovascularization (1972) J Exp Med, 136, pp. 261-276
Folkman, J., What is the evidence that tumors are angiogenesis dependent? (1990) J Natl Cancer Inst, 82, pp. 4-6
Dameron, K.M., Volpert, O.V., Tainsky, M.A., Bouck, N., Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1 (1994) Science, 265 (5178), pp. 1582-1584
Cockerill, G.W., Gamble, J.R., Vadas, M.A., Angiogenesis: Models and modulators (1995) Int Rev Cytol, 159, pp. 113-160
Giatromanolaki, A., Sivridis, E., Koukourakis, M.I., Georgoulias, V., Gatter, K.C., Harris, A.L., Intratumoral angiogenesis: A new prognostic indicator forstage I endometrial adenocarcinomas? (1999) Oncol Res, 11, pp. 205-212
Dazzi, C., Cariello, A., Maioli, P., Solaini, L., Scarpi, E., Rosti, G., Prognostic and predictive value of intratumoral microvessels density in operable non-small-cell lung cancer (1999) Lung Cancer, 24, pp. 81-88
Toi, M., Kashitani, J., Tominaga, T., Tumor angiogenesis is an independent prognostic indicator in primary breast carcinoma (1993) International Journal of Cancer, 55 (3), pp. 371-374. , DOI 10.1002/ijc.2910550305
Toi, M., Inada, K., Suzuki, H., Tominaga, T., Tumor angiogenesis in breast cancer: Its importance as a prognostic indicator and the association with vascular endothelial growth factor expression (1995) Breast Cancer Res Treat, 36, pp. 193-204
Strohmeyer, D., Rossing, C., Strauss, F., Bauerfeind, A., Kaufmann, O., Loening, S., Tumor angiogenesis is associated with progression after radical prostatectomy in pT2/pT3 prostate cancer (2000) Prostate, 42 (1), pp. 26-33. , DOI 10.1002/(SICI)1097-0045(20000101)42:1<26::AID-PROS4>
3.0.CO
Takahashi, Y., Bucana, C.D., Liu, W., Yoneda, J., Kitadai, Y., Cleary, K.R., Ellis, L.M., Platelet-derived endothelial cell growth factor in human colon cancer angiogenesis: Role of infiltrating cells (1996) Journal of the National Cancer Institute, 88 (16), pp. 1146-1151
Wang, S., Liu, H., Ren, L., Pan, Y., Zhang, Y., Inhibiting colorectal carcinoma growth and metastasis by blocking the expression of VEGF using RNA interference (2008) Neoplasia, 10, pp. 399-407
Nayaha, V., Stenback, F., Angiogenesis and expression of angiogenic agents in uterine and ovarian carcinosarcomas (2008) APMIS, 116, pp. 107-117
Rajkumar, S.V., Leong, T., Roche, P.C., Fonseca, R., Dispenzieri, A., Lacy, M.Q., Lust, J.A., Greipp, P.R., Prognostic value of bone marrow angiogenesis in multiple myeloma (2000) Clinical Cancer Research, 6 (8), pp. 3111-3116
Bellamy, W.T., Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies (2001) Seminars in Oncology, 28 (6), pp. 551-559
Ferrara, N., Henzel, W.J., Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells (1989) Biochemical and Biophysical Research Communications, 161 (2), pp. 851-858. , DOI 10.1016/0006-291X(89)92678-8
Folkman, J., Klagsbrun, M., Angiogenic factors (1987) Science, 235, pp. 442-447
McAuslan, B.R., Bender, V., Reilly, W., Moss, B.A., New functions of epidermal growth factor: Stimulation of capillary endothelial cell migration and matrix dependent proliferation (1985) Cell Biol Int Rep, 9, pp. 175-182
Ferrara, N., Houck, K., Jakeman, L., Leung, D.W., Molecular and biological properties of the vascular endothelial growth factor family of proteins (1992) Endocr Rev, 13, pp. 18-32
Rosen, E.M., Grant, D.S., Kleinman, H.K., Goldberg, I.D., Bhargava, M.M., Nickoloff, B.J., Scatter factor (hepatocyte growth factor) is a potent angiogenesis factor in vivo (1993) Symp Soc Exp Biol, 47, pp. 227-234
Relf, M., Lejeune, S., Scott, P.A.E., Fox, S., Smith, K., Leek, R., Moghaddam, A., Harris, A.L., Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor β-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis (1997) Cancer Research, 57 (5), pp. 963-969
Li, M., Zhang, Y., Feurino, L.W., Wang, K., Fisher, W.E., Brunicardi, F.C., Interleukin-8 increases vascular endothelial growth factor and neutropilin expression and stimulates ERK activation in human pancreatic cancer (2008) Cancer Sci, 99, pp. 733-737
Frater-Schroder, M., Risau, W., Hallmann, R., Tumor necrosis factor type α, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo (1987) Proceedings of the National Academy of Sciences of the United States of America, 84 (15), pp. 5277-5281
Sharpe, R.J., Byers, H.R., Scott, C.F., Bauer, S.I., Maione, T.E., Growth inhibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4 (1990) J Natl Cancer Inst, 82, pp. 848-853
Maione, T.E., Gray, G.S., Petro, J., Hunt, A.J., Donner, A.L., Bauer, S.I., Carson, H.F., Sharpe, R.J., Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides (1990) Science, 247 (4938), pp. 77-79
Tolsma, S.S., Volpert, O.V., Good, D.J., Frazier, W.A., Polverini, P.J., Bouck, N., Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity (1993) Journal of Cell Biology, 122 (2), pp. 497-511
Clapp, C., Martial, J.A., Guzman, R.C., Rentier-Delrue, F., Weiner, R.I., The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis (1993) Endocrinology, 133 (3), pp. 1292-1299. , DOI 10.1210/en.133.3.1292
Henriet, P., Blavier, L., Declerck, Y.A., Tissue inhibitors of metalloproteinases (TLMP) in invasion and proliferation (1999) APMIS, 107, pp. 111-119
Cybulsky, M.I., Gimbrone Jr., M.A., Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis (1991) Science, 251, pp. 788-791
Keller, M.W., Spotnitz, W.D., Matthew, T.L., Glasheen, W.P., Watson, D.D., Kaul, S., Intraoperative assessment of regional myocardial perfusion using quantitative myocardial contrast echocardiography: An experimental evaluation (1990) Journal of the American College of Cardiology, 16 (5), pp. 1267-1279
Aoki, M., Kawata, H., Mayer Jr., J.E., Coronary endothelial injury by cold crystalloid cardioplegic solution in neonatal lambs (1992) Circulation, 86 (5 SUPPL. II), pp. 346-351
Milhoan, K.A., Lane, T.A., Bloor, C.M., Hypoxia induces endothelial cells to increase their adherence for neutrophils: Role of PAF (1992) Am J Physiol, 263 (3 PART 2), pp. H956-62
Lewisx Weller, G.E., Villanueva, F.S., Tom, E.M., Wagner, W.R., Targeted ultrasound contrast agents: In vitro assessment of endothelial dysfunction and multi-targeting to ICAM-1 and sialyl (2005) Biotechnol Bioeng, 92, pp. 780-788
Birnbaum, Y., Iakobishvili, Z., Porter, A., Hasdai, D., Atar, S., Siegel, R.J., Battler, A., Microparticle-containing oncotic solutions augment in-vitro clot disruption by ultrasound (2000) Thrombosis Research, 98 (6), pp. 549-557. , DOI 10.1016/S0049-3848(00)00214-0, PII S0049384800002140
Culp, W.C., Porter, T.R., McCowan, T.C., Roberson, P.K., James, C.A., Matchett, W.J., Microbubble-augmented ultrasound declotting of thrombosed arteriovenous dialysis grafts in dogs (2003) J Vasc Interv Radiol, 14, pp. 343-347
Pagola, J., Ribo, M., Alvarez-Sabin, J., Lange, M., Rubiera, M., Molina, C.A., Timing of recanalization after microbubble-enhanced intravenous thrombolysis in basilar artery occlusion (2007) Stroke, 38 (11), pp. 2931-2934. , DOI 10.1161/STROKEAHA.107.487454, PII 0000767020071100000011
Nesser, H.J., Karia, D.H., Tkalec, W., Pandian, N.G., Therapeutic ultrasound in cardiology (2002) Herz, 27, pp. 269-278
Francis, C.W., Onundarson, P.T., Carstensen, E.L., Blinc, A., Meltzer, R.S., Enhancement of fibrinolysis in vitro by ultrasound (1992) J Clin Invest, 90, pp. 2063-2068
Tachibana, K., Tachibana, S., Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis (1995) Circulation, 92, pp. 1148-1150
Lefkovits, J., Plow, E.F., Topol, E.J., Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine (1995) N Engl J Med, 332, pp. 1553-1559
Unger, E.C., McCreery, T.P., Sweitzer, R.H., Shen, D., Wu, G., In vitro studies of a new thrombus-specific ultrasound contrast agent (1998) American Journal of Cardiology, 81 (12 A), pp. 58G-61G. , PII S0002914998000551
Unger, E.C., Wu, Q., McGreery, T.P., Matsunaga, T.O., Thrombus-specific contrast agents for imaging and thrombolysis (2001) Ultrasound Contrast Agents. Basic Principles and Clinical Applications, pp. 337-345. , Goldberg BB, Raichlen JS, Forsberg F, editors. London: Martin Dunitz Ltd
Lindner, J.R., Detection of inflamed plaques with contrast ultrasound (2002) Am J Cardiol, 90, pp. 32L-5L
Behm, C.Z., Kaufmann, B.A., Carr, C., Lankford, M., Sanders, J.M., Rose, C.E., Kaul, S., Lindner, J.R., Molecular imaging of endothelial vascular cell adhesion molecule-1 expression and inflammatory cell recruitment during vasculogenesis and ischemia-mediated arteriogenesis (2008) Circulation, 117 (22), pp. 2902-2911. , DOI 10.1161/CIRCULATIONAHA.107.744037
Kassan, D.G., Lynch, A.M., Stiller, M.J., Physical enhancement of dermatologic drug delivery: Iontophoresis and phonophoresis (1996) J Am Acad Dermatol, 34, pp. 657-666
Barnett, S.B., Ter Haar, G.R., Ziskin, M.C., Nyborg, W.L., Maeda, K., Bang, J., Current status of research on biophysical effects of ultrasound (1994) Ultrasound in Medicine and Biology, 20 (3), pp. 205-218. , DOI 10.1016/0301-5629(94)90060-4
Marmottant, P., Hilgenfeldt, S., Controlled vesicle deformation and lysis by single oscillating bubbles (2003) Nature, 423 (6936), pp. 153-156. , DOI 10.1038/nature01613
Nyborg, W.L., Ultrasonic microstreaming and related phenomena (1982) Br J Cancer, 45 (SUPPL. V), pp. 156-160
Brennen, C.E., (1995) Cavitation and Bubble Dynamics, , New York, NY: Oxford University Press
May, D.J., Allen, J.S., Ferrara, K.W., Dynamics and fragmentation of thick-shelled microbubbles (2002) IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 49, pp. 1400-1410
Jenne, J., Kavitation in biologischem Gewebe (2001) Ultraschall in Med, 22, p. 2007
Skyba, D.M., Price, R.J., Linka, A.Z., Skalak, T.C., Kaul, S., Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue (1998) Circulation, 98 (4), pp. 290-293
Nyborg, W.L., Biological effects of ultrasound: Development of safety guidelines. Part II: general review (2001) Ultrasound Med Biol, 27, pp. 301-333
Lindner, J.R., Microbubbles in medical imaging: Current applications and future directions (2004) Nature Reviews Drug Discovery, 3 (6), pp. 527-532
Bekeredjian, R., Chen, S.Y., Grayburn, P.A., Shohet, R.V., Delivery of luciferase enzyme to the heart using ultrasound targeted microbubble destruction (2004) J Am Coll Cardiol, 43, pp. 374a-74a
Manome, Y., Nakamura, M., Ohno, T., Furuhata, H., Ultrasound facilitates transduction of naked plasmid DNA into colon carcinoma cells in vitro and in vivo (2000) Human Gene Therapy, 11 (11), pp. 1521-1528. , DOI 10.1089/10430340050083252
Endoh, M., Koibuchi, N., Sato, M., Morishita, R., Kanzaki, T., Murata, Y., Kaneda, Y., Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound (2002) Molecular Therapy, 5 (5 I), pp. 501-508. , DOI 10.1006/mthe.2002.0577
Barbarese, E., Ho, S.-Y., D'Arrigo, J.S., Simon, R.H., Internalization of microbubbles by tumor cells in vivo and in vitro (1995) J Neurooncol, 26, pp. 25-34
Mesiwala, A.H., Farrell, L., Wenzel, H.J., Silbergeld, D.L., Crum, L.A., Winn, H.R., Mourad, P.D., High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo (2002) Ultrasound in Medicine and Biology, 28 (3), pp. 389-400. , DOI 10.1016/S0301-5629(01)00521-X, PII S030156290100521X
Cho, C.-W., Liu, Y., Cobb, W.N., Henthorn, T.K., Lillehei, K., Christians, U., Ng, K.-Y., Ultrasound-induced mild hyperthermia as a novel approach to increase drug uptake in brain microvessel endothelial cells (2002) Pharmaceutical Research, 19 (8), pp. 1123-1129. , DOI 10.1023/A:1019837923906
Hynynen, K., McDannold, N., Martin, H., Jolesz, F.A., Vykhodtseva, N., The threshold for brain damage in rabbits induced by bursts of ultrasound in the presence of an ultrasound contrast agent (Optison) (2003) Ultrasound in Medicine and Biology, 29 (3), pp. 473-481. , DOI 10.1016/S0301-5629(02)00741-X
Barry, B.W., Novel mechanisms and devices to enable successful transdermal drug delivery (2001) Eur J Pharm Sci, 14, pp. 101-114
Mitragotri, S., Kost, J., Low-frequency sonophoresis. a review (2004) Adv Drug Deliv Rev, 56, pp. 589-601
Qian, Z., Stoodley, P., Pitt, W.G., Effect of low-intensity ultrasound upon biofilm structure from confocal scanning laser microscopy observation (1996) Biomaterials, 17 (20), pp. 1975-1980. , DOI 10.1016/0142-9612(96)00022-1
Qian, Z., Sagers, R.D., Pitt, W.G., Investigation of the mechanism of the bioacoustic effect (1999) J Biomed Mater Res, 44, pp. 198-205
Francis, C.W., Blinc, A., Lee, S., Cox, C., Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots (1995) Ultrasound Med Biol, 21, pp. 419-424
Suchkova, V., Carstensen, E.L., Francis, C.W., Ultrasound enhancement of fibrinolysis at frequencies of 27 to 100 kHz (2002) Ultrasound in Medicine and Biology, 28 (3), pp. 377-382. , DOI 10.1016/S0301-5629(01)00522-1, PII S0301562901005221
Loverock, P., Ter, H., Ormerod, M.G., Imrie, P.R., The effect of ultrasound on the cytoxicity of adriamycin (1990) Brit J Radiol, 63, pp. 542-546
Rediske, A.M., Rapoport, N., Pitt, W.G., Reducing bacterial resistance to antibiotics with ultrasound (1999) Letters in Applied Microbiology, 28 (1), pp. 81-84. , DOI 10.1046/j.1365-2672.1999.00461.x
Johnson, L.L., Peterson, R.V., Pitt, W.G., Treatment of bacterial biofilms on polymeric implants using antibiotics and ultrasound (1998) J Biomat Sci Polymer Ed, 9, pp. 1177-1185
Hoffman, J. M., Gambhir, S. S., Molecular imaging: The vision and opportunity for radiology in the future (2007) Radiology, 244 (1), pp. 39-47. , DOI 10. 1148/radiol. 2441060773
Turnbull, D. H., Bloomfield, T. S., Baldwin, H. S., Foster, F. S., Joyner, A. L., Ultrasound backscatter microscope analysis of early mouse embryonic brain-development (1995) Proc Natl Acad Sci USA, 92, pp. 2239-2243
Turnbull, D. H., Ramsay, J. A., Shivji, G. S., Bloomfield, T. S., From, L., Sauder, D. N., Foster, F. S., Ultrasound backscatter microscope analysis of mouse melanoma progression (1996) Ultrasound in Medicine and Biology, 22 (7), pp. 845-853. , DOI 10. 1016/0301-5629 (96) 00107-X
Liu, A. M., Joyner, A. L., Turnbull, D. H., Alteration of limb and brain patterning in early mouse embryos by ultrasound guided injection of Shh-expressing cells (1998) Mech Dev, 75, pp. 107-115
Gee, M. S., Saunders, H. M., Lee, J. C., Sanzo, J. F., Jenkins, W. T., Evans, S. M., Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations (2001) Cancer Res, 61, pp. 2974-2982
Deng, C. X., Lizzi, F. L., A review of physical phenomena associated with ultrasonic contrast agents and illustrative clinical applications (2002) Ultrasound Med Biol, 28, pp. 277-286
Goldberg, B. B., Role of contrast agents in ultrasonography (1997) Appl Radiol, 27, pp. 4-7
Goldberg, B. B., Liu, J. B., Forsberg, F., Ultrasound contrast agents: A review (1994) Ultrasound Med Biol, 20, pp. 319-333
Cohen, J. L., Cheirif, J., Segar, D. S., Gillam, L. D., Gottdiener, J. S., Hausnerova, E., Bruns, D. E., Improved left ventricular endocardial border delineation and opacification with OPTISON (FS069), a new echocardiographic contrast agent: Results of a phase III multicenter trial (1998) Journal of the American College of Cardiology, 32 (3), pp. 746-752. , DOI 10. 1016/S0735-1097 (98) 00311-8, PII S0735109798003118
Chomas, J. E., Dayton, P., Allen, J., Morgan, K., Ferrara, K. W., Mechanisms of contrast agent destruction (2001) IEEE Trans. Ultrason Ferroelectr Freq Control, 48, pp. 232-248
Torchilin, V. P., (1995) Handbook of Targeted Delivery of Imaging Agents, , Boca Raton, FL: CRC Press
Lanza, G. M., Wallace, K. D., Scott, M. J., Cacheris, W. P., Abendschein, D. R., Christy, D. H., A novel-site targeted ultrasonic contrast agent with broad biomedical application (1996) Circulation, 94, pp. 3334-3340
Larson, S. M., Improving the balance between treatment and diagnosis a role for radioimmunodetection (1995) Cancer Handbook of Targeted Delivery of Imaging Agents, , Torchilin VP, editor. Boca Raton, FL: CRC Press
Klibanov, A. L., Hughes, M. S., Marsh, J. N., Hall, C. S., Miller, J. G., Wible, J. H., Brandenburger, G. H., Targeting of ultrasound contrast material: An in vitro feasibility study (1997) Acta Radiologica, Supplement, 38 (412), pp. 113-120
Weller, G. E., Wong, M. K., Modzelewski, R. A., Lu, E., Klibanov, A. L., Wagner, W. R., Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine (2005) Cancer Res, 65, pp. 533-539
Lindner, J. R., Song, J., Xu, F., Klibanov, A. L., Singbartl, K., Ley, K., Kaul, S., Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes (2000) Circulation, 102 (22), pp. 2745-2750
Ellegala, D. B., Leong-Poi, H., Carpenter, J. E., Klibanov, A. L., Kaul, S., Shaffrey, M. E., Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha (v) beta3 (2003) Circulation, 108, pp. 336-341
Weiler, G. E., Wong, M. K., Modzelewski, R. A., Lu, E., Klibanov, A. L., Wagner, W. R., Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine (2005) Cancer Res, 65, pp. 533-539
Rychak, J. J., Graba, J., Cheung, A. M. Y., Mystry, B. S., Lindner, J. R., Kerbel, R. S., Foster, F. S., Microultrasound molecular imaging of vascular endothelial growth factor receptor 2 in a mouse model of tumor angiogenesis (2007) Molecular Imaging, 6 (5), pp. 289-296. , DOI 10. 2310/7290. 2007. 00024
Willmann, J. K., Lutz, A. M., Paulmurugan, R., Patel, M. R., Chu, P., Rosenberg, J., Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo (2008) Radiology, 248, pp. 936-944
Linker, R. A., Reinhardt, M., Bendszus, M., Ladewig, G., Briel, B., Schirner, M., In vivo molecular imaging of adhesion molecules in experimental autoimmune encephalomyelitis (EAE) (2005) J Autoimm, 25, pp. 199-205
Villanueva, F. S., Jankowski, R. J., Klibanov, S., Pina, M. L., Alber, S. M., Watkins, S. C., Brandenburger, G. H., Wagner, W. R., Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells (1998) Circulation, 98 (1), pp. 1-5
Hamilton, A. J., Huang, S. -L., Warnick, D., Rabbat, M., Kane, B., Nagaraj, A., Klegerman, M., McPherson, D. D., Intravascular Ultrasound Molecular Imaging of Atheroma Components in Vivo (2004) Journal of the American College of Cardiology, 43 (3), pp. 453-460. , DOI 10. 1016/j. jacc. 2003. 07. 048
Willmann, J. K., Paulmurugan, R., Chen, K., Gheysens, O., Rodriguez-Porcel, M., Lutz, A. M., US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice (2008) Radiology, 246, pp. 508-518
Lindner, J. R., Dayton, P. A., Coggins, M. P., Ley, K., Song, J., Ferrara, K., Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles (2000) Circulation, 102, pp. 531-538
Davis, G. E., The Mac-1 and P150, 95 Beta-2 integrins bind denatured proteins to mediate leukocyte cell substrate adhesion (1992) Exp Cell Res, 200, pp. 242-252
O'Brien, K. D., McDonald, T. O., Chait, A., Allen, M. D., Alpers, C. E., Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content (1996) Circulation, 93 (4), pp. 672-682
Stieger, S. M., Dayton, P. A., Borden, M. A., Caskey, C. F., Griffey, S. M., Wisner, E. R., Imaging of angiogenesis using CadenceTM contrast pulse sequencing and targeted contrast agents (2008) Contrast Media Mol Imaging, 3, pp. 9-18
Lanza, G. M., Wickline, S. A., Targeted ultrasonic contrast agents for molecular imaging and therapy (2001) Prog Cardiovasc Dis, 44, pp. 13-31
Lindner, J. R., Coggins, M. P., Kaul, S., Klibanov, A. L., Brandenburger, G. H., Ley, K., Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- And complement- mediated adherence to activated leukocytes (2000) Circulation, 101 (6), pp. 668-675
Kaufmann, B. A., Sanders, J. M., Davis, C., Xie, A., Aldred, P., Sarembock, I. J., Lindner, J. R., Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1 (2007) Circulation, 116 (3), pp. 276-284. , DOI 10. 1161/CIRCULATIONAHA. 106. 684738, PII 0000301720070717000010
Gimbrone Jr., M. A., Leapman, S. B., Cotran, R. S., Folkman, J., Tumor dormancy in vivo by prevention of neovascularization (1972) J Exp Med, 136, pp. 261-276
Dameron, K. M., Volpert, O. V., Tainsky, M. A., Bouck, N., Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1 (1994) Science, 265 (5178), pp. 1582-1584
Cockerill, G. W., Gamble, J. R., Vadas, M. A., Angiogenesis: Models and modulators (1995) Int Rev Cytol, 159, pp. 113-160
Rajkumar, S. V., Leong, T., Roche, P. C., Fonseca, R., Dispenzieri, A., Lacy, M. Q., Lust, J. A., Greipp, P. R., Prognostic value of bone marrow angiogenesis in multiple myeloma (2000) Clinical Cancer Research, 6 (8), pp. 3111-3116
Bellamy, W. T., Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies (2001) Seminars in Oncology, 28 (6), pp. 551-559
McAuslan, B. R., Bender, V., Reilly, W., Moss, B. A., New functions of epidermal growth factor: Stimulation of capillary endothelial cell migration and matrix dependent proliferation (1985) Cell Biol Int Rep, 9, pp. 175-182
Rosen, E. M., Grant, D. S., Kleinman, H. K., Goldberg, I. D., Bhargava, M. M., Nickoloff, B. J., Scatter factor (hepatocyte growth factor) is a potent angiogenesis factor in vivo (1993) Symp Soc Exp Biol, 47, pp. 227-234
Sharpe, R. J., Byers, H. R., Scott, C. F., Bauer, S. I., Maione, T. E., Growth inhibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4 (1990) J Natl Cancer Inst, 82, pp. 848-853
Maione, T. E., Gray, G. S., Petro, J., Hunt, A. J., Donner, A. L., Bauer, S. I., Carson, H. F., Sharpe, R. J., Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides (1990) Science, 247 (4938), pp. 77-79
Tolsma, S. S., Volpert, O. V., Good, D. J., Frazier, W. A., Polverini, P. J., Bouck, N., Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity (1993) Journal of Cell Biology, 122 (2), pp. 497-511
Cybulsky, M. I., Gimbrone Jr., M. A., Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis (1991) Science, 251, pp. 788-791
Keller, M. W., Spotnitz, W. D., Matthew, T. L., Glasheen, W. P., Watson, D. D., Kaul, S., Intraoperative assessment of regional myocardial perfusion using quantitative myocardial contrast echocardiography: An experimental evaluation (1990) Journal of the American College of Cardiology, 16 (5), pp. 1267-1279
Milhoan, K. A., Lane, T. A., Bloor, C. M., Hypoxia induces endothelial cells to increase their adherence for neutrophils: Role of PAF (1992) Am J Physiol, 263 (3 PART 2), pp. H956-62
Lewisx Weller, G. E., Villanueva, F. S., Tom, E. M., Wagner, W. R., Targeted ultrasound contrast agents: In vitro assessment of endothelial dysfunction and multi-targeting to ICAM-1 and sialyl (2005) Biotechnol Bioeng, 92, pp. 780-788
Culp, W. C., Porter, T. R., McCowan, T. C., Roberson, P. K., James, C. A., Matchett, W. J., Microbubble-augmented ultrasound declotting of thrombosed arteriovenous dialysis grafts in dogs (2003) J Vasc Interv Radiol, 14, pp. 343-347
Nesser, H. J., Karia, D. H., Tkalec, W., Pandian, N. G., Therapeutic ultrasound in cardiology (2002) Herz, 27, pp. 269-278
Francis, C. W., Onundarson, P. T., Carstensen, E. L., Blinc, A., Meltzer, R. S., Enhancement of fibrinolysis in vitro by ultrasound (1992) J Clin Invest, 90, pp. 2063-2068
Unger, E. C., McCreery, T. P., Sweitzer, R. H., Shen, D., Wu, G., In vitro studies of a new thrombus-specific ultrasound contrast agent (1998) American Journal of Cardiology, 81 (12 A), pp. 58G-61G. , PII S0002914998000551
Unger, E. C., Wu, Q., McGreery, T. P., Matsunaga, T. O., Thrombus-specific contrast agents for imaging and thrombolysis (2001) Ultrasound Contrast Agents. Basic Principles and Clinical Applications, pp. 337-345. , Goldberg BB, Raichlen JS, Forsberg F, editors. London: Martin Dunitz Ltd
Lindner, J. R., Detection of inflamed plaques with contrast ultrasound (2002) Am J Cardiol, 90, pp. 32L-5L
Behm, C. Z., Kaufmann, B. A., Carr, C., Lankford, M., Sanders, J. M., Rose, C. E., Kaul, S., Lindner, J. R., Molecular imaging of endothelial vascular cell adhesion molecule-1 expression and inflammatory cell recruitment during vasculogenesis and ischemia-mediated arteriogenesis (2008) Circulation, 117 (22), pp. 2902-2911. , DOI 10. 1161/CIRCULATIONAHA. 107. 744037
Kassan, D. G., Lynch, A. M., Stiller, M. J., Physical enhancement of dermatologic drug delivery: Iontophoresis and phonophoresis (1996) J Am Acad Dermatol, 34, pp. 657-666
Barnett, S. B., Ter Haar, G. R., Ziskin, M. C., Nyborg, W. L., Maeda, K., Bang, J., Current status of research on biophysical effects of ultrasound (1994) Ultrasound in Medicine and Biology, 20 (3), pp. 205-218. , DOI 10. 1016/0301-5629 (94) 90060-4
Nyborg, W. L., Ultrasonic microstreaming and related phenomena (1982) Br J Cancer, 45 (SUPPL. V), pp. 156-160
Brennen, C. E., (1995) Cavitation and Bubble Dynamics, , New York, NY: Oxford University Press
May, D. J., Allen, J. S., Ferrara, K. W., Dynamics and fragmentation of thick-shelled microbubbles (2002) IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 49, pp. 1400-1410
Skyba, D. M., Price, R. J., Linka, A. Z., Skalak, T. C., Kaul, S., Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue (1998) Circulation, 98 (4), pp. 290-293
Nyborg, W. L., Biological effects of ultrasound: Development of safety guidelines. Part II: general review (2001) Ultrasound Med Biol, 27, pp. 301-333
Lindner, J. R., Microbubbles in medical imaging: Current applications and future directions (2004) Nature Reviews Drug Discovery, 3 (6), pp. 527-532
Mesiwala, A. H., Farrell, L., Wenzel, H. J., Silbergeld, D. L., Crum, L. A., Winn, H. R., Mourad, P. D., High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo (2002) Ultrasound in Medicine and Biology, 28 (3), pp. 389-400. , DOI 10. 1016/S0301-5629 (01) 00521-X, PII S030156290100521X
Cho, C. -W., Liu, Y., Cobb, W. N., Henthorn, T. K., Lillehei, K., Christians, U., Ng, K. -Y., Ultrasound-induced mild hyperthermia as a novel approach to increase drug uptake in brain microvessel endothelial cells (2002) Pharmaceutical Research, 19 (8), pp. 1123-1129. , DOI 10. 1023/A: 1019837923906
Barry, B. W., Novel mechanisms and devices to enable successful transdermal drug delivery (2001) Eur J Pharm Sci, 14, pp. 101-114
Francis, C. W., Blinc, A., Lee, S., Cox, C., Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots (1995) Ultrasound Med Biol, 21, pp. 419-424
Rediske, A. M., Rapoport, N., Pitt, W. G., Reducing bacterial resistance to antibiotics with ultrasound (1999) Letters in Applied Microbiology, 28 (1), pp. 81-84. , DOI 10. 1046/j. 1365-2672. 1999. 00461. x
Johnson, L. L., Peterson, R. V., Pitt, W. G., Treatment of bacterial biofilms on polymeric implants using antibiotics and ultrasound (1998) J Biomat Sci Polymer Ed, 9, pp. 1177-1185
Ultrasound molecular imaging by targeted microbubble contrast agents
Ultrasound contrast agents are based on the physical resonating behavior of bubbles with a diameter of few microns, i.e. microbubbles, when they undergo ultrasound beams. Microbubbles, once introduced in the body intravenously, increase the blood backscatter improving contrast in images, so that both the macroand microcirculation can be visualized in order to asses organ function and to characterize tumors vascularity. Recently, the analysis of phenomena associated with resonating microbubbles such as "cavitation", "microstreaming" and "sonoporatlon", has suggested that ultrasound contrast agents may be induced, intentionally by the ultrasonographer, to interact with the endothelial cells and that the interaction may further be driven if microbubbles are specifically targeted for intravascular molecules: either by modifying the shell of microbubbles or by attaching on the shell specific ligands, i.e. peptides, proteins and antibody. These features have opened new scenarios, since microbubbles can be seen, not only, as media to improve generically contrast vascular image, but also to record physiological process undergoing into the vascular constrain as well as to release a healing payload, carried by microbubbles, to the surrounding tissues. Therefore, ultrasound contrast media may further place ultrasonography (US) among the therapeutic modalities as much as advances in ligands and bubbles biochemistry as soon as advances in US probes technology will be provided. A concise overview of the current understandings on ultrasound contrast media is hereafter presented.
Ultrasound molecular imaging by targeted microbubble contrast agents
No results.
Ultrasound molecular imaging by targeted microbubble contrast agents
Malvindi MA, Greco A, Conversano F, Figuerola A, Corti M, Bonora M, Lascialfari A, Doumari HA, Moscardini M, Cingolani R, Gigli G, Casciaro S, Pellegrino T, Ragusa A * MR Contrast Agents(292 views) Small Animal Imaging, 2011 Jul 8; 21(13): 2548-2555. Impact Factor:1.784 ViewExport to BibTeXExport to EndNote