Keywords: Collagen, Imino Acids, Protein-Protein Association, Quantum Chemistry, Triple Helix, Glycine, Hydroxyproline, Article, Dipole, Priority Journal, Protein Motif, Protein Stability, Protein Structure, Structure Analysis, X Ray Analysis, Amino Acid Motifs, Animals, Crystallography, X-Ray, Humans, Peptides,
Affiliations: *** IBB - CNR ***
Istituto di Biostrutture e Bioimmagini, CNR, I-80134 Napoli, Italy
References: Adamo, C., Barone, V., Toward reliable density functional methods without adjustable parameters: The PBE0 model (1999) J. Chem. Phys, 110, pp. 6158-617
Bann, J.G., Bachinger, H.P., Glycosylation/hydroxylationinduced stabilization of the collagen triple helix. 4-trans-hydroxyproline in the Xaa position can stabilize the triple helix (2000) J. Biol. Chem, 275, pp. 24466-24469
Barone, V., Newton, M.D., Improta, R., Dissociative electron transfer in D-peptide-A systems: Results for kinetic parameters from a density functional/polarizable continuum model (2006) J. Phys. Chem, 110, p. 12632
Bella, J., Brodsky, B., Berman, H.M., Hydration structure of a collagen peptide (1995) Structure, 3, pp. 893-906
Berisio, R., Vitagliano, L., Mazzarella, L., Zagari, A., Recent progress on collagen triple helix structure, stability and assembly (2002) Protein Pept. Lett, 9, pp. 107-116
Berisio, R., Granata, V., Vitagliano, L., Zagari, A., Imino acids and collagen triple helix stability: Characterization of collagen-like polypeptides containing Hyp-Hyp-Gly sequence repeats (2004) J. Am. Chem. Soc, 126, pp. 11402-11403
Berisio, R., Loguercio, S., De Simone, A., Zagari, A., Vitagliano, L., Polyproline helices in protein structures: A statistical survey (2006) Protein Pept. Lett, 13, pp. 847-854
Berman, H.M., Bhat, T.N., Bourne, P.E., Feng, Z., Gilliland, G., Weissig, H., Westbrook, J., The Protein Data Bank and the challenge of structural genomics (2000) Nat. Struct. Biol, 7 (SUPPL.), pp. 957-959
Besler, B.H., Merz, K.M., Kollman, P.A., Atomic charges derived from semiempirical methods (1990) J. Comput. Chem, 11, pp. 431-439
Boys, S.F., Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (1970) Mol. Phys, 19, pp. 553-566
Brodsky, B., Persikov, A.V., Molecular structure of the collagen triple helix (2005) Adv. Protein Chem, 70, pp. 301-339
Burjanadze, T.V., New analysis of the phylogenetic change of collagen thermostability (2000) Biopolymers, 53, pp. 523-528
Doi, M., Nishi, Y., Uchiyama, S., Nishiuchi, Y., Nishio, H., Nakazawa, T., Ohkubo, T., Kobayashi, Y., Collagen-like triple helix formation of synthetic (Pro-Pro-Gly)10 analogues: (4(S)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly) 10, (4(R)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10 and (4(S)-fluoroprolyl-4(R)- fluoroprolyl-Gly)10 (2005) J. Pept. Sci, 11, pp. 609-616
Ernzerhof, M.S., Scuseria, G.E., Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional (1999) J. Chem. Phys, 110, pp. 5029-5036
Foster, J.P., Weinhold, F., Natural hybrid orbitals (1980) J. Am. Chem. Soc, 102, pp. 7211-7218
Gauba, V., Hartgerink, J.D., Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions (2007) J. Am. Chem. Soc, 129, pp. 2683-2690
Hodges, J.A., Raines, R.T., Stereoelectronic and steric effects in the collagen triple helix: Toward a code for strand association (2005) J. Am. Chem. Soc, 127, pp. 15923-15932
Holmgren, S.K., Taylor, K.M., Bretscher, L.E., Raines, R.T., Code for collagen's stability deciphered (1998) Nature, 392, pp. 666-667
Holmgren, S.K., Bretscher, L.E., Taylor, K.M., Raines, R.T., A hyperstable collagen mimic (1999) Chem. Biol, 6, pp. 63-70
Improta, R., Barone, V., Assessing the reliability of density functional methods in the conformational study of polypeptides: The treatment of intraresidue nonbonding interactions (2004) J. Comput. Chem, 25, pp. 1333-1341
Improta, R., Benzi, C., Barone, V., Understanding the role of stereoelectronic effects in determining collagen stability. 1. A quantum mechanical study of proline, hydroxyproline, and fluoroproline dipeptide analogues in aqueous solution (2001) J. Am. Chem. Soc, 123, pp. 12568-12577
Improta, R., Mele, F., Crescenzi, O., Benzi, C., Barone, V., Understanding the role of stereoelectronic effects in determining collagen stability. 2. A quantum mechanical/molecular mechanical study of (Proline-Proline-Glycine)(n) polypeptides (2002) J. Am. Chem. Soc, 124, pp. 7857-7865
Improta, R., Antonello, S., Formaggio, F., Maran, F., Rega, N., Barone, V., Understanding electron transfer across negatively-charged Aib oligopeptides (2005) J. Phys. Chem, 109, pp. 1023-1033
Inouye, K., Kobayashi, Y., Kyogoku, Y., Kishida, Y., Sakakibara, S., Prockop, D.J., Synthesis and physical properties of (hydroxyprolineproline- glycine)10: Hydroxyproline in the X-position decreases the melting temperature of the collagen triple helix (1982) Arch. Biochem. Biophys, 219, pp. 198-203
Jenkins, C.L., Raines, R.T., Insights on the conformational stability of collagen (2002) Nat. Prod. Rep, 19, pp. 49-59
Jiravanichanun, N., Hongo, C., Wu, G., Noguchi, K., Okuyama, K., Nishino, N., Silva, T., Unexpected puckering of hydroxyproline in the guest triplets, hyp-pro-gly and pro-allohyp-gly sandwiched between pro-pro-gly sequence (2005) ChemBioChem, 6, pp. 1184-1187
Kamiya, M., Tsuneda, T., Hirao, K., A density functional theory of van der Waals interactions (2002) J. Chem. Phys, 117, pp. 6010-6015
Kawahara, K., Nishi, Y., Nakamura, S., Uchiyama, S., Nishiuchi, Y., Nakazawa, T., Ohkubo, T., Kobayashi, Y., Effect of hydration on the stability of the collagen-like triple-helical structure of [4(R)-hydroxyprolyl- 4(R)-hydroxyprolylglycine]10 (2005) Biochemistry, 44, pp. 15812-15822
Langella, E., Improta, R., Barone, V., Conformational and spectroscopic analysis of the tyrosyl radical dipeptide analogue in the gas phase and in aqueous solution by a density functional/continuum solvent model (2002) J. Am. Chem. Soc, 124, pp. 11531-11540
Mizuno, K., Hayashi, T., Bachinger, H.P., Hydroxylation-induced stabilization of the collagen triple helix. Further characterization of peptides with 4(R)-hydroxyproline in the Xaa position (2003) J. Biol. Chem, 278, pp. 32373-32379
Okuyama, K., Narita, H., Kawaguchi, T., Noguchi, K., Tanaka, Y., Nishino, N., Unique side chain conformation of a leu residue in a triple-helical structure (2007) Biopolymers, 86, pp. 212-221
Persikov, A.V., Ramshaw, J.A., Kirkpatrick, A., Brodsky, B., Amino acid propensities for the collagen triple-helix (2000) Biochemistry, 39, pp. 14960-14967
Rucker, A.L., Pager, C.T., Campbell, M.N., Qualls, J.E., Creamer, T.P., Host-guest scale of left-handed polyproline II helix formation (2003) Proteins, 53, pp. 68-75
Schumacher, M., Mizuno, K., Bachinger, H.P., The crystal structure of the collagen-like polypeptide (glycyl-4(R)-hydroxyprolyl-4(R)- hydroxyprolyl) 9 at 1.55 Å resolution shows up-puckering of the proline ring in the Xaa position (2005) J. Biol. Chem, 280, pp. 20397-20403
Tsuzuki, S., Lüthi, H.P., Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model (2001) J. Chem. Phys, 114, pp. 3949-3957
Vitagliano, L., Berisio, R., Mastrangelo, A., Mazzarella, L., Zagari, A., Preferred proline puckerings in cis and trans peptide groups: Implications for collagen stability (2001) Protein Sci, 10, pp. 2627-2632
Wesolowski, T.A., Parisel, O., Ellinger, Y., Weber, J., Comparative study of benzene⋯X (X = O2, N2, CO) complexes using density functional theory: The importance of an accurate exchange-correlation energy density at high reduced density gradients (1997) J. Phys. Chem, 101, pp. 7818-7825
Zhao, Y., Schultz, N.E., Truhlar, D.G., Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics and noncovalent interactions (2006) J. Chem. Theory Comput, 2, pp. 364-382
Bann, J. G., Bachinger, H. P., Glycosylation/hydroxylationinduced stabilization of the collagen triple helix. 4-trans-hydroxyproline in the Xaa position can stabilize the triple helix (2000) J. Biol. Chem, 275, pp. 24466-24469
Berman, H. M., Bhat, T. N., Bourne, P. E., Feng, Z., Gilliland, G., Weissig, H., Westbrook, J., The Protein Data Bank and the challenge of structural genomics (2000) Nat. Struct. Biol, 7 (SUPPL.), pp. 957-959
Besler, B. H., Merz, K. M., Kollman, P. A., Atomic charges derived from semiempirical methods (1990) J. Comput. Chem, 11, pp. 431-439
Boys, S. F., Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (1970) Mol. Phys, 19, pp. 553-566
Burjanadze, T. V., New analysis of the phylogenetic change of collagen thermostability (2000) Biopolymers, 53, pp. 523-528
Ernzerhof, M. S., Scuseria, G. E., Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional (1999) J. Chem. Phys, 110, pp. 5029-5036
Foster, J. P., Weinhold, F., Natural hybrid orbitals (1980) J. Am. Chem. Soc, 102, pp. 7211-7218
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. J. A., Burant, J. C., (2003) Gaussian 03, Revision B. 05, , Gaussian, Inc, Pittsburgh, PA
Hodges, J. A., Raines, R. T., Stereoelectronic and steric effects in the collagen triple helix: Toward a code for strand association (2005) J. Am. Chem. Soc, 127, pp. 15923-15932
Holmgren, S. K., Taylor, K. M., Bretscher, L. E., Raines, R. T., Code for collagen's stability deciphered (1998) Nature, 392, pp. 666-667
Holmgren, S. K., Bretscher, L. E., Taylor, K. M., Raines, R. T., A hyperstable collagen mimic (1999) Chem. Biol, 6, pp. 63-70
Jenkins, C. L., Raines, R. T., Insights on the conformational stability of collagen (2002) Nat. Prod. Rep, 19, pp. 49-59
Persikov, A. V., Ramshaw, J. A., Kirkpatrick, A., Brodsky, B., Amino acid propensities for the collagen triple-helix (2000) Biochemistry, 39, pp. 14960-14967
Rucker, A. L., Pager, C. T., Campbell, M. N., Qualls, J. E., Creamer, T. P., Host-guest scale of left-handed polyproline II helix formation (2003) Proteins, 53, pp. 68-75
Tsuzuki, S., L thi, H. P., Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model (2001) J. Chem. Phys, 114, pp. 3949-3957
Wesolowski, T. A., Parisel, O., Ellinger, Y., Weber, J., Comparative study of benzene X (X = O2, N2, CO) complexes using density functional theory: The importance of an accurate exchange-correlation energy density at high reduced density gradients (1997) J. Phys. Chem, 101, pp. 7818-7825
Contribution of dipole-dipole interactions to the stability of the collagen triple helix