Exposure to 900 MHz radiofrequency radiation induces caspase 3 activation in proliferating human lymphocytes(440 views) Palumbo R, Brescia F, Capasso D, Sannino A, Sarti M, Capri M, Grassilli E, Scarfì MR
Radiat Res (ISSN: 0033-7587), 2008 Sep; 170(3): 327-334.
CNR-Institute of Biostructure and Bioimaging, Naples, Italy
CNR-Institute for Electromagnetic Sensing of Environment, Naples, Italy
Department of Biological Sciences, University of Naples Federico II, Naples, Italy
Department of Experimental Pathology, University of Bologna, Italy
Department of Surgical Sciences, School of Medicine, University of Milano-Bicocca, Italy
References: Port, M., Abend, M., Romer, B., Van Beuningen, D., Influence of high-frequency electromagnetic fields on different modes of cell death and gene expression (2003) Int. J. Radiat. Biol, 79, pp. 701-70
Cranfield, C.G., Wood, A.W., Anderson, V., Menezes, K.G., Effects of mobile phone type signals on calcium levels within human leukaemic T-cells (Jurkat cells) (2001) Int. J. Radiat. Biol, 77, pp. 1207-1217
Capri, M., Scarcella, E., Fumelli, C., Bianchi, E., Salvioli, S., Mesirca, P., Agostini, C., Franceschi, C., In vitro exposure of human lymphocytes to 900 MHz CW and GSM modulated radiofrequency: Studies of proliferation, apoptosis and mitochondrial membrane potential (2004) Radiat. Res, 162, pp. 211-218
Lantow, M., Viergutz, T., Weiss, D.G., Simko, M., Comparative study of cell cycle kinetics and induction of apoptosis or necrosis after exposure of human Mono Mac 6 cells to radiofrequency radiation (2006) Radiat. Res, 166, pp. 539-543
Desta, A., Owen, R.D., Cress, L.W., Non-thermal exposure to radiofrequency energy from digital wireless phones does not affect ornithine decarboxylase activity in L929 cells (2003) Radiat. Res, 160, pp. 488-491
Hoyto, A., Juutilainen, J., Naarala, J., Ornithine decarboxylase activity of L929 cells after exposure to continuous wave or 50 Hz modulated radiofrequency radiation - a replication study (2007) Bioelectromagnetics, 28, pp. 501-508
Hoyto, A., Sihvonen, A.P., Alhonen, L., Juutilainen, J., Naarala, J., Modest increase in temperature affects ODC activity in L929 cells: Low-level radiofrequency radiation does not (2006) Radiat. Environ. Biophys, 45, pp. 231-235
Vijayalaxmi and G. Obe, Controversial cytogenetic observations in mammalian somatic cells exposed to radiofrequency radiation. Radiat. Res. 162, 481-496 (2004)Vershaeve, L., Genetic effects of radiofrequency radiation (RFR) (2005) Toxicol. Appl. Pharmacol, 207, pp. 336-341
Moulder, J.E., Foster, K.R., Erdreich, L.S., McNamee, J.P., Mobile phones, mobile phone base stations and cancer: A review (2005) Int. J. Radiat. Biol, 81, pp. 189-203
Reviews of the effects of RF fields on various aspects of human health (2003) Bioelectromagnetics, 24 (SUPPL. 6), pp. 1-213
Igney, F.H., Krammer, P.H., Death and anti-death: Tumour resistance to apoptosis (2002) Nat. Rev. Cancer, 2, pp. 277-288
Hook, G.J., Zhang, P., Lagroye, I., Higashikubo, L.L.R., Moros, E.G., Straube, W.L., Pickard, W.F., Roti Roti, J.L., Measurement of DNA damage and apoptosis in Molt-4 cells after in vitro exposure to radiofrequency radiation (2004) Radiat. Res, 161, pp. 193-200
Joubert, V., Leveque, P., Rametti, A., Collin, A., Bourthoumieu, S., Yardin, C., Microwave exposure of neuronal cells in vitro: Study of apoptosis (2006) Int. J. Radiat. Biol, 82, pp. 267-275
Hirose, H., Sakuma, N., Kaji, N., Suhara, T., Sekijima, M., Nojima, T., Miyakoshi, J., Phosphorylation and gene expression of p53 are not affected in human cells exposed to 2.1425 GHz band CW or W-CDMA modulated radiation allocated to mobile radio base stations (2006) Bioelectromagnetics, 27, pp. 494-504
Merola, P., Marino, C., Lovisolo, G.A., Pinto, R., Laconi, C., Negroni, A., Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field (2006) Bioelectromagnetics, 27, pp. 164-171
Gurisik, E., Warton, K., Martin, D.K., Valenzuela, S.M., An in vitro study of the effects of exposure to a GSM signal in two human cell lines: Monocytic U937 and neuroblastoma SK-N-SH (2006) Cell. Biol. Int, 30, pp. 793-799
Caraglia, M., Marra, M., Mancinelli, F., d'Ambrosio, G., Massa, R., Giordano, A., Budillon, A., Bismuto, E., Electromagnetic fields at mobile phone frequency induce apoptosis and inacti-vation of the multi-chaperone complex in human epidermoid cancer cells (2005) J. Cell. Physiol, 204, pp. 539-548
Zhao, T.Y., Zou, S.P., Knapp, P.E., Exposure to cell phone radiation upregulates apoptosis genes in primary cultures of neurons and astrocytes (2007) Neurosci. Lett, 412, pp. 34-38
Maeda, K., Maeda, T., Qi, Y., In vitro and in vivo induction of human LoVo cells into apoptotic process by non-invasive microwave treatment: A potentially novel approach for physical therapy of human colorectal cancer (2004) Oncol. Rep, 11, pp. 771-775
Marinelli, E., La Sala, D., Cicciotti, G., Cattini, L., Trimarchi, C., Putti, S., Zamparelli, A., Cinti, C., Exposure to 900 MHz electromagnetic field induces an unbalance between pro-apoptotic and pro-survival signals in T lymphoblastoid leukemia CCRF-CEM cells (2004) J. Cell. Physiol, 198, pp. 324-332
Thornberry, N.A., Lazebnik, Y., Caspases: Enemies within (1998) Science, 281, pp. 1312-1316
Kumar, S., Caspase function in programmed cell death (2007) Cell. Death Differ, 14, pp. 32-43
Sehra, S., Dent, A.L., Caspase function and the immune system (2006) Crit. Rev. Immunol, 26, pp. 133-148
Guidelines for limiting exposure to time varying electric, magnetic, and electromagnetic fields (up to 300 GHz) (1998) Health Phvs, 74, pp. 494-522. , International Commission for Non-Ionising Radiation Protection
Schlegel, R.A., Williamson, P., Phosphatidylserine. a death knell (2001) Cell. Death Differ, 8, pp. 551-563
Lazebnik, Y.A., Kaufman, S.H., Desnoyers, S., Poirier, G.G., Eamshaw, W.C., Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE (1994) Nature, 371, pp. 346-347
Scarfì, M.R., Fresegna, A.M., Villani, P., Pinto, R., Marino, C., Sarti, M., Sannino, A., Lovisolo, G.A., Exposure to radiofrequency radiation (900 MHz. GSM signal) does not affect micronucleus frequency and cell proliferation in human peripheral blood lymphocytes (2006) Radiat. Res, 165, pp. 655-663
Laval, L., Leveque, P.H., Jecko, B., A new in vitro exposure device for the mobile frequency of 900 MHz (2000) Bioelectromagnetics, 21, pp. 255-263
R. J. Millington, Mobile and personal communications in the 90's. In Mobile Communication Safety (N. Kuster, Q. Balzano and J. C. Lin, Eds.), pp. 3-9. Chapman and Hall, New York, 1997A. Boyum, Isolation of leukocytes from human blood. Further observations. Methylcellulose, dextran, and Ficoll as erythrocyte aggregation agents. Scand. J. Clin. Lab. Invest. Suppl. 97, 31-50 (1968)M. Russo, R. Palumbo, A. Mupo, M. Tosto, G. Iacomino, A. Scog-namiglio. 1. Tedesco, G. Galano and G. L. Russo, Flavonoid quercetin sensitizes a CD95 resistant cell line to apoptosis by activating protein kinase Cα. Oncogene 22, 3330-3342 (2003)Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
Dolbeare, F., Gratzner, H., Pallavicini, M.G., Gray, J.W., Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine (1983) Proc. Natl. Acad. Sci. USA, 80, pp. 5573-5577
Vermes, I., Haanen, C., Steffens-Nakken, H., Reutelingsperger, C., A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V (1995) J. Immunol. Methods, 184, pp. 39-51
Schwerk, C., Schulze-Osthoff, K., Non-apoptotic functions of caspases in cellular proliferation and differentiation (2003) Biochem. Pharmacol, 66, pp. 1453-1458
Zeuner, A., Eramo, A., Peschle, C., De Maria, R., Caspase activation without death (1999) Cell Death Differ, 6, pp. 1075-1080
Launay, S., Hermine, O., la Fontenay, M., Kroemer, G., Solary, E., Garrido, C., Vital functions for lethal caspases (2005) Oncogene, 24, pp. 5137-5148
Lamkanfi, M., Festjens, N., Declercq, W., Vanden Berghe, T., Vandenabeele, P., Caspases in cell survival, proliferation and differentiation (2007) Cell Death Differ, 14, pp. 44-55
Miossec, C., Dutilleul, V., Fassy, F., Diu-Hercend, A., Evidence for CPP32 activation in the absence of apoptosis during T lymphocyte stimulation (1997) J. Biol. Chem, 272, pp. 13459-13462
Wilhelm, S., Wagner, H., Hacker, G., Activation of caspase-3-like enzymes in non-apoptotic T cells (1998) Eur. J. Immunol, 28, pp. 891-900
Alam, A., Cohen, L.Y., Aouad, S., Sekaly, R.P., Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells (1999) J. Exp. Med, 190, pp. 1879-1890
Kennedy, N.J., Kataoka, T., Tschopp, J., Budd, R.C., Caspase activation is required for T cell proliferation (1999) J. Exp. Med, 190, pp. 1891-1895
Sabbagh, L., Bourbonnière, M., Sékaly, R.P., Cohen, L.Y., Selective up-regulation of caspase-3 gene expression following TCR engagement (2005) Mol. Immunol, 42, pp. 1345-1354
Watanabe, Y., Akaike, T., Possible involvement of caspase-like family in maintenance of cytoskeleton integrity (1999) J. Cell. Physiol, 179, pp. 45-51
Algeciras-Schimnich, A., Bamhart, B.C., Peter, M.E., Apoptosis independent functions of killer caspases (2002) Curr. Opin. Cell Biol, 14, pp. 721-726
Falk, M., Ussat, S., Reiling, N., Wesch, D., Kabelitz, D., Adam-Klages, S., Caspase inhibition blocks human T cell proliferation by suppressing appropriate regulation of IL-2, CD25, and cell cycle-associated proteins (2004) J. Immunol, 173, pp. 5077-5085
Eckhart, L., Declercq, W., Ban, J., Rendl, M., Lengauer, B., Mayer, C., Lippens, S., Tschachler, E., Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation (2000) J. Invest. Dermatol, 115, pp. 1148-1151
Sordet, O., Rébé, C., Plenchette, S., Zermati, Y., Hermine, O., Vain-chenker, W., Garrido, C., Dubrez-Daloz, L., Specific involvement of caspases in the differentiation of monocytes into macrophages (2002) Blood, 100, pp. 4446-4453
Santambrogio, L., Potolicchio, I., Fessler, S.P., Wong, S.H., Raposo, G., Strominger, J.L., Involvement of caspase-cleaved and intact adaptor protein 1 complex in endosomal remodeling in maturing dendritic cells (2005) Nat. Immunol, 6, pp. 1020-1028
De Botton, S., Sabri, S., Daugas, E., Zermati, Y., Guidotti, J.E., Hermine, O., Kroemer, G., Debili, N., Platelet formation is the consequence of caspase activation within megakaryocytes (2002) Blood, 100, pp. 1310-1317
Ishizaki, Y., Jacobson, M.D., Raff, M.C., A role for caspases in lens fiber differentiation (1998) J. Cell Biol, 140, pp. 153-158
Arnold, R., Frey, C.R., Miiller, W., Brenner, D., Krammer, P.H., Kiefer, F., Sustained JNK signaling by proteolytically processed HPK1 mediates IL-3 independent survival during monocytic differentiation (2007) Cell Death Differ, 14, pp. 568-575
Cranfield, C. G., Wood, A. W., Anderson, V., Menezes, K. G., Effects of mobile phone type signals on calcium levels within human leukaemic T-cells (Jurkat cells) (2001) Int. J. Radiat. Biol, 77, pp. 1207-1217
Moulder, J. E., Foster, K. R., Erdreich, L. S., McNamee, J. P., Mobile phones, mobile phone base stations and cancer: A review (2005) Int. J. Radiat. Biol, 81, pp. 189-203
Igney, F. H., Krammer, P. H., Death and anti-death: Tumour resistance to apoptosis (2002) Nat. Rev. Cancer, 2, pp. 277-288
Hook, G. J., Zhang, P., Lagroye, I., Higashikubo, L. L. R., Moros, E. G., Straube, W. L., Pickard, W. F., Roti Roti, J. L., Measurement of DNA damage and apoptosis in Molt-4 cells after in vitro exposure to radiofrequency radiation (2004) Radiat. Res, 161, pp. 193-200
Zhao, T. Y., Zou, S. P., Knapp, P. E., Exposure to cell phone radiation upregulates apoptosis genes in primary cultures of neurons and astrocytes (2007) Neurosci. Lett, 412, pp. 34-38
Thornberry, N. A., Lazebnik, Y., Caspases: Enemies within (1998) Science, 281, pp. 1312-1316
Schlegel, R. A., Williamson, P., Phosphatidylserine. a death knell (2001) Cell. Death Differ, 8, pp. 551-563
Lazebnik, Y. A., Kaufman, S. H., Desnoyers, S., Poirier, G. G., Eamshaw, W. C., Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE (1994) Nature, 371, pp. 346-347
Scarf, M. R., Fresegna, A. M., Villani, P., Pinto, R., Marino, C., Sarti, M., Sannino, A., Lovisolo, G. A., Exposure to radiofrequency radiation (900 MHz. GSM signal) does not affect micronucleus frequency and cell proliferation in human peripheral blood lymphocytes (2006) Radiat. Res, 165, pp. 655-663
Kennedy, N. J., Kataoka, T., Tschopp, J., Budd, R. C., Caspase activation is required for T cell proliferation (1999) J. Exp. Med, 190, pp. 1891-1895
Sordet, O., R b, C., Plenchette, S., Zermati, Y., Hermine, O., Vain-chenker, W., Garrido, C., Dubrez-Daloz, L., Specific involvement of caspases in the differentiation of monocytes into macrophages (2002) Blood, 100, pp. 4446-4453
Exposure to 900 MHz radiofrequency radiation induces caspase 3 activation in proliferating human lymphocytes
In this study, the induction of apoptosis after exposure to 900 MHz radiofrequency radiation (GSM signal) was investigated by assessing caspase 3 activation in exponentially growing Jurkat cells and in quiescent and proliferating human peripheral blood lymphocytes (PBLs). The exposure was carried out at an average specific absorption rate of 1.35 W/kg in a dual wire patch cell exposure system where the temperature of cell cultures was accurately controlled. After 1 h exposure to the radiofrequency field, a slight but statistically significant increase in caspase 3 activity, measured 6 h after exposure, was observed in Jurkat cells (32.4%) and in proliferating human PBLs (22%). In contrast, no effect was detected in quiescent human PBLs. In the same experimental conditions, apoptosis was also evaluated in Jurkat cells by Western blot analysis and in both cell types by flow cytometry. To evaluate late effects due to caspase 3 activity, flow cytometry was also employed to assess apoptosis and viability 24 h after radiofrequency-radiation exposure in both cell types. Neither the former nor the latter was affected. Since in recent years it has been reported that caspases are also involved in processes other than apoptosis, additional cell cycle studies were carried out on proliferating T cells exposed to radiofrequency radiation; however, we found no differences between sham-exposed and exposed cultures. Further studies are warranted to investigate the biological significance of our findings of a dose-response increase in caspase 3 activity after exposure to radiofrequency radiation.
Exposure to 900 MHz radiofrequency radiation induces caspase 3 activation in proliferating human lymphocytes
No results.
Exposure to 900 MHz radiofrequency radiation induces caspase 3 activation in proliferating human lymphocytes
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(284 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote
Santulli G, Cipolletta E, Sorriento D, Del Giudice C, Anastasio A, Monaco S, Maione AS, Condorelli G, Puca A, Trimarco B, Illario M, Iaccarino G * CaMK4 gene deletion induces hypertension(349 views) J Am Heart Assoc Journal Of The American Heart Association (ISSN: 2047-9980), 2012; 1(4): N/D-N/D. Impact Factor:2.882 ViewExport to BibTeXExport to EndNote
Bruni AC, Bernardi L, Colao R, Rubino E, Smirne N, Frangipane F, Terni B, Curcio SA, Mirabelli M, Clodomiro A, Di Lorenzo R, Maletta R, Anfossi M, Gallo M, Geracitano S, Tomaino C, Muraca MG, Leotta A, Lio SG, Pinessi L, Rainero I, Sorbi S, Nee L, Milan G, Pappata S, Postiglione A, Abbamondi N, Forloni G, St George Hyslop P, Rogaeva E, Bugiani O, Giaccone G, Foncin JF, Spillantini MG, Puccio G * Worldwide distribution of PSEN1 Met146Leu mutation: A large variability for a founder mutation(894 views) Neurology (ISSN: 0028-3878, 1526-632x, 1526-632xelectronic), 2010 Mar 9; 74(10): 798-806. Impact Factor:8.017 ViewExport to BibTeXExport to EndNote
Aloj L, Aurilio M, Rinaldi V, D'Ambrosio L, Tesauro D, Peitl PK, Maina T, Mansi R, Von Guggenberg E, Joosten L, Sosabowski JK, Breeman WA, De Blois E, Koelewijn S, Melis M, Waser B, Beetschen K, Reubi JC, De Jong M * The EEE project(449 views) Proc Int Cosm Ray Conf Icrc Universidad Nacional Autonoma De Mexico, 2007; 5(HEPART2): 977-980. Impact Factor:0 ViewExport to BibTeXExport to EndNote
Hesse B, Tagil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, Bengel F, Busemann Sokole E, Davies G, Dondi M, Edenbrandt L, Franken P, Kjaer A, Knuuti J, Lassmann M, Ljungberg M, Marcassa C, Marie PY, Mckiddie F, O'connor M, Prvuolovich E, Underwood R * 3. 0 T perfusion MR imaging(726 views) Rivista Di Neuroradiologia (ISSN: 1120-9976), 2004; 17(6): 807-812. Impact Factor:0.023 ViewExport to BibTeXExport to EndNote
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S * Fusion in Coq(479 views) Lecture Notes In Computer Science (ISSN: 0302-9743, 0302-974335404636319783540463634, 0302-974335402975459783540297543), 2001; 2178LNCS: 583-596. Impact Factor:0.415 ViewExport to BibTeXExport to EndNote