Peptides containing membrane-interacting motifs inhibit herpes simplex virus type 1 infectivity(456 views) Galdiero S, Vitiello M, Falanga A, D'Isanto M, Cantisani M, Kampanaraki A, Benedetti E, Browne H, Galdiero M
Department of Biological Sciences, Division of Biostructures, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Naples, Italy
Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
References: Browne, H., Bell, S., Minson, T., Wilson, D.W., An endoplasmic reticulum-retained herpes simplex virus glycoprotein H is absent from secreted virions: evidence for reenvelopment during egress (1996) J Virol, 70, pp. 4311-431
Carfi, A., Willis, S.H., Whitbeck, J.C., Krummenacher, C., Cohen, G.H., Eisenberg, R.J., Wiley, D.C., Herpes simplex virus glycoprotein D bound to the human receptor HveA (2001) Mol Cell, 8, pp. 169-179
Chakrabartty, A., Kortemme, T., Baldwin, R.L., Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions (1994) Protein Sci, 3, pp. 843-852
Chan, D.C., Kim, P.S., HIV entry and its inhibition (1998) Cell, 93, pp. 681-684
Chetal, P., Chauhan, V.S., Sahal, D., A meccano set approach of joining trpzip a water soluble beta-hairpin peptide with a didehydrophenylalanine containing hydrophobic helical peptide (2005) J Peptide Res, 65, pp. 475-484
Cuff, J.A., Barton, G.J., Application of enhanced multiple sequence alignment profiles to improve protein secondary structure prediction (2000) Proteins: Struct. Funct. Genet., 40, pp. 502-511
Dimitrov, D.S., Virus entry: molecular mechanisms and biomedical applications (2004) Nat Rev Microbiol, 2, pp. 109-122
Eckert, D.M., Kim, P.S., Mechanism of viral membrane fusion and its inhibition (2001) Annu Rev Biochem, 70, pp. 777-810
Fass, D., Harrison, S.C., Kim, P.S., Retrovirus envelope domain at 1.7 angstrom resolution (1996) Nat Struct Biol, 3, pp. 465-469
Fiske, C.H., Subbarow, Y., The colorimetric determination of phosphorus (1925) J Biol Chem, 66, pp. 374-389
Forrester, A., Farrell, H., Wilkinson, G., Kaye, J., Davis-Poynter, N., Minson, T., Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted (1992) J Virol, 66, pp. 341-348
Galdiero, M., Whiteley, A., Bruun, B., Bell, S., Minson, T., Browne, H., Site-directed and linker insertion mutagenesis of herpes simplex virus type 1 glycoprotein H (1997) J Virol, 71, pp. 2163-2170
Galdiero, S., Falanga, A., Vitiello, M., Browne, H., Pedone, C., Galdiero, M., Fusogenic domains in herpes simplex virus type 1 glycoprotein H (2005) J Biol Chem, 31, pp. 28632-28643
Galdiero, S., Vitiello, M., D'Isanto, M., Falanga, A., Collins, C., Raieta, K., Pedone, C., Galdiero, M., Analysis of synthetic peptides from heptad-repeat domains of herpes simplex virus type 1 glycoproteins H and B (2006) J Gen Virol, 87, pp. 1085-1097
Ghosh, J.K., Shai, Y., A peptide derived from a conserved domain of Sendai virus fusion protein inhibits virus-cell fusion. A plausible mode of action (1998) J Biol Chem, 273, pp. 7252-7259
Gianni, T., Fato, R., Bergamini, C., Lenaz, G., Campadelli-Fiume, G., Hydrophobic alpha-helices 1 and 2 of herpes simplex virus gH interact with lipids, and their mimetic peptides enhance virus infection and fusion (2006) J Virol, 80, pp. 8190-8198
Gianni, T., Martelli, P.L., Casadio, R., Campadelli-Fiume, G., The ectodomain of herpes simplex virus glycoprotein H contains a membrane alpha-helix with attributes of an internal fusion peptide, positionally conserved in the herpesviridae family (2005) J Virol, 79, pp. 2931-2940
Gianni, T., Menotti, L., Campadelli-Fiume, G., A heptad repeat in herpes simplex virus 1 gH, located downstream of the alpha-helix with attributes of a fusion peptide, is critical for virus entry and fusion (2005) J Virol, 79, pp. 7042-7049
Han, X., Steinhauer, D.A., Wharton, S.A., Tamm, L.K., Interaction of mutant influenza virus hemagglutinin fusion peptides with lipid bilayers: probing the role of hydrophobic residue size in the central region of the fusion peptide (1999) Biochemistry, 38, pp. 15052-15059
Harman, A., Browne, H., Minson, T., The transmembrane domain and cytoplasmic tail of herpes simplex virus type 1 glycoprotein H play a role in membrane fusion (2002) J Virol, 76, pp. 10708-10716
Heldwein, E.E., Lou, H., Bender, F.C., Cohen, G.H., Eisenberg, R.J., Harrison, S.C., Crystal structure of glycoprotein B from herpes simplex virus 1 (2006) Science, 313, pp. 217-220
Hope, M.J., Bally, M.B., Webb, G., Cullis, P.R., Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size, trapped volume and ability to maintain a membrane potential (1985) Biochim Biophys Acta, 812, pp. 55-65
Hutchinson, L., Browne, H., Wargent, V., Davis-Poynter, N., Primorac, S., Goldsmith, K., Minson, A.C., Johnson, D.C., A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH (1992) J Virol, 66, pp. 2240-2250
Jardetzky, T.S., Lamb, R.A., Virology: a class act (2004) Nature, 427, pp. 307-308
Kielian, M., Class II virus membrane fusion proteins (2006) Virology, 344, pp. 38-47
Kliger, Y., Aharoni, A., Rapaport, D., Jones, P., Blumenthal, R., Shai, Y., Fusion peptides derived from the HIV type 1 glycoprotein 41 associate within phospholipid membranes and inhibit cell-cell Fusion. Structure-function study (1997) J Biol Chem, 272, pp. 13496-13505
Krummenacher, C., Supekar, V.M., Whitbeck, J.C., Lazear, E., Connolly, S.A., Eisenberg, R.J., Cohen, G.H., Carfi, A., Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry (2005) EMBO J, 24, pp. 4144-4153
Lau, S.Y., Taneja, A.K., Hodges, R.S., Synthesis of a model protein of defined secondary and quaternary structure. Effect of chain length on the stabilization and formation of two-stranded alpha-helical coiled-coils (1984) J Biol Chem, 259, pp. 13253-13261
Lescar, J., Roussel, A., Wien, M.W., Navaza, J., Fuller, S.D., Wengler, G., Wengler, G., Rey, F.A., The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH (2001) Cell, 105, pp. 137-148
Lopper, M., Compton, T., Coiled-coil domains in glycoproteins B and H are involved in human cytomegalovirus membrane fusion (2004) J Virol, 78, pp. 8333-8341
Matthews, T., Salgo, M., Greenberg, M., Chung, J., DeMasi, R., Bolognesi, D., Enfuvirtide: the first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes (2004) Nat Rev Drug Discov, 3, pp. 215-225
Meng, F.G., Zeng, X., Hong, Y.K., Zhou, H.M., Dissociation and unfolding of GCN4 leucine zipper in the presence of sodium dodecyl sulfate (2001) Biochimie, 83, pp. 953-956
Modis, Y., Ogata, S., Clements, D., Harrison, S.C., A ligand-binding pocket in the dengue virus envelope glycoprotein (2003) Proc Natl Acad Sci USA, 100, pp. 6986-6991
Moreno, M.R., Pascual, R., Villalain, J., Identification of membrane-active regions of the HIV-1 envelope glycoprotein gp41 using a 15-mer gp41-peptide scan (2004) Biochim Biophys Acta, 1661, pp. 97-105
Muggeridge, M.I., Characterization of cell-cell fusion mediated by herpes simplex virus 2 glycoproteins gB, gD, gH and gL in transfected cells (2000) Gen Virol, 81, pp. 2017-2027
Munch, J., Standker, L., Adermann, K., Schulz, A., Schindler, M., Chinnadurai, R., Pohlmann, S., Kirchhoff, F., Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide (2007) Cell, 129, pp. 263-275
Okazaki, K., Kida, H., A synthetic peptide from a heptad repeat region of herpesvirus glycoprotein B inhibits virus replication (2004) J Gen Virol, 85, pp. 2131-2137
Pascual, R., Moreno, M.R., Villalaín, J., A peptide pertaining to the loop segment of human immunodeficiency virus gp41 binds and interacts with model biomembranes: implications for the fusion mechanism (2005) J Virol, 79, pp. 5142-5152
Pereira, L., Function of glycoprotein B homologues of the family herpesviridae (1994) Infect Agents Dis, 3, pp. 9-28
Reske, A., Pollara, G., Krummenacher, C., Chain, B.M., Katz, D.R., Understanding HSV-1 entry glycoproteins (2007) Rev Med Virol, 17, pp. 205-215
Rey, F.A., Heinz, F.X., Mandl, C., Kunz, C., Harrison, S.C., The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution (1995) Nature, 375, pp. 291-298
Richardson, C.D., Scheid, A., Choppin, P.W., Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or HA2 viral polypeptides (1980) Virology, 105, pp. 205-222
Schibli, D.J., Weissenhorn, W., Class I and Class II viral fusion protein structures reveal similar principles in membrane fusion (2004) Mol Membr Biol, 21, pp. 361-371
Silburn, K.A., McPhee, D.A., Maerz, A.L., Poumbourios, P., Whittaker, R.G., Kirkpatrick, A., Reilly, W.G., Curtain, C.C., Efficacy of fusion peptide homologs in blocking cell lysis and HIV-induced fusion (1998) AIDS Res Hum Retrovirus, 14, pp. 385-392
Simmerman, H.K., Kobayashi, Y.M., Autry, J.M., Jones, L.R., A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure (1996) J Biol Chem, 271, pp. 5941-5946
Spear, P.G., Herpes simplex virus: receptors and ligands for cell entry (2004) Cell Microbiol, 6, pp. 401-410
Spear, P.G., Manoj, S., Yoon, M., Jogger, C.R., Zago, A., Myscofski, D., Different receptors binding to distinct interfaces on herpes simplex virus gD can trigger events leading to cell fusion and viral entry (2006) Virology, 344, pp. 17-24
Struck, D.K., Hoekstra, D., Pagano, R.E., Use of resonance energy transfer to monitor membrane fusion (1981) Biochemistry, 20, pp. 4093-4099
Suarez, T., Gallaher, W.R., Agirre, A., Goni, F.M., Nieva, J.L., Membrane interface-interacting sequences within the ectodomain of the human immunodeficiency virus type 1 envelope glycoprotein: putative role during viral fusion (2000) J Virol, 74, pp. 8038-8047
Subramanian, R.P., Geraghty, R.J., Herpes simplex virus type 1 mediates fusion through a hemifusion intermediate by sequential activity of glycoproteins D, H, L, and B (2007) Proc Natl Acad Sci USA, 104, pp. 2903-2908
Turner, A., Bruun, B., Minson, T., Browne, H., Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system (1998) J Virol, 72, pp. 873-875
Weissenhorn, W., Carfi, A., Lee, K.H., Skehel, J.J., Wiley, D.C., Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain (1998) Mol Cell, 2, pp. 605-616
Weissenhorn, W., Hinz, A., Gaudin, Y., Virus membrane fusion (2007) FEBS Lett, 581, pp. 2150-2155
White, S.H., Wimley, W.C., Membrane protein folding and stability: physical principles (1999) Annu Rev Biophys Biomol Struct, 28, pp. 319-365
Wild, C., Oas, T., McDanal, C., Bolognesi, D., Matthews, T., A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition (1992) Proc Natl Acad Sci USA, 89, pp. 10537-10541
Wilson, D.W., Davis-Poynter, N., Minson, A.C., Mutations in the cytoplasmic tail of herpes simplex virus glycoprotein H suppress cell fusion by a syncytial strain (1994) J Virol, 68, pp. 6985-6993
Wilson, I.A., Skehel, J.J., Wiley, D.C., Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution (1981) Nature, 289, pp. 366-373
Wimley, W.C., White, S.H., Experimentally determined hydrophobicity scale for proteins at membrane interfaces (1996) Nat Struct Biol, 3, pp. 842-848
Xu, Y., Liu, Y., Lou, Z., Qin, L., Li, X., Bai, Z., Pang, H., Rao, Z., Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core (2004) J Biol Chem, 279, pp. 30514-30522
Yin, H.S., Wen, X., Paterson, R.G., Lamb, R.A., Jardetzky, T.S., Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation (2006) Nature, 439, pp. 38-44
Chan, D. C., Kim, P. S., HIV entry and its inhibition (1998) Cell, 93, pp. 681-684
Cuff, J. A., Barton, G. J., Application of enhanced multiple sequence alignment profiles to improve protein secondary structure prediction (2000) Proteins: Struct. Funct. Genet., 40, pp. 502-511
Dimitrov, D. S., Virus entry: molecular mechanisms and biomedical applications (2004) Nat Rev Microbiol, 2, pp. 109-122
Eckert, D. M., Kim, P. S., Mechanism of viral membrane fusion and its inhibition (2001) Annu Rev Biochem, 70, pp. 777-810
Fiske, C. H., Subbarow, Y., The colorimetric determination of phosphorus (1925) J Biol Chem, 66, pp. 374-389
Ghosh, J. K., Shai, Y., A peptide derived from a conserved domain of Sendai virus fusion protein inhibits virus-cell fusion. A plausible mode of action (1998) J Biol Chem, 273, pp. 7252-7259
Heldwein, E. E., Lou, H., Bender, F. C., Cohen, G. H., Eisenberg, R. J., Harrison, S. C., Crystal structure of glycoprotein B from herpes simplex virus 1 (2006) Science, 313, pp. 217-220
Hope, M. J., Bally, M. B., Webb, G., Cullis, P. R., Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size, trapped volume and ability to maintain a membrane potential (1985) Biochim Biophys Acta, 812, pp. 55-65
Jardetzky, T. S., Lamb, R. A., Virology: a class act (2004) Nature, 427, pp. 307-308
Lau, S. Y., Taneja, A. K., Hodges, R. S., Synthesis of a model protein of defined secondary and quaternary structure. Effect of chain length on the stabilization and formation of two-stranded alpha-helical coiled-coils (1984) J Biol Chem, 259, pp. 13253-13261
Meng, F. G., Zeng, X., Hong, Y. K., Zhou, H. M., Dissociation and unfolding of GCN4 leucine zipper in the presence of sodium dodecyl sulfate (2001) Biochimie, 83, pp. 953-956
Moreno, M. R., Pascual, R., Villalain, J., Identification of membrane-active regions of the HIV-1 envelope glycoprotein gp41 using a 15-mer gp41-peptide scan (2004) Biochim Biophys Acta, 1661, pp. 97-105
Muggeridge, M. I., Characterization of cell-cell fusion mediated by herpes simplex virus 2 glycoproteins gB, gD, gH and gL in transfected cells (2000) Gen Virol, 81, pp. 2017-2027
Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C., Harrison, S. C., The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution (1995) Nature, 375, pp. 291-298
Richardson, C. D., Scheid, A., Choppin, P. W., Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or HA2 viral polypeptides (1980) Virology, 105, pp. 205-222
Schibli, D. J., Weissenhorn, W., Class I and Class II viral fusion protein structures reveal similar principles in membrane fusion (2004) Mol Membr Biol, 21, pp. 361-371
Silburn, K. A., McPhee, D. A., Maerz, A. L., Poumbourios, P., Whittaker, R. G., Kirkpatrick, A., Reilly, W. G., Curtain, C. C., Efficacy of fusion peptide homologs in blocking cell lysis and HIV-induced fusion (1998) AIDS Res Hum Retrovirus, 14, pp. 385-392
Simmerman, H. K., Kobayashi, Y. M., Autry, J. M., Jones, L. R., A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure (1996) J Biol Chem, 271, pp. 5941-5946
Spear, P. G., Herpes simplex virus: receptors and ligands for cell entry (2004) Cell Microbiol, 6, pp. 401-410
Spear, P. G., Manoj, S., Yoon, M., Jogger, C. R., Zago, A., Myscofski, D., Different receptors binding to distinct interfaces on herpes simplex virus gD can trigger events leading to cell fusion and viral entry (2006) Virology, 344, pp. 17-24
Struck, D. K., Hoekstra, D., Pagano, R. E., Use of resonance energy transfer to monitor membrane fusion (1981) Biochemistry, 20, pp. 4093-4099
Subramanian, R. P., Geraghty, R. J., Herpes simplex virus type 1 mediates fusion through a hemifusion intermediate by sequential activity of glycoproteins D, H, L, and B (2007) Proc Natl Acad Sci USA, 104, pp. 2903-2908
White, S. H., Wimley, W. C., Membrane protein folding and stability: physical principles (1999) Annu Rev Biophys Biomol Struct, 28, pp. 319-365
Wilson, D. W., Davis-Poynter, N., Minson, A. C., Mutations in the cytoplasmic tail of herpes simplex virus glycoprotein H suppress cell fusion by a syncytial strain (1994) J Virol, 68, pp. 6985-6993
Wilson, I. A., Skehel, J. J., Wiley, D. C., Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution (1981) Nature, 289, pp. 366-373
Wimley, W. C., White, S. H., Experimentally determined hydrophobicity scale for proteins at membrane interfaces (1996) Nat Struct Biol, 3, pp. 842-848
Yin, H. S., Wen, X., Paterson, R. G., Lamb, R. A., Jardetzky, T. S., Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation (2006) Nature, 439, pp. 38-44
Herpes simplex virus (HSV) membrane fusion represents an attractive target for anti-HSV therapy. To investigate the structural basis of HSV membrane fusion and identify new targets for inhibition, we have investigated the different membranotropic domains of HSV-1 gH envelope glycoprotein. We observed that fusion peptides when added exogenously are able to inhibit viral fusion likely by intercalating with viral fusion peptides upon adopting functional structure in membranes. Interestingly, peptides analogous to the predicted HSV-1 gH loop region inhibited viral plaque formation more significantly. Their inhibitory effect appears to be a consequence of their ability to partition into membranes and aggregate within them. Circular dichroism spectra showed that peptides self-associate in aqueous and lipidic solutions, therefore the inhibition of viral entry may occur via peptides association with their counterpart on wild-type gH. The antiviral activity of HSV-1 peptides tested provides an attractive basis for the development of new fusion peptide inhibitors corresponding to regions outside the fusion protein heptad repeat regions. (C) 2008 Elsevier Inc. All rights reserved.
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(284 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote