CNR-Istituto di Biostrutture e Bioimmagini- Catania, V.le A. Doria 6, 95125 Catania, Italy
Dipartimento di Scienze Chimiche, Università di Catania, V.le A. Doria 6, 95125 Catania, Italy
Dipartimento di Chimica Fisica e Inorganica, Università di Bologna, INSTM, V.le Risorgimento 4, 40136 Bologna, Italy
References: Dobson, C.M., Protein aggregation and its consequences for human disease (2006) Protein Pept Lett, 13, pp. 219-22
Westermark, P., Aspects on human amyloid forms and their fibril polypeptides (2005) FEBS J, 272, pp. 5942-5949
Pepys, M.B., Amyloidosis (2006) Annu Rev Med, 57, pp. 223-241
Bellotti, V., Nuvolone, M., Giorgetti, S., Obici, L., Palladini, G., Russo, P., The workings of the amyloid diseases (2007) Ann Med, 39, pp. 200-207
Fandrich, M., On the structural definition of amyloid fibrils and other polypeptide aggregates (2007) Cell Mol Life Sci, 64, pp. 2066-2078
Glabe, C.G., Kayed, R., Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis (2006) Neurology, 66 (2 SUPPL. 1), pp. S74-S78
Dobson, C.M., Principles of protein folding, misfolding and aggregation (2004) Semin Cell Dev Biol, 15, pp. 3-16
Harrison, R.S., Sharpe, P.C., Singh, Y., Fairlie, D.P., Amyloid peptides and proteins in review (2007) Rev Physiol Biochem Pharmacol, 159, pp. 1-77
Aigelsreiter, A., Janig, E., Stumptner, C., Fuchsbichler, A., Zatloukal, K., Denk, H., How a cell deals with abnormal proteins. Pathogenetic mechanisms in protein aggregation diseases (2007) Pathobiology, 74, pp. 145-158
Khare, S.D., Dokholyan, N.V., Molecular mechanisms of polypeptide aggregation in human diseases (2007) Curr Protein Pept Sci, 8, pp. 573-579
Ross, C.A., Poirier, M.A., Protein aggregation and neurodegenerative disease (2004) Nat Med, 10 (SUPPL.), pp. S10-S17
Skovronsky, D.M., Lee, V.M., Trojanowski, J.Q., Neurodegenerative diseases: New concepts of pathogenesis and their therapeutic implications (2006) Annu Rev Pathol, 1, pp. 151-170
Finder, V.H., Glockshuber, R., Amyloid-beta aggregation (2007) Neurodegener Dis, 4, pp. 13-27
Soto, C., Estrada, L., Castilla, J., Amyloids, prions and the inherent infectious nature of misfolded protein aggregates (2006) Trends Biochem Sci, 31, pp. 150-155
Beyer, K., Mechanistic aspects of Parkinson's disease: Alpha-synuclein and the biomembrane (2007) Cell Biochem Biophys, 47, pp. 285-299
Shaw, B.F., Valentine, J.S., How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? (2007) Trends Biochem Sci, 32, pp. 78-85
Stack, E.C., Ferrante, R.J., Huntington's disease: Progress and potential in the field (2007) Expert Opin Investig Drugs, 16, pp. 1933-1953
Aguzzi, A., Heikenwalser, M., Polymenidou, M., Insights into prion strains and neurotoxicity (2007) Nat Rev Mol Cell Biol, 8, pp. 552-561
Bertram, L., Tanzi, R.E., Twenty years of the Alzheimer's disease amyloid hypothesis: A genetic perspective (2005) Cell, 120, pp. 545-555
Ward, M., Biomarkers for Alzheimer's disease (2007) Expert Rev Mol Diagn, 7, pp. 635-646
Collinge, J., Molecular neurology of prion disease (2005) J Neurol Neurosurg Psychiatry, 76, pp. 906-919
Colucci, M., Moleres, F.J., Xie, Z.L., Ray-Chaudhury, A., Gutti, S., Butefish, C.M., Gerstmann- Straussler-Scheinker: A new phenotype with 'curly' PrP deposits (2006) J Neuropathol Exp Neurol, 65, pp. 642-651
Windl, O., Dempster, M., Estiberio, J.P., Lathe, R., de Silva, R., Esmonde, T., Genetic basis of Creutzfeldt-Jakob disease in the United Kingdom: A systematic analysis of predisposing mutations and allelic variation in the PRNP gene (1996) Hum Genet, 98, pp. 259-264
Bruce, M.E., Will, R.G., Ironside, J.W., McConnell, I., Drummond, D., Suttie, A., Transmissions to mice indicate that 'new variant' CJD is caused by the BSE agent (1997) Nature, 389, pp. 498-501
Caughey, B., Baron, G.S., Prions and their partners in crime (2006) Nature, 443, pp. 803-810
Brown, R.C., Lockwood, A.H., Sonawane, B.R., Neurodegenerative diseases: An overview of environmental risk factors (2005) Environ Health Perspect, 113, pp. 1250-1256
Prusiner, S.B., Molecular biology and pathogenesis of prion diseases (1996) Trends Biochem Sci, 21, pp. 482-487
Pasternak, S.H., Callahan, J.W., Mahuran, D.J., The role of the endosomal/ lysosomal system in amyloid-beta production and the pathophysiology of Alzheimer's disease: Reexamining the spatial paradox from a lysosomal perspective (2004) J Alzheimers Dis, 6, pp. 53-65
DeMarco, M.L., Daggett, V., Local environmental effects on the structure of the prion protein (2005) CR Biologies, 328, pp. 847-862
La Mendola, D., Magrì, A., Milardi, D., Pappalardo, G., Rizzarelli, E., Environmental effects on conformational diseases. Reactive oxygen species and membrane interactions with prion, amylin and their peptide fragments (2006) Recent Development in Bioinorganic Chemistry: Metal Complexes of Bioactive Molecules, pp. 85-110. , Ed: Saviano M, Transworld Research Network, Kerala, p
Picotti, P., De Franceschi, G., Frare, E., Spolaore, B., Zambonin, M., Chiti, F., Amyloid fibril formation and disaggregation of fragment 1-29 of apomyoglobin: Insights into the effect of pH on protein fibrillogenesis (2007) J Mol Biol, 367, pp. 1237-1245
Gaeta, A., Hider, R.C., The crucial role of metal ions in neurodegeneration: The basis for a promising therapeutic strategy (2005) Br J Pharmacol, 146, pp. 1041-1059
Mrak, R.E., Griffin, W.S., Common inflammatory mechanisms in Lewy body disease and Alzheimer disease (2007) J Neuropathol Exp Neurol, 66, pp. 683-686
Molina-Holgado, F., Hider, R.C., Gaeta, A., Williams, R., Francis, P., Metals ions and neurodegeneration (2007) Biometals, 20, pp. 639-654
Chiti, F., Dobson, C.M., Protein misfolding and diseases (2006) Ann Rev Biochem, 75, pp. 333-366
Glabe, C.G., Common mechanism of amyloid oligomer pathogenesis in degenerative disease (2006) Neurobiol Aging, 27, pp. 570-575
Ferreira, S.T., Vieira, M.N., De Felice, F.G., Soluble protein oligomers as emerging toxins in Alzheimer's and other amyloid diseases (2007) IUBMB Life, 59, pp. 332-345
Liu, G., Huang, W., Moir, R.D., Vanderburg, C.R., Lai, B., Peng, Z., Metal exposure and Alzheimer's pathogenesis (2006) J Struct Biol, 155, pp. 45-51
Huang, X., Atwood, C.S., Moir, R.D., Hartshorn, M.A., Tanzi, R.E., Bush, A.I., Trace metal contamination initiates the apparent autoaggregation, amyloidosis, and oligomerization of Alzheimer's Abeta peptides (2004) J Biol Inorg Chem, 9, pp. 954-960
Zatta, P., Frank, A., Copper deficiency and neurological disorders in man and animals (2007) Brain Res Rev, 54, pp. 19-33
Ong, W.Y., Farooqui, A.A., Iron, neuroinflammation, and Alzheimer's disease (2005) J Alzheimers Dis, 8, pp. 183-200
Mocchegiani, E., Bertoni-Freddari, C., Marcellini, F., Malavolta, M., Brain, aging and neurodegeneration: Role of zinc ion avalaibility (2005) Prog Neurobiol, 75, pp. 367-390
Tarohda, T., Yamamoto, M., Amamo, R., Regional distribution of manganese, iron, copper, and zinc in the rat brain during development (2004) Anal Bioanal Chem, 380, pp. 240-246
Jackson, B., Harper, S., Smith, L., Flinn, J., Elemental mapping and quantitative analysis of Cu, Zn and Fe in rat brain sections by laser ablation ICP-MS (2006) Anal Bioanal Chem, 384, pp. 951-957
Maynard, C.J., Cappai, R., Volitakis, I., Cherny, R.A., White, A.R., Beyreuther, K., Overexpression of Alzheimer's disease amyloid-beta opposes the age-dependent elevations of brain copper and iron (2002) J Biol Chem, 277, pp. 44670-44676
Adlard, P.A., Bush, A.I., Metals and Alzheimer's disease (2006) J Alzheimers Dis, 10, pp. 145-163
Lovell, M.A., Robertson, J.D., Teesdale, W.J., Campbell, J.L., Markesbery, W.R., Copper, iron and zinc in Alzheimer's disease senile plaques (1998) J Neurol Sci, 158, pp. 47-52
Smith, D.G., Cappai, R., Barnham, K.J., The redox chemistry of the Alzheimer's disease amyloid beta peptide (2007) Biochim Biophys Acta, 1768, pp. 1976-1990
Shivers, B.D., Hilbich, C., Multhaup, G., Salbaum, M., Beyreuther, K., Seeburg, P.H., Alzheimer's disease amyloidogenic glycoprotein: Expression pattern in rat brain suggests a role in cell contact (1988) EMBO J, 7, pp. 1365-1370
Liu, S.T., Howlett, G., Barrow, C.J., Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the Abeta peptide of Alzheimer's disease (1999) Biochemistry, 38, pp. 9373-9378
Shen, L., Ji, H.F., Rat's trick to escape Alzheimer's disease (2007) J Biomol Struct Dyn, 25, pp. 271-274
Wopfner, F., Weidenhofer, G., Schneider, R., von Brunn, A., Gilch, S., Schwarz, T.F., Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein (1999) J Mol Biol, 289, pp. 1163-1178
van Rheede, T., Smolenaars, M.M.W., Madsen, O., de Jong, W.W., Molecular evolution of the mammalian prion protein (2003) Mol Biol Evol, 20, pp. 111-121
Harris, D.A., Falls, D.L., Johnson, F.A., Fischbach, G.D., A prion-like protein from chicken brain copurifies with an acetylcholine receptor-inducing activity (1991) Proc Natl Acad Sci USA, 88, pp. 7664-7668
Gabriel, J.M., Oesch, B., Kretzschamer, H., Scott, M., Prusiner, S.B., Molecular cloning of a candidate chicken prion protein (1992) Proc Natl Acad Sci USA, 89, pp. 9097-90101
Simonic, T., Duga, S., Strumbo, B., Asselta, R., Ceciliani, F., Ronchi, S., cDNA cloning of turtle prion protein (2000) FEBS Lett, 469, pp. 33-38
Strumbo, B., Ronchi, S., Bolis, L.C., Simonic, T., Molecular cloning of the cDNA coding for Xenopus laevis prion protein (2001) FEBS Lett, 508, pp. 170-174
Suzuki, T., Kurokawa, T., Hashimoto, H., Sugiyama, M., cDNA sequence and tissue expression of Fugu rubripes prion protein-like: A candidate for the teleost orthologue of tetrapod PrPs (2002) Biochem Biophys Res Commun, 294, pp. 912-917
Stahl, N., Prusiner, S.B., Prions and prion proteins (1991) FASEB J, 5, pp. 2799-2807
Horiuchi, M., Yamazaki, N., Ikeda, T., Ishiguro, N., Shinagawa, M., A cellular form of prion protein (PrPC) exists in many non-neuronal tissues of sheep (1995) J Gen Virol, 76, pp. 2583-2587
Stahl, N., Baldwin, M.A., Teplow, D.B., Hood, L., Gibson, B.W., Burlingame, A.L., Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing (1993) Biochemistry, 32, pp. 1991-2002
Zou, W.Q., Gambetti, P., Prion: The chameleon protein (2007) Cell Mol Life Sci, 64, pp. 3266-3270
Bueler, H., Fisher, M., Lang, Y., Bluethmann, H., Lipp, H.P., DeArmond, S.J., Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein (1992) Nature, 356, pp. 577-582
Brandner, S., Isenmann, S., Raeber, A., Fischer, M., Sailer, A., Kobayashi, Y., Normal host prion protein necessary for scrapieinduced neurotoxicity (1996) Nature, 379, pp. 339-343
Rochet, J.C., Lansbury Jr., P., Amyloid fibrillogenesis: Themes and variations (2000) Curr Opin Struct Biol, 10, pp. 60-68
Brown, D.R., Clive, C., Haswell, S.J., Antioxidant activity related to copper binding of native prion protein (2001) J Neurochem, 76, pp. 69-76
Chiesa, R., Drisaldi, B., Quaglio, E., Migheli, A., Piccardo, P., Ghetti, B., Accumulation of protease-resistant prion protein (PrP) and apoptosis of cerebellar granule cells in transgenic mice expressing a PrP insertional mutation (2000) Proc Natl Acad Sci USA, 97, pp. 5574-5579
Mouillet-Richard, S., Ermonval, M., Chebassier, C., Laplanche, J.L., Lehmann, S., Launay, J.M., Signal transduction through prion protein (2000) Science, 289, pp. 1925-1928
Herms, J., Tings, T., Gall, S., Madlung, A., Giese, A., Siebert, H., Evidence of presynaptic location and function of the prion protein (1999) J Neurosci, 19, pp. 8866-8875
Brown, D.R., Qin, K., Herms, J.W., Madlung, A., Manson, J., Strome, R., The cellular prion protein binds copper in vivo (1997) Nature, 390, pp. 684-687
Prado, M.A., Alves-Silva, J., Magalhães, A.C., Prado, V.F., Linden, R., Martins, V.R., PrPC on the road: Trafficking of the cellular prion protein (2004) J Neurochem, 88, pp. 769-781
Marcotte, E.M., Pellegrini, M., Yeates, T.O., Eisenberg, D., A census of protein repeats (1998) J Mol Biol, 293, pp. 151-160
Calzolai, L., Lysek, D.A., Perez, D.R., Guntert, P., Wüthrich, K., Prion protein NMR structures of chickens, turtles, and frogs (2005) Proc Natl Acad Sci USA, 102, pp. 651-655
Marcotte, E.M., Eisemberg, D., Chicken prion tandem repeats form a stable, protease resistant domain (1999) Biochemistry, 38, pp. 667-676
Ravi Chandra, B., Gowthaman, R., Raj Akhouri, R., Gupta, D., Sharma, A., Distribution of proline- rich (PxxP) motifs in distinct proteomes: Functional and therapeutic implications for malaria and tuberculosis (2004) Protein Eng Des Sel, 17, pp. 175-182
Lysek, D.A., Wuthrich, K., Prion protein interaction with the C-terminal SH3 domain of Grb2 studied using NMR and optical spectroscopy (2004) Biochemistry, 43, pp. 10393-10399
Nunziante, M., Gilch, S., Schätzl, H.M., Essential role of the prion protein N-terminus in subcellular trafficking and half-life of cellular prion protein (2003) J Biol Chem, 278, pp. 3726-3734
Frankenfield, K.N., Powers, E.T., Kelly, J.W., Influence of the N-terminal domain on the aggregation properties of the prion protein (2005) Protein Sci, 14, pp. 2154-2166
Butowt, R., Davies, P., Brown, D.R., Anterograde axonal transport of chicken cellular prion protein (PrPc) in vivo requires its N-terminal part (2007) J Neurosci Res, 85, pp. 2567-2579
Shyng, S.L., Moulder, K.L., Lesko, A., Harris, D.A., The N-terminal domain of a glycolipid-anchored prion protein is essential for its endocytosis via clathrin-coated pits (1995) J Biol Chem, 270, pp. 14793-14800
Pietropaolo, A., Raiola, L., Muccioli, L., Tiberio, G., Zannoni, C., Fattorusso, R., An NMR and Molecular Dynamics investigation of the avian prion hexarepeat conformational features in solution (2007) Chem Phys Lett, 442, pp. 110-118
Pietropaolo, A., Muccioli, L., Zannoni, C., La Mendola, D., Maccarrone, G., Pappalardo, G., Unveiling the role of histidine and tyrosine residues on the conformation of the avian prion hexarepeat domain (2008) J Phys Chem B, 112, pp. 5182-5188
Bansal, A., Gierasch, L.M., The NPXY internalization signal of the LDL receptor adopts a reverse-turn conformation (1991) Cell, 67, pp. 1195-1201
Paccaud, J.P., Reith, W., Johansson, B., Magnusson, K.E., Mach, B., Carpenter, J.L., Clathrin-coated pit-mediated receptor internalization. Role of internalization signals and receptor mobility (1993) J Biol Chem, 268, pp. 23191-23196
La Mendola, D., Bonomo, R.P., Impellizzeri, G., Maccarrone, G., Pappalardo, G., Rizzarelli, E., Copper(II) complexes with chicken prion repeats: Influence of proline and tyrosine residues on the coordination features (2005) J Biol Inorg Chem, 10, pp. 463-475
Rivera-Milla, E., Stuermer, C.A., Malaga-Trillo, E., An evolutionary basis for scrapie disease: Identification of a fish prion mRNA (2003) Trends Genet, 19, pp. 72-75
Pappalardo, M., Milardi, D., Grasso, D., La Rosa, C., Steered molecular dynamics studies reveal different unfolding pathways of prions from mammalian and non-mammalian species (2007) New J Chem, 31, pp. 901-905
Ji, H.F., Zhang, H.Y., A comparative molecular dynamics study on thermostability of human and chicken prion proteins (2007) Biochem Biophys Res Comm, 359, pp. 790-794
De Simone, A., Dodson, G.G., Zagari, A., Fraternali, F., Water molecules as structural determinants among prions of low sequence identity (2006) FEBS Lett, 580, pp. 2488-2494
George, R.A., Heringa, J., An analysis of protein domain linkers: Their classification and role in protein folding (2003) Protein Eng, 15, pp. 871-879
Barducci, A., Chelli, R., Procacci, P., Schettino, V., Gervasio, F.L., Parrinello, M., Metadynamics simulation of prion protein: Betastructure stability and the early stages of misfolding (2006) J Am Chem Soc, 128, pp. 2705-2710
Crichton, R.R., Pierre, J.L., Old iron, young copper: From Mars to Venus (2001) Biometals, 14, pp. 99-112
MacPherson, I.S., Murphy, M.E., Type-2 copper-containing enzymes (2007) Cell Mol Life Sci, 64, pp. 2887-2899
Bertinato, J., L'Abbe, M.R., Maintaining copper homeostasis: Regulation of copper-trafficking proteins in response to copper deficiency or overload (2004) J Nutr Biochem, 15, pp. 316-322
Bayer, T.A., Schafer, S., Breyhan, H., Wirths, O., Treiber, C., Multhaup, G., A vicious circle: Role of oxidative stress, intraneuronal Abeta and Cu in Alzheimer's disease (2006) Clin Neuropathol, 25, pp. 163-171
Brown, D.R., Neurodegeneration and oxidative stress: Prion disease results from loss of antioxidant defence (2005) Folia Neuropathol, 43, pp. 229-243
Milhavet, O., Lehmann, S., Oxidative stress and the prion protein in transmissible spongiform encephalopathies (2002) Brain Res Brain Res Rev, 38, pp. 328-339
Kim, J.I., Choi, S.I., Kim, N.H., Jin, J.K., Choi, E.K., Carp, R.I., Oxidative stress and neurodegeneration in prion diseases (2001) Ann N Y Acad Sci, 928, pp. 182-186
Quaglio, E., Chiesa, R., Harris, D.A., Copper converts the cellular prion protein into a protease- resistant species that is distinct from the scrapie isoform (2001) J Biol Chem, 276, pp. 11432-11438
Brown, D.R., Copper and prion disease (2001) Brain Res Bull, 55, pp. 165-173
Westergard, L., Christensen, H.M., Harris, D.A., The cellular prion protein (PrP(C)): Its physiological function and role in disease (2007) Biochim Biophys Acta, 1772, pp. 629-644
Choi, C.J., Kanthasamy, A., Anantharam, V., Kanthasamy, A.G., Interaction of metals with prion protein: Possible role of divalent cations in the pathogenesis of prion diseases (2006) Neurotoxicology, 27, pp. 777-787
Brown, D.R., Sasson, J., Copper-dependent functions for the prion protein (2002) Mol Biotechnol, 22, pp. 165-178
Vassallo, N., Herms, J., Cellular prion protein function in copper homeostasis and redox signalling at the synapse (2003) J Neurochem, 86, pp. 538-544
Brown, D.R., Prion and prejudice: Normal protein and the synapse (2001) Trends Neurosci, 24, pp. 85-90
Perera, W.S., Hooper, N.M., Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region (2001) Curr Biol, 11, pp. 519-523
Taylor, D.R., Watt, N.T., Perera, W.S., Hooper, N.M., Assigning functions to distinct regions of the N-terminus of the prion protein that are involved in its copper-stimulated, clathrin-dependent endocytosis (2005) J Cell Sci, 118, pp. 5141-5153
Pauly, P.C., Harris, D.A., Copper stimulates endocytosis of the prion protein (1998) J Biol Chem, 273, pp. 33107-33110
Brown, D.R., Besinger, A., Prion protein expression and superoxide dismutase activity (1998) Biochem J, 334, pp. 423-429
Brown, D.R., Wong, B.S., Hafiz, F., Clive, C., Haswell, S.J., Jones, I.M., Normal prion protein has an activity like that of superoxide dismutase (1999) Biochem J, 344, pp. 1-5
Wong, B.S., Pan, T., Liu, T., Li, R., Gambetti, P., Sy, M.S., Differential contribution of superoxide dismutase activity by prion protein in vivo (2000) Biochem Biophys Res Commun, 273, pp. 136-139
Hornshaw, M.P., McDermott, J.R., Candy, J.M., Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein (1995) Biochem Biophys Res Commun, 207, pp. 621-629
Millhauser, G.L., Copper binding in the prion protein (2004) Acc Chem Res, 37, pp. 79-85
Whittal, R.M., Ball, H.L., Cohen, F.E., Burlingame, A.L., Prusiner, S.B., Baldwin, M.A., Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry (2000) Protein Sci, 9, pp. 332-343
Qin, K., Yang, Y., Mastrangelo, P., Westaway, D., Mapping Cu(II) binding sites in prion proteins by diethyl pyrocarbonate modification and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometric footprinting (2002) J Biol Chem, 277, pp. 1981-1990
Burns, C.S., Aronoff-Spencer, E., Legname, G., Prusiner, S.B., Antholine, W.E., Gerfen, G.J., Copper coordination in the full-length, recombinant prion protein (2003) Biochemistry, 42, pp. 6794-6803
Bonomo, R.P., La Mendola, D., Pappalardo, G., Rizzarelli, E., Sovago, I., Coordination features of prion protein domains (2006) Recent Development in Bioinorganic Chemistry: Metal Complexes of Bioactive Molecules, pp. 133-160. , Ed: Saviano M, Transworld Research Network, Keralap, pp
Thompsett, A.R., Abdelraheim, S.R., Daniels, M., Brown, D.R., High affinity binding between copper and full-length prion protein identified by two different techniques (2005) J Biol Chem, 280, pp. 42750-42758
Jackson, G.S., Murray, I., Hosszu, L.L., Gibbs, N., Waltho, J.P., Clarke, A.R., Location and properties of metal-binding sites on the human prion protein (2001) Proc Natl Acad Sci USA, 98, pp. 8531-85355
Klewpatinond, M., Viles, J.H., Fragment length influences affinity for Cu 2+ and Ni2+ binding to His96 or His111 of the prion protein and spectroscopic evidence for a multiple histidine binding only at low pH (2007) Biochem J, 404, pp. 393-402
Osz, K., Nagy, Z., Pappalardo, G., Di Natale, G., Sanna, D., Micera, G., Copper(II) interaction with prion peptide fragments encompassing histidine residues within and outside the octarepeat domain: Speciation, stability constants and binding details (2007) Chem Eur J, 13, pp. 7129-7143
Chattopadhyay, M., Walter, E.D., Newell, D.J., Jackson, P.J., Aronoff-Spencer, E., Peisach, J., The octarepeat domain of the prion protein binds Cu(II) with three distinct coordination modes at pH 7.4 (2005) J Am Chem Soc, 127, pp. 12647-12656
Bonomo, R.P., Cucinotta, V., Giuffrida, A., Impellizzeri, G., Magrì, A., Pappalardo, G., A re- investigation of copper coordination in the octa-repeats region of the prion protein (2005) Dalton Trans, pp. 150-158
Walter, E.D., Chattopadhyay, M., Millhauser, G.L., The affinity of copper binding to the prion protein octarepeat domain: Evidence for negative cooperativity (2006) Biochemistry, 45, pp. 13083-13092
Garnett, A.P., Viles, J.H., Copper binding to the octarepeats of the prion protein. Affinity, specificity, folding, and cooperativity: Insights from circular dichroism (2003) J Biol Chem, 278, pp. 6795-6802
Stanczak, P., Luczkowski, M., Juszczyk, P., Grzonka, Z., Kozlowski, H., Interactions of Cu2+ ions with chicken prion tandem repeats (2004) Dalton Trans, pp. 2102-2107
Stanczak, P., Valensin, D., Juszczyk, P., Grzonka, Z., Migliorini, C., Molteni, E., Structure and stability of the Cu(II) complexes with tandem repeats of the chicken prion (2005) Biochemistry, 44, pp. 12940-12954
Di Natale, G., Grasso, G., Impellizzeri, G., La Mendola, D., Micera, G., Mihala, N., Copper(II) interaction with unstructured prion domain outside the octarepeat region: Speciation, stability, and binding details of copper(II) complexes with PrP106-126 peptides (2005) Inorg Chem, 44, pp. 7214-7225
Joszai, V., Nagy, Z., Osz, K., Sanna, D., Di Natale, G., La Mendola, D., Transition metal complexes of terminally protected peptides containing histidyl residues (2006) J Inorg Biochem, 100, pp. 1399-1409
Redecke, L., Meyer-Klaucke, W., Koker, M., Clos, J., Georgieva, D., Genov, N., Comparative analysis of the human and chicken prion protein copper binding regions at pH 6.5 (2005) J Biol Chem, 280, pp. 13987-13992
Bataille, M., Formicka-Kozlowska, K., Kozlowski, H., Pettit, L.D., Steel, I., The L-proline residue as a break-point in the co-ordination of metal-peptide systems (1984) J Chem Soc Chem Commun, 4, pp. 231-234
Fioriti, L., Quaglio, E., Massignan, T., Colombo, L., Stewart, R.S., Salmona, M., The neurotoxicity of prion protein (PrP) peptide 106-126 is independent of the expression level of PrP and is not mediated by abnormal PrP species (2005) Mol Cell Neurosci, 28, pp. 165-176
Jobling, M.F., Huang, X., Stewart, L.R., Barnham, K.J., Curtain, C., Volitakis, I., Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP106-126 (2001) Biochemistry, 40, pp. 8073-8084
Kourie, J.I., Kenna, B.L., Tew, D., Jobling, M.F., Curtain, C.C., Masters, C.L., Copper modulation of ion channels of PrP [106-126] mutant prion peptide fragments (2003) J Membr Biol, 193, pp. 35-45
Grasso, D., Milardi, D., la Rosa, C., Rizzarelli, E., The different role of Cu2+ and Zn2+ ions in affecting the interaction of prion peptide PrP106-126 with model membranes (2004) Chem Commun, 246-247
Jones, C.E., Abdelraheim, S.R., Brown, D.R., Viles, J.H., Preferential Cu 2+ coordination by His96 and His111 induces β-sheet formation in the unstructured amyloidogenic region of the prion protein (2004) J Biol Chem, 279, pp. 32018-32027
Walter, E.D., Stevens, D.J., Visconte, M.P., Millhauser, G.L., The prion protein is a combined zinc and copper binding protein: Zn2+ alters the distribution of Cu2+ coordination modes (2007) J Am Chem Soc, 129, pp. 15440-15441
Brown, D.R., Schulz-Schaeffer, W.J., Schmidt, B., Kretzschmar, H.A., Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity (1997) Exp Neurol, 146, pp. 104-112
Brown, D.R., Hafiz, F., Glasssmith, L.L., Wong, B.S., Jones, I.M., Clive, C., Consequences of manganese replacement of copper for prion protein function and proteinase resistance (2000) EMBO J, 19, pp. 1180-1186
Stanczak, P., Kozlowski, H., Can chicken and human PrPs possess SOD-like activity after beta- cleavage? (2007) Biochem Biophys Res Commun, 352, pp. 198-202
Stanczak, P., Juszczyk, P., Grzonka, Z., Kozlowski, H., The whole hexapeptide repeats domain from avian PrP displays untypical hallmarks in aspect of the Cu2+ complexes formation (2007) FEBS Lett, 581, pp. 4544-4548
Hutter, G., Heppner, F.L., Aguzzi, A., No superoxide dismutase activity of cellular prion protein in vivo (2003) Biol Chem, 384, pp. 1279-1285
Jones, S., Batchelor, M., Bhelt, D., Clarke, A.R., Collinge, J., Jackson, G.S., Recombinant prion protein does not possess SOD-1 activity (2005) Biochem J, 392, pp. 309-312
Weinstein, J., Bielski, B.H.J., Reaction of superoxide radicals with copper(II)-histidine complexes (1980) J Am Chem Soc, 102, pp. 4916-4919
Goldstein, S., Czapski, G., Meyerstein, D., A mechanistic study of the copper(II)-peptide catalyzed superoxide dismutation. A pulse radiolysis study (1990) J Am Chem Soc, 112, pp. 6489-6492
Bonomo, R.P., Bruno, V., Conte, E., De Guidi, G., La Mendola, D., Maccarrone, G., Potentiometric, spectroscopic and biological activity studies of SOD mimics containing carnosine (2003) Dalton Trans, pp. 4406-4415
Treiber, C., Pipkorn, R., Weise, C., Holland, G., Multhaup, G., Copper is required for prion protein- associated superoxide dismutase-1 activity in Pichia pastoris (2007) FEBS J, 274, pp. 1304-1317
Prion proteins leading to neurodegeneration
Prion diseases are fatal neurodegenerative disorders related to the conformational alteration of the prion protein (PrP C) into a pathogenic and protease-resistant isoform PrP(Sc). PrP(C) is a cell surface glycoprotein expressed mainly in the central nervous system and despite numerous efforts to elucidate its physiological role, the exact biological function remains unknown. Many lines of evidences indicate that prion is a copper binding protein and thus involved in the copper metabolism. Prion protein is not expressed only in mammals but also in other species such as birds, reptiles and fishes. However, it is noteworthy to point out that prion diseases are only observed in mammals while they seem to be spared to other species. The chicken prion protein (chPrP C) shares about 30% of identity in its primary sequence with mammal PrP C. Both types of proteins have an N-terminal domain endowed with tandem amino acid repeats (PHNPGY in the avian protein, PHGGGWQ in mammals), followed by a highly conserved hydrophobic core. Furthermore, NMR studies have highlighted a similar globular domain containing three alpha-helices, one short 3(10)-helix and a short antiparallel beta-sheet. Despite this structural similarity, it should be noted that the normal isoform of mammalian PrP C is totally degraded by proteinase K, while avian PrP C is not, thereby producing N-terminal domain peptide fragments stable to further proteolysis. Notably, the hexarepeat domain is considered essential for protein endocytosis, and it is supposed to be the analogous copper-binding octarepeat region of mammalian prion proteins. The number of copper binding sites, the affinity and the coordination environment of metal ions are still matter of discussion for both mammal and avian proteins. In this review, we summarize the similarities and the differences between mammalian and avian prion proteins, as revealed by studies carried out on the entire protein and related peptide fragments, using a range of experimental and computational approaches. In addition, we report the metal-driven conformational alteration, copper binding modes and the superoxide dismutase-like (SOD-like) activity of the related copper(II) complexes.
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S * Fusion in Coq(481 views) Lecture Notes In Computer Science (ISSN: 0302-9743, 0302-974335404636319783540463634, 0302-974335402975459783540297543), 2001; 2178LNCS: 583-596. Impact Factor:0.415 ViewExport to BibTeXExport to EndNote