Reduction of ferric hemoglobin from Trematomus bernacchii in a partial bis-histidyl state produces a deoxy coordination even when encapsulated into the crystal phase
Reduction of ferric hemoglobin from Trematomus bernacchii in a partial bis-histidyl state produces a deoxy coordination even when encapsulated into the crystal phase(382 views) Merlino A, Verde C, Di Prisco G, Mazzarella L, Vergara A
Spectroscopy An International Journal (ISSN: 0712-4813), 2008; 22(2-3): 143-152.
Department of Chemistry, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
Institute of Protein Biochemistry, CNR, Naples, Italy
Instituto di Biostrutture e Bioimmagini, CNR, Naples, Italy
Consorzio Bioteknet, University of Naples, Naples, Italy
Dept. Chemistry, University of Naples, Via Cinthia, 80126 Naples, Italy
References: Eaton, W.A., Henry, E.R., Hofrichter, J., Mozzarelli, A., Is cooperative oxygen binding by hemoglobin really understood? (1999) Nat. Struct. Biol, 6 (4), pp. 351-35
Bellelli, A., Brunori, M., Miele, A.E., Panetta, G., Vallone, B., The allosteric properties of hemoglobin: Insights from natural and site directed mutants (2006) Curr. Protein Pept. Sci, 7 (1), pp. 17-45
Yonetani, T., Tsuneshige, A., The global allostery model of hemoglobin: An allosteric mechanism involving homotropic and heterotropic interactions (2003) C. R. Biol, 326 (6), pp. 523-532
D. Barrick, N.T. Ho, V. Simplaceanu, F.W. Dahlquist and C. Ho, A test of the role of the proximal histidines in the Perutz model for cooperativity in haemoglobin, Nat. Struct. Biol. 4(1) (1997), 78-83Perutz, M.F., Wilkinson, A.J., Paoli, M., Dodson, G.G., The stereochemical mechanism of the cooperative effects in hemoglobin revisited (1998) Annu. Rev. Biophys. Biomol. Struct, 27, pp. 1-34
Perutz, M.F., Stereochemistry of cooperative effects in haemoglobin (1970) Nature, 228 (273), pp. 726-739
Safo, M.K., Abraham, D.J., The enigma of the liganded hemoglobin end state: A novel quaternary structure of human carbonmonoxy hemoglobin (2005) Biochemistry, 44 (23), pp. 8347-8359
Tame, J.R., What is the true structure of liganded haemoglobin? (1999) Trends Biochem. Sci, 24 (10), pp. 372-377
Silva, M.M., Rogers, P.H., Arnone, A., A third quaternary structure of human hemoglobin A at 1.7-A resolution (1992) J. Biol. Chem, 267 (24), pp. 17248-17256
Srinivasan, R., Rose, G.D., The T-to-R transformation in hemoglobin: A reevaluation (1994) Proc. Natl. Acad. Sci. USA, 91 (23), pp. 11113-11117
Sutherland-Smith, A.J., Baker, H.M., Hofmann, O.M., Brittain, T., Baker, E.N., Crystal structure of a human embryonic haemoglobin: The carbonmonoxy form of gower II (alpha2 epsilon2) haemoglobin at 2.9 A resolution (1998) J. Mol. Biol, 280 (3), pp. 475-484
Mueser, T.C., Rogers, P.H., Arnone, A., Interface sliding as illustrated by the multiple quaternary structures of liganded hemoglobin (2000) Biochemistry, 39 (50), pp. 15353-15364
Schumacher, M.A., Zheleznova, E.E., Poundstone, K.S., Kluger, R., Jones, R.T., Brennan, R.G., Allosteric intermediates indicate R2 is the liganded hemoglobin end state (1997) Proc. Natl. Acad. Sci. USA, 94 (15), pp. 7841-7844
Mazzarella, L., D'Avino, R., di Prisco, G., Crystal structure of Trematomus newnesi hemoglobin re-opens the Root effect question (1999) J. Mol. Biol, 287 (5), pp. 897-906
Mazzarella, L., Vergara, A., Vitagliano, L., High resolution crystal structure of deoxy hemoglobin from Trematomus bernacchii at different pH values: The role of histidine residues in modulating the strength of the Root effect (2006) Proteins Struct. Funct. Bioinf, 65, pp. 490-498
L. Mazzarella, G. Bonomi, M.C. Lubrano et al., Minimal structural requirement of Root effect: crystal structure of the cathodic hemoglobin isolated from Trematomus newnesi, Proteins Struct. Funct. Bioinf. 62(2) (2006), 316-321Riccio, A., Vitagliano, L., di Prisco, G., Zagari, A., Mazzarella, L., The crystal structure of a tetrameric hemoglobin in a partial hemichrome state (2002) Proc. Natl. Acad. Sci. USA, 99 (15), pp. 9801-9806
Vitagliano, L., Bonomi, G., Riccio, A., di Prisco, G., Smulevich, G., Mazzarella, L., The oxidation process of Antarctic fish hemoglobins (2004) Eur. J. Biochem, 271 (9), pp. 1651-1659
Vergara, A., Franzese, M., Merlino, A., Structural characterization of ferric hemoglobins from three Antarctic fish species of the suborder Notothenioidei (2007) Biophys. J, 93, pp. 2822-2829
Giordano, D., Vergara, A., Lee, H.C., Hemoglobin structure/function and globin-gene evolution in the Arctic fish Liparis tunicatus, Gene (2007), 406, pp. 48-58. , 1,2Verde, C., Howes, B.D., de Rosa, M.C., Structure and function of the Gondwanian hemoglobin of Pseudaphritis urvillii, a primitive notothenioid fish of temperate latitudes (2004) Prot. Sci, 13 (10), pp. 2766-2781
Vitagliano, L., Vergara, A., Bonomi, G., (2007) Spectroscopic and crystallographic analysis of a tetrameric hemoglobin oxidation pathway reveals features of an intermediate R/T state, , submitted
Ray, A., Friedman, B.A., Friedman, J.M., Trehalose glass-facilitated thermal reduction of metmyoglobin and methemoglobin (2002) J. Am. Chem. Soc, 124 (25), pp. 7270-7271
Croci, S., Pedrazzi, G., Passeri, G., Piccolo, P., Ortalli, I., Acetylphenylhydrazine induced haemoglobin oxidation in erythrocytes studied by Mossbauer spectroscopy (2001) Biochim. Biophys. Acta, 1568 (1), pp. 99-104
Rifkind, J.M., Abugo, O., Levy, A., Heim, J.M., Detection, formation, and relevance of hemichrome and hemochrome (1994) Meth. Enz, 231, pp. 449-480
de Sanctis, D., Pesce, A., Nardini, M., Bolognesi, M., Bocedi, A., Ascenzi, P., Structure-function relationships in the growing hexa-coordinate hemoglobin sub-family (2004) IUBMB Life, 56 (11-12), pp. 643-651
Pesce, A., De Sanctis, D., Nardini, M., Reversible hexa- to penta-coordination of the heme Fe atom modulates ligand binding properties of neuroglobin and cytoglobin (2004) IUBMB Life, 56 (11-12), pp. 657-664
Navati, M., Friedman, J.M., Sugar-derived glasses support thermal and photo-initiated electron transfer processes over macroscopic distances (2006) J. Biol. Chem, 281, pp. 36021-36028
Camardella, L., Caruso, C., D'Avino, R., Hemoglobin of the Antarctic fish Pagothenia bernacchii. Amino acid sequence, oxygen equilibria and crystal structure of its carbonmonoxy derivative (1992) J. Mol. Biol, 224, pp. 449-460
Brunger, A.T., Adams, P.D., Clore, G.M., A new software suite for macromolecular structure determination (1998) Acta Crystallogr. D - Biol. Crystallogr, 54, pp. 905-921. , Crystallography & NMR system
Jones, T.A., Zou, J.Y., Cowan, S.W., Kjedgaard, M., Improved methods for binding protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. D - Biol. Crystallogr, 56, pp. 714-721
Carey, P.R., Raman crystallography and other biochemical applications of Raman microscopy (2006) Annu. Rev. Phys. Chem, 57, pp. 527-554
Choi, S., Spiro, T.G., Langry, K.C., Smith, K.M., Budd, D.L., La Mar, G.N., Structural correlation and vinyl influences in resonance Raman spectra of protoheme complexes and protein (1982) J. Am. Chem. Soc, 104, pp. 4345-4351
Spiro, T.G., (1983) Iron Porphyrins, 2. , A. Lever and H. Gray, eds, Addison-Wesley, Reading, MA
Das, T.K., Lee, H.C., Duff, S.M.G., The heme environment in barley hemoglobin (1999) J. Biol. Chem, 274 (7), pp. 4207-4212
Couture, M., Das, T.K., Lee, H.C., Chlamydomonas chloroplast ferrous hemoglobin. Heme pocket structure and reactions with ligands (1999) J. Biol. Chem, 274 (11), pp. 6898-6910
Dasgupta, S., Spiro, T.G., Resonance Raman charcaterization of the 7-ns photoproduct of (carbomonoxy)hemoglobin: Implication for hemoglobin dynamics (1986) Biochemistry, 25, pp. 5941-5948
Eaton, W. A., Henry, E. R., Hofrichter, J., Mozzarelli, A., Is cooperative oxygen binding by hemoglobin really understood? (1999) Nat. Struct. Biol, 6 (4), pp. 351-35
D. Barrick, N. T. Ho, V. Simplaceanu, F. W. Dahlquist and C. Ho, A test of the role of the proximal histidines in the Perutz model for cooperativity in haemoglobin, Nat. Struct. Biol. 4 (1) (1997), 78-83Perutz, M. F., Wilkinson, A. J., Paoli, M., Dodson, G. G., The stereochemical mechanism of the cooperative effects in hemoglobin revisited (1998) Annu. Rev. Biophys. Biomol. Struct, 27, pp. 1-34
Perutz, M. F., Stereochemistry of cooperative effects in haemoglobin (1970) Nature, 228 (273), pp. 726-739
Safo, M. K., Abraham, D. J., The enigma of the liganded hemoglobin end state: A novel quaternary structure of human carbonmonoxy hemoglobin (2005) Biochemistry, 44 (23), pp. 8347-8359
Tame, J. R., What is the true structure of liganded haemoglobin? (1999) Trends Biochem. Sci, 24 (10), pp. 372-377
Silva, M. M., Rogers, P. H., Arnone, A., A third quaternary structure of human hemoglobin A at 1. 7-A resolution (1992) J. Biol. Chem, 267 (24), pp. 17248-17256
Mueser, T. C., Rogers, P. H., Arnone, A., Interface sliding as illustrated by the multiple quaternary structures of liganded hemoglobin (2000) Biochemistry, 39 (50), pp. 15353-15364
Schumacher, M. A., Zheleznova, E. E., Poundstone, K. S., Kluger, R., Jones, R. T., Brennan, R. G., Allosteric intermediates indicate R2 is the liganded hemoglobin end state (1997) Proc. Natl. Acad. Sci. USA, 94 (15), pp. 7841-7844
Rifkind, J. M., Abugo, O., Levy, A., Heim, J. M., Detection, formation, and relevance of hemichrome and hemochrome (1994) Meth. Enz, 231, pp. 449-480
Brunger, A. T., Adams, P. D., Clore, G. M., A new software suite for macromolecular structure determination (1998) Acta Crystallogr. D - Biol. Crystallogr, 54, pp. 905-921. , Crystallography & NMR system
Jones, T. A., Zou, J. Y., Cowan, S. W., Kjedgaard, M., Improved methods for binding protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. D - Biol. Crystallogr, 56, pp. 714-721
Carey, P. R., Raman crystallography and other biochemical applications of Raman microscopy (2006) Annu. Rev. Phys. Chem, 57, pp. 527-554
Spiro, T. G., (1983) Iron Porphyrins, 2. , A. Lever and H. Gray, eds, Addison-Wesley, Reading, MA
Das, T. K., Lee, H. C., Duff, S. M. G., The heme environment in barley hemoglobin (1999) J. Biol. Chem, 274 (7), pp. 4207-4212
Reduction of ferric hemoglobin from Trematomus bernacchii in a partial bis-histidyl state produces a deoxy coordination even when encapsulated into the crystal phase
Crystallographic and spectroscopic evidences on Antarctic fish hemoglobins (AFHbs) have revealed that their ferric tetramers at physiological pH are in a mixed alpha(aquo-met)/beta(bis-histidyl) coordination state and show a quaternary structure intermediate between the classical R and T states (H state). Ferric bis-histidyl adducts (hemichromes) have been also observed in some mammalian Hbs. In order to clarify whether hemichrome in AFHbs can be converted into a ferrous bis-histidyl adduct (hemochrome), at least in the crystal phase, chemical reduction of ferric hemoglobins from Trematomus bernacchii (HbTb) single crystals has been followed via Raman microscopy. The results of this analysis reveal that in HbTb, upon reduction, the bis-histidyl coordination is disrupted in favor of a penta-coordinated ferrous deoxy state, with no evidence of hemochrome. These data are in agreement with UV/Vis absorption spectra in solution. Furthermore, our data are also indirectly supported by the observation that upon reduction with dithionite, the ferric HbTb crystals crack and lose their diffraction power: in the crystalline state, the quaternary structure transition from the H to the T state is not compatible with the crystal packing. Altogether these data indicate that if bis-histidyl adducts have a functional significance in AFHbs, this function refers to a stable ferric state, or to a transient, though never detected, ferrous species.
Reduction of ferric hemoglobin from Trematomus bernacchii in a partial bis-histidyl state produces a deoxy coordination even when encapsulated into the crystal phase
Reduction of ferric hemoglobin from Trematomus bernacchii in a partial bis-histidyl state produces a deoxy coordination even when encapsulated into the crystal phase