Department of Chemistry, University of Naples 'Federico II', Via Cinthia, I-80126 Naples, Italy
Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy
Institute of Biostructures and Bioimages, CNR, Via Mezzocannone 16, I-80134 Naples, Italy
References: Elofsson, A., von Heijne, G., Membrane protein structure: prediction vs reality (2007) Annu. Rev. Biochem., 76, pp. 125-14
White, S.H., von Heijne, G., Transmembrane helices before, during, and after insertion (2005) Curr. Opin. Struct. Biol., 15, pp. 378-386
Bormann, B.J., Engelman, D.M., Intramembrane helix-helix association in oligomerization and transmembrane signalling (1992) Annu. Rev. Biophys. Biomol. Struct., 21, pp. 223-242
MacKenzie, K.R., Prestegard, J.H., Engelman, D.M., A transmembrane helix dimer: structure and implications (1997) Science, 276, pp. 131-133
Lemmon, M.A., Flanagan, J.M., Hunt, J.F., Adair, B.D., Bormann, B.J., Dempsey, C.E., Engelman, D.M., Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices (1992) J. Biol. Chem., 267, pp. 7683-7689
Gratkowski, H., Lear, J.D., DeGrado, W.F., Polar side chains drive the association of model transmembrane peptides (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 880-885
Kleiger, G., Grothe, R., Mallick, P., Eisenberg, D., GXXXG and AXXXA: common alpha-helical interaction motifs in proteins, particularly in extremophiles (2002) Biochemistry, 41, pp. 5990-5997
Schneider, D., Engelman, D.M., Motifs of two small residues can assist but are not sufficient to mediate transmembrane helix interactions (2004) J. Mol. Biol., 343, pp. 799-804
Dawson, J.P., Weinger, J.S., Engelman, D.M., Motifs of serine and threonine can drive association of transmembrane helices (2002) J. Mol. Biol., 316, pp. 799-805
Okada, T., Le Trong, I., Fox, B.A., Behnke, C.A., Stenkamp, R.E., Palczewski, K., X-Ray diffraction analysis of three-dimensional crystals of bovine rhodopsin obtained from mixed micelles (2000) J. Struct. Biol., 130, pp. 73-80
Patel, A.B., Crocker, E., Reeves, P.J., Getmanova, E.V., Eilers, M., Khorana, H.G., Smith, S.O., Changes in interhelical hydrogen bonding upon rhodopsin activation (2005) J. Mol. Biol., 347, pp. 803-812
Mottamal, M., Zhang, J., Lazaridis, T., Energetics of the native and non-native states of the glycophorin transmembrane helix dimer (2006) Proteins, 62, pp. 996-1009
Vereshaga, Y.A., Volynsky, P.E., Pustovalova, J.E., Nolde, D.E., Arseniev, A.S., Efremov, R.G., Specificity of helix packing in transmembrane dimer of the cell death factor BNIP3: a molecular modeling study (2007) Proteins, 69, pp. 309-325
Leeds, J.A., Boyd, D., Huber, D.R., Sonoda, G.K., Luu, H.T., Engelman, D.M., Beckwith, J., Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library (2001) J. Mol. Biol., 313, pp. 181-195
Cuthbertson, J.M., Bond, P.J., Sansom, M.S., Transmembrane helix-helix interactions: comparative simulations of the glycophorin a dimer (2006) Biochemistry, 45, pp. 14298-14310
Rog, T., Murzyn, K., Karttunen, M., Pasenkiewicz-Gierula, M., Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol, Molecular dynamics simulation studies (2008) J. Pept. Sci., 14, pp. 374-382
Henin, J., Pohorille, A., Chipot, C., Insights into the recognition and association of transmembrane alpha-helices. The free energy of alpha-helix dimerization in glycophorin A (2005) J. Am. Chem. Soc., 127, pp. 8478-8484
Call, M.E., Wucherpfennig, K.W., Common themes in the assembly and architecture of activating immune receptors (2007) Nat. Rev. Immunol., 7, pp. 841-850
Call, M.E., Schnell, J.R., Xu, C., Lutz, R.A., Chou, J.J., Wucherpfennig, K.W., The structure of the ζζ transmembrane dimer reveals features essential for its assembly with the T cell receptor (2006) Cell, 127, pp. 355-368
Feng, J., Call, M.E., Wucherpfennig, K.W., The assembly of diverse immune receptors is focused on a polar membrane-embedded interaction site (2006) PLoS Biol., 4, pp. e142
Hombach, J., Tsubata, T., Leclercq, L., Stappert, H., Reth, M., Molecular components of the B-cell antigen receptor complex of the IgM class (1990) Nature, 343, pp. 760-762
Campbell, K.S., Backstrom, B.T., Tiefenthaler, G., Palmer, E., CART: a conserved antigen receptor transmembrane motif (1994) Semin. Immunol., 6, pp. 393-410
Bairoch, A., Apweiler, R., The SWISS-PROT protein sequence data bank and its supplement TREMBL (1997) Nucleic Acids Res., 25, pp. 31-36
Sidman, K.E., George, D.G., Barker, W.C., Hunt, L.T., The protein identification resource (PIR) (1988) Nucleic Acids Res., 16, pp. 1869-1871
Hofmann, K., Stoffel, W., TMbase - a database of membrane spanning proteins segments (1993) Biol. Chem., 374, p. 166
Bagos, P.G., Liakopoulos, T.D., Hamodrakas, S.J., Algorithms for incorporating prior topological information in HMMs: application to transmembrane proteins (2006) BMC Bioinform., 7, p. 189
Kloczkowski, A., Ting, K.L., Jernigan, R.L., Garnier, J., Combining the GOR V algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence (2002) Proteins, 49, pp. 154-166
Kelley, L.A., MacCallum, R.M., Sternberg, M.J.E., Enhanced genome annotation using structural profiles in the program 3D-PSSM (2000) J. Mol. Biol., 299, pp. 499-520
Laskowski, R.A., MacArthur, M.W., Moss, M.D., Thorton, J.M., PROCHECK: A program to check the stereochemical quality of protein structure (1993) J. Appl. Crystallogr., 26, pp. 283-291
T.A. Jones, M. Bergdoll, M. Kjeldgaard, O: a macromolecule modeling environment. In: C. Bugg, S. Ealick (Eds.), Crystallogr. Model Methods Mol. Des. [Pap Symp.]. Springer-Verlag Press, 1990, pp. 189-199Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J., GROMACS: fast, flexible, and free (2005) J. Comput. Chem., 26, pp. 1701-1718
Berendsen, H.J.C., Postma, J.P.M., van Gusteren, W.F., Hermans, J., (1981) Interaction Models for Water in Relation to Protein Hydration, , Reidel, Dordrecht pp. 331-342
Kandt, C., Ash, W.L., Tieleman, D.P., Setting up and running molecular dynamics simulations of membrane proteins (2007) Methods, 41, pp. 475-488
Vaccaro, L., Cross, K.J., Kleinjung, J., Straus, S.K., Thomas, D.J., Wharton, S.A., Skehel, J.J., Fraternali, F., Plasticity of influenza haemagglutinin fusion peptides and their interaction with lipid bilayers (2005) Biophys. J., 88, pp. 25-36
Darden, T., York, D., Pedersen, L., Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems (1993) J. Chem. Phys., 98, pp. 10089-10092
Lawrence, M.C., Colman, P.M., Shape complementarity at protein/protein interfaces (1993) J. Mol. Biol., 234, pp. 946-950
Collaborative Computational Project, Number 4, The CCP4 suite: programs for protein crystallography, Acta Crystallogr. Sect. D 50 (1994) 760-763Amadei, A., Linssen, A.B.M., Berendsen, H.J.C., Essential dynamics of proteins (1993) Proteins, 17, pp. 412-425
Merlino, A., Vitagliano, L., Ceruso, M.A., Mazzarella, L., Subtle functional collective motions in pancreatic-like ribonucleases: from ribonuclease A to angiogenin (2003) Proteins, 53, pp. 101-110
Burley, S.K., Petsko, G.A., Amino-aromatic interactions in proteins (1986) FEBS Lett., 203, pp. 139-143
Sparr, E., Ash, W.L., Nazarov, P.V., Rijkers, D.T., Hemminga, M.A., Tieleman, D.P., Killian, J.A., Self-association of transmembrane alpha-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch (2005) J. Biol. Chem., 280, pp. 39324-39331
Gumbart, J., Wang, Y., Aksimentiev, A., Tajkhorshid, E., Schulten, K., Molecular dynamics simulations of proteins in lipid bilayers (2005) Curr. Opin. Struct. Biol., 15, pp. 423-431
Henin, J., Maigret, B., Tarek, M., Escrieut, C., Fourmy, D., Chipot, C., Probing a model of a GPCR/ligand complex in an explicit membrane environment: the human cholecystokinin-1 receptor (2006) Biophys. J., 90, pp. 1232-1240
Samna Soumana, O., Garnier, N., Genest, M., Molecular dynamics simulation approach for the prediction of transmembrane helix-helix heterodimers assembly (2007) Eur. Biophys. J., 36, pp. 1071-1082
Cherayil, B.J., MacDonald, K., Waneck, G.L., Pillai, S., Surface transport and internalization of the membrane IgM H chain in the absence of the Mb-1 and B29 proteins (1993) J. Immunol., 151, pp. 11-19
Shaw, A.C., Mitchell, R.N., Weaver, Y.K., Campos-Torres, J., Abbas, A.K., Leder, P., Mutations of immunoglobulin transmembrane and cytoplasmic domains: effects on intracellular signaling and antigen presentation (1990) Cell, 63, pp. 381-392
Grupp, S.A., Campbell, K., Mitchell, R.N., Cambier, J.C., Abbas, A.K., Signaling-defective mutants of the B lymphocyte antigen receptor fail to associate with Ig-alpha and Ig-beta/gamma (1993) J. Biol. Chem., 268, pp. 25776-25779
Stevens, T.L., Blum, J.H., Foy, S.P., Matsuuchi, L., DeFranco, A.L., A mutation of the mu transmembrane that disrupts endoplasmic reticulum retention. Effects on association with accessory proteins and signal transduction (1994) J. Immunol., 152, pp. 4397-4406
Blum, J.H., Stevens, T.L., DeFranco, A.L., Role of the μ immunoglobulin heavy chain transmembrane and cytoplasmic domains in B cell antigen receptor expression and signal transduction (1993) J. Biol. Chem., 268, pp. 27236-27245
Sal-Man, N., Gerber, D., Bloch, I., Shai, Y., Specificity in transmembrane helix-helix interactions mediated by aromatic residues (2007) J. Biol. Chem., 282, pp. 19753-19761
Pleiman, C.M., Chien, N.C., Cambier, J.C., Point mutations define a mIgM transmembrane region motif that determines intersubunit signal transduction in the antigen receptor (1994) J. Immunol., 152, pp. 2837-2844
Ballesteros, J.A., Deupi, X., Olivella, M., Haaksma, E.E., Pardo, L., Serine and threonine residues bend alpha-helices in the chi(1) = g(-) conformation (2000) Biophys. J., 79, pp. 2754-2760
Gray, T.M., Matthews, B.M., Intrahelical hydrogen bonding of serine, threonine and cysteine residues within alpha-helices and its relevance to membrane-bound proteins (1984) J. Mol. Biol., 175, pp. 75-81
Weiss, T.M., van der Wel, P.C., Killian, J.A., 2nd Koeppe, R.E., Huang, H.W., Hydrophobic mismatch between helices and lipid bilayers (2003) Biophys. J., 84, pp. 379-385
Mitchell, R.N., Shaw, A.C., Weaver, Y.K., Leder, P., Abbas, A.K., Cytoplasmic tail deletion converts membrane immunoglobulin to a phosphatidylinositol-linked form lacking signaling and efficient antigen internalization functions (1991) J. Biol. Chem., 266, pp. 8856-8860
White, S. H., von Heijne, G., Transmembrane helices before, during, and after insertion (2005) Curr. Opin. Struct. Biol., 15, pp. 378-386
Bormann, B. J., Engelman, D. M., Intramembrane helix-helix association in oligomerization and transmembrane signalling (1992) Annu. Rev. Biophys. Biomol. Struct., 21, pp. 223-242
MacKenzie, K. R., Prestegard, J. H., Engelman, D. M., A transmembrane helix dimer: structure and implications (1997) Science, 276, pp. 131-133
Lemmon, M. A., Flanagan, J. M., Hunt, J. F., Adair, B. D., Bormann, B. J., Dempsey, C. E., Engelman, D. M., Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices (1992) J. Biol. Chem., 267, pp. 7683-7689
Zhou, F. X., Cocco, M. J., Russ, W. P., Brunger, A. T., Engelman, D. M., Interhelical hydrogen bonding drives strong interactions in membrane proteins (2000) Nat. Struct. Biol., 7, pp. 154-160
Dawson, J. P., Weinger, J. S., Engelman, D. M., Motifs of serine and threonine can drive association of transmembrane helices (2002) J. Mol. Biol., 316, pp. 799-805
Patel, A. B., Crocker, E., Reeves, P. J., Getmanova, E. V., Eilers, M., Khorana, H. G., Smith, S. O., Changes in interhelical hydrogen bonding upon rhodopsin activation (2005) J. Mol. Biol., 347, pp. 803-812
Vereshaga, Y. A., Volynsky, P. E., Pustovalova, J. E., Nolde, D. E., Arseniev, A. S., Efremov, R. G., Specificity of helix packing in transmembrane dimer of the cell death factor BNIP3: a molecular modeling study (2007) Proteins, 69, pp. 309-325
Leeds, J. A., Boyd, D., Huber, D. R., Sonoda, G. K., Luu, H. T., Engelman, D. M., Beckwith, J., Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library (2001) J. Mol. Biol., 313, pp. 181-195
Cuthbertson, J. M., Bond, P. J., Sansom, M. S., Transmembrane helix-helix interactions: comparative simulations of the glycophorin a dimer (2006) Biochemistry, 45, pp. 14298-14310
Call, M. E., Wucherpfennig, K. W., Common themes in the assembly and architecture of activating immune receptors (2007) Nat. Rev. Immunol., 7, pp. 841-850
Call, M. E., Schnell, J. R., Xu, C., Lutz, R. A., Chou, J. J., Wucherpfennig, K. W., The structure of the transmembrane dimer reveals features essential for its assembly with the T cell receptor (2006) Cell, 127, pp. 355-368
Feng, J., Call, M. E., Wucherpfennig, K. W., The assembly of diverse immune receptors is focused on a polar membrane-embedded interaction site (2006) PLoS Biol., 4, pp. e142
Campbell, K. S., Backstrom, B. T., Tiefenthaler, G., Palmer, E., CART: a conserved antigen receptor transmembrane motif (1994) Semin. Immunol., 6, pp. 393-410
Sidman, K. E., George, D. G., Barker, W. C., Hunt, L. T., The protein identification resource (PIR) (1988) Nucleic Acids Res., 16, pp. 1869-1871
Bagos, P. G., Liakopoulos, T. D., Hamodrakas, S. J., Algorithms for incorporating prior topological information in HMMs: application to transmembrane proteins (2006) BMC Bioinform., 7, p. 189
Kelley, L. A., MacCallum, R. M., Sternberg, M. J. E., Enhanced genome annotation using structural profiles in the program 3D-PSSM (2000) J. Mol. Biol., 299, pp. 499-520
Laskowski, R. A., MacArthur, M. W., Moss, M. D., Thorton, J. M., PROCHECK: A program to check the stereochemical quality of protein structure (1993) J. Appl. Crystallogr., 26, pp. 283-291
T. A. Jones, M. Bergdoll, M. Kjeldgaard, O: a macromolecule modeling environment. In: C. Bugg, S. Ealick (Eds.), Crystallogr. Model Methods Mol. Des. [Pap Symp.]. Springer-Verlag Press, 1990, pp. 189-199Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., Berendsen, H. J., GROMACS: fast, flexible, and free (2005) J. Comput. Chem., 26, pp. 1701-1718
Berendsen, H. J. C., Postma, J. P. M., van Gusteren, W. F., Hermans, J., (1981) Interaction Models for Water in Relation to Protein Hydration, , Reidel, Dordrecht pp. 331-342
Kandt, C., Ash, W. L., Tieleman, D. P., Setting up and running molecular dynamics simulations of membrane proteins (2007) Methods, 41, pp. 475-488
Lawrence, M. C., Colman, P. M., Shape complementarity at protein/protein interfaces (1993) J. Mol. Biol., 234, pp. 946-950
Burley, S. K., Petsko, G. A., Amino-aromatic interactions in proteins (1986) FEBS Lett., 203, pp. 139-143
Sparr, E., Ash, W. L., Nazarov, P. V., Rijkers, D. T., Hemminga, M. A., Tieleman, D. P., Killian, J. A., Self-association of transmembrane alpha-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch (2005) J. Biol. Chem., 280, pp. 39324-39331
Cherayil, B. J., MacDonald, K., Waneck, G. L., Pillai, S., Surface transport and internalization of the membrane IgM H chain in the absence of the Mb-1 and B29 proteins (1993) J. Immunol., 151, pp. 11-19
Shaw, A. C., Mitchell, R. N., Weaver, Y. K., Campos-Torres, J., Abbas, A. K., Leder, P., Mutations of immunoglobulin transmembrane and cytoplasmic domains: effects on intracellular signaling and antigen presentation (1990) Cell, 63, pp. 381-392
Grupp, S. A., Campbell, K., Mitchell, R. N., Cambier, J. C., Abbas, A. K., Signaling-defective mutants of the B lymphocyte antigen receptor fail to associate with Ig-alpha and Ig-beta/gamma (1993) J. Biol. Chem., 268, pp. 25776-25779
Stevens, T. L., Blum, J. H., Foy, S. P., Matsuuchi, L., DeFranco, A. L., A mutation of the mu transmembrane that disrupts endoplasmic reticulum retention. Effects on association with accessory proteins and signal transduction (1994) J. Immunol., 152, pp. 4397-4406
Blum, J. H., Stevens, T. L., DeFranco, A. L., Role of the immunoglobulin heavy chain transmembrane and cytoplasmic domains in B cell antigen receptor expression and signal transduction (1993) J. Biol. Chem., 268, pp. 27236-27245
Pleiman, C. M., Chien, N. C., Cambier, J. C., Point mutations define a mIgM transmembrane region motif that determines intersubunit signal transduction in the antigen receptor (1994) J. Immunol., 152, pp. 2837-2844
Ballesteros, J. A., Deupi, X., Olivella, M., Haaksma, E. E., Pardo, L., Serine and threonine residues bend alpha-helices in the chi (1) = g (-) conformation (2000) Biophys. J., 79, pp. 2754-2760
Gray, T. M., Matthews, B. M., Intrahelical hydrogen bonding of serine, threonine and cysteine residues within alpha-helices and its relevance to membrane-bound proteins (1984) J. Mol. Biol., 175, pp. 75-81
Weiss, T. M., van der Wel, P. C., Killian, J. A., 2nd Koeppe, R. E., Huang, H. W., Hydrophobic mismatch between helices and lipid bilayers (2003) Biophys. J., 84, pp. 379-385
Mitchell, R. N., Shaw, A. C., Weaver, Y. K., Leder, P., Abbas, A. K., Cytoplasmic tail deletion converts membrane immunoglobulin to a phosphatidylinositol-linked form lacking signaling and efficient antigen internalization functions (1991) J. Biol. Chem., 266, pp. 8856-8860
Structure and dimerization of the teleost transmembrane immunoglobulin region
The immune system cells express activating receptors, which consist of a dimeric ligand-binding molecule associated with a signal transducing dimer. The communication between the receptor partners depends primarily on the interactions between their membrane-embedded segments. In the B cell receptor (BCR) the sequence traversing the lipid bilayer of the immunoglobulin (IgTM) is highly conserved among species. We have investigated the association of the IgTM regions of the BCR of the Antarctic teleost Chionodraco hamatus. The nucleotide sequence of the entire immunoglobulin chain has been determined and the length, polarity, and structure of the IgTM region have been thoroughly analyzed. Structural models of the IgTM homodimer were also obtained by performing several MD simulations in a lipid bilayer using, as a starting model, two copies of the IgTM helix placed at various relative orientations and distances. Despite a certain degree of conformational heterogeneity, the predicted models of the IgTM homodimer display similar packing interfaces, characterized by a high degree of surface complementarity. The residues presumably responsible for the interaction and, consequently for the receptor stability have been identified in this manner. (C) 2008 Elsevier Inc. All rights reserved.
Structure and dimerization of the teleost transmembrane immunoglobulin region
Kim YH, Shin SW, Pellicano R, Fagoonee S, Choi IJ, Kim YI, Park B, Choi JM, Kim SG, Choi J, Park JY, Oh S, Yang HJ, Lim JH, Im JP, Kim JS, Jung HC, Ponzetto A, Figura N, Malfertheiner P, Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY, Kim CG, Park B, Nam BH, Bae SE, Choi KD, Choe J, Kim SO, Na HK, Choi JY, Ahn JY, Jung KW, Lee J, Kim DH, Chang HS, Song HJ, Lee GH, Jung HY, Seta T, Takahashi Y, Noguchi Y, Shikata S, Sakai T, Sakai K, Yamashita Y, Nakayama T, Leja M, Park JY, Murillo R, Liepniece-karele I, Isajevs S, Kikuste I, Rudzite D, Krike P, Parshutin S, Polaka I, Kirsners A, Santare D, Folkmanis V, Daugule I, Plummer M, Herrero R, Tsukamoto T, Nakagawa M, Kiriyama Y, Toyoda T, Cao X, Corral JE, Mera R, Dye CW, Morgan DR, Lee YC, Lin JT, Garcia Martin R, Matia Cubillo A, Lee SH, Park JM, Han YM, Ko WJ, Hahm KB, Leontiadis GI, Ford AC, Ichinose M, Sugano K, Jeong M, Park JM, Han YM, Park KY, Lee DH, Yoo JH, Cho JY, Hahm KB, Bang CS, Baik GH, Shin IS, Kim JB, Suk KT, Yoon JH, Kim YS, Kim DJ * Helicobacter pylori Eradication for Prevention of Metachronous Recurrence after Endoscopic Resection of Early Gastric Cancer(341 views) N Engl J Med (ISSN: 0028-4793, 0028-4793linking, 1533-4406electronic), 2015 Jun; 30642104201566393291: 749-756. Impact Factor:59.558 ViewExport to BibTeXExport to EndNote