The identification and characterization of fusogenic domains in herpes virus glycoprotein B molecules(462 views) Galdiero S, Vitiello M, D'Isanto M, Falanga A, Cantisani M, Browne H, Pedone C, Galdiero M
Chembiochem (ISSN: 1439-7633, 1439-4227, 1439-7633electronic), 2008 Mar 25; 9(5): 758-767.
Keywords: Circular Dichroism, Hydrophobicity, Liposomes, Synthetic Peptides, Virus Entry, Glycoprotein B, Type 1 Herpes Simplex Virus, Peptide Fragment, Virus Envelope Protein, Virus Fusion Protein, Amino Acid Sequence, Animal, Article, Cattle, Cell Line, Cercopithecus, Chemical Structure, Chemistry, Drug Effect, Infectious Bovine Rhinotracheitis Virus, Membrane Fusion, Molecular Genetics, Protein Conformation, Protein Tertiary Structure, Sequence Alignment, Synthesis, Vero Cell, Bovine Herpes Virus, Controlled Study, Herpes Virus Infection, Human, Human Cell, Priority Journal, Protein Analysis, Protein Degradation, Protein Function, Protein Processing, Virus Infectivity, Virus Inhibition, Cercopithecus Aethiops, Herpesvirus 1, Models, Molecular Sequence Data, Protein Structure, Viral Envelope Proteins, Viral Fusion Proteins, Herpesviridae, Human Herpesvirus 1, Simplexvirus,
Affiliations: *** IBB - CNR ***
Department of Biological Sciences, Division of Biostructures, University of Naples Federico II, Via Mezzocannone 16, 80134 Napoli, Italy.
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples Federico II, Via Mezzocannone 16, 80134 Napoli, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
Department of Experimental Medicine II, University of Naples, Via De Crecchio 7, 80138 Napoli, Italy
Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
References: Forrester, A., Farrell, H., Wilkinson, G., Kaye, J., Davis-Poynter, N., Minson, T., (1992) J. Virol, 66, pp. 341-34
Johnson, D.C., Ligas, M.W., (1988) J. Virol, 62, pp. 4605-4612
Cai, W.H., Gu, B., Person, S., (1988) J. Virol, 62, pp. 2596-2604
Turner, A., Bruun, B., Minson, T., Browne, H., (1998) J. Virol, 72, pp. 873-875
Spear, P.G., Shieh, M.T., Herold, B.C., WuDunn, D., Koshy, T.I., (1992) Adv. Exp. Med. Biol, 313, pp. 341-353
S. van Drunen Littel-van den Hurk, L. A. Babiuk, J. Virol. 1986, 59, 401-410Vey, M., Schafer, W., Reis, B., Ohuchi, R., Britt, W., Garten, W., Klenk, H.D., Radsak, K., (1995) Virology, 206, pp. 746-749
Gong, M., Ooka, T., Matsuo, T., Kieff, E., (1987) J. Virol, 61, pp. 499-508
Kopp, A., Blewett, E., Misra, V., Mettenleiter, T.C., (1994) J. Virol, 68, pp. 1667-1674
Strive, T., Borst, E., Messerle, M., Radsak, K., (2002) J. Virol, 76, pp. 1252-1264
Epand, R.M., (2003) Biochim. Biophys. Acta Biomembr, 1614, pp. 116-121
Struck, D.K., Hoekstra, D., Pagano, R.E., (1981) Biochemistry, 20, pp. 4093-4099
Chakrabartty, A., Kortemme, T., Baldwin, R.L., (1994) Protein Sci, 3, pp. 843-852
Johnson, D. C., Ligas, M. W., (1988) J. Virol, 62, pp. 4605-4612
Cai, W. H., Gu, B., Person, S., (1988) J. Virol, 62, pp. 2596-2604
Spear, P. G., Shieh, M. T., Herold, B. C., WuDunn, D., Koshy, T. I., (1992) Adv. Exp. Med. Biol, 313, pp. 341-353
Montgomery, R. I., Warner, M. S., Lum, B. J., Spear, P. G., (1996) Cell, 87, pp. 427-436
Geraghty, R. J., Krummenacher, C., Cohen, G. H., Eisenberg, R. J., Spear, P. G., (1998) Science, 280, pp. 1618-1620
Carf, A., Willis, S. H., Whitbeck, J. C., Krummenacher, C., Cohen, G. H., Eisenberg, R. J., Wiley, D. C., (2001) Mol. Cell, 8, pp. 169-179
Subramanian, R. P., Geraghty, R. J., (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 2903-2908
Bond, V. C., Person, S., Warner, S. C., (1982) J. Gen. Virol, 61, pp. 245-254
Gage, P. J., Levine, M., Glorioso, J. C., (1993) J. Virol, 67, pp. 2191-2201
Bzik, D. J., Fox, B. A., DeLuca, N. A., Person, S., (1984) Virology, 137, pp. 185-190
Cai, W. Z., Person, S., DebRoy, C., Gu, B. H., (1988) J. Mol. Biol, 201, pp. 575-588
Heldwein, E. E., Lou, H., Bender, F. C., Cohen, G. H., Eisenberg, R. J., Harrison, S. C., (2006) Science, 313, pp. 217-220
Britt, W. J., Vugler, L. G., (1989) J. Virol, 63, pp. 403-410
Loh, L. C., (1991) Virology, 180, pp. 239-250
Meredith, D. M., Stocks, J. M., Whittaker, G. R., Halliburton, I. W., Snowden, B. W., Killington, R. A., (1989) J. Gen. Virol, 70, pp. 1161-1172
Ross, L. J., Sanderson, M., Scott, S. D., Binns, M. M., Doel, T., Milne, B., (1989) J. Gen. Virol, 70, pp. 1789-1804
Sullivan, D. C., Allen, G. P., O'Callaghan, D. J., (1989) Virology, 173, pp. 638-646
Epand, R. M., (2003) Biochim. Biophys. Acta Biomembr, 1614, pp. 116-121
Peisajovich, S. G., Shai, Y., (2003) Biochim. Biophys. Acta Biomembr, 1614, pp. 122-129
Moreno, M. R., Giudici, M., Villalain, J., (2006) Biochim. Biophys. Acta Biomembr, 1758, pp. 111-123
Perez-Berna, A. J., Moreno, M. R., Guillen, J., Bernabeu, A., Villalain, J., (2006) Biochemistry, 45, pp. 3755-3768
Wimley, W. C., White, S. H., (1996) Nat. Struct. Biol, 3, pp. 842-848
White, S. H., Wimley, W. C., (1999) Annu. Rev. Biophys. Biomol. Struct, 28, pp. 319-365
Hannah, B. P., Heldwein, E. E., Bender, F. C., Cohen, G. H., Eisenberg, R. J., (2007) J. Virol, 81, pp. 4858-4865
Bender, F. C., Minu, S., Heldwein, E. E., Ponce de Leon, M., Bilman, E., Lou, H., Whitbeck, J. C., Cohen, G. H., (2007) J. Virol, 81, pp. 3827-3841
Hope, M. J., Bally, M. B., Webb, G., Cullis, P. R., (1985) Biochim. Biophys. Acta Biomembr, 812, pp. 55-65
Struck, D. K., Hoekstra, D., Pagano, R. E., (1981) Biochemistry, 20, pp. 4093-4099
The identification and characterization of fusogenic domains in herpes virus glycoprotein B molecules
The molecular mechanism of entry of herpes viruses requires a multicomponent fusion system. Virus entry and cell-cell fusion of Herpes simplex virus (HSV) requires four glycoproteins: gD, gB and gH/gL. The role of gB remained elusive until recently, when the crystal structure of HSV-1 gB became available. Glycoprotein B homologues represent the most highly conserved group of herpes virus glycoproteins; however, despite the high degree of sequence and structural conservation, differences in post-translational processing are observed for different members of this virus family. Whereas gB of HSV is not proteolytically processed after oligomerization, most other gB homologues are cleaved by a cellular protease into subunits that remain linked through disulfide bonds. Proteolytic cleavage is common for activation of many other viral fusion proteins, so it remains difficult to envisage a common role for different herpes virus gB structures in the fusion mechanism. We selected bovine herpes virus type 1 (BoHV-1) and herpes simplex virus type 1 (HSV-1) as representative viruses expressing cleaved and uncleaved gBs, and have screened their amino acid sequences for regions of highly interfacial hydrophobicity. Synthetic peptides corresponding to such regions were tested for their ability to induce the fusion of large unilamellar vesicles and to inhibit herpes virus infection. These results underline that several regions of the gB protein are involved in the mechanism of membrane interaction.
The identification and characterization of fusogenic domains in herpes virus glycoprotein B molecules
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S * Fusion in Coq(479 views) Lecture Notes In Computer Science (ISSN: 0302-9743, 0302-974335404636319783540463634, 0302-974335402975459783540297543), 2001; 2178LNCS: 583-596. Impact Factor:0.415 ViewExport to BibTeXExport to EndNote