The crystal structure of the superoxide dismutase from Helicobacter pylori reveals a structured C-terminal extension(410 views) Esposito L, Seydel A, Aiello R, Sorrentino G, Cendron L, Zanotti G, Zagari
Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Naples, Italy
Deparment of Chemistry, University of Padua, Institute of Biomolecular Chemistry, Padua, Italy
Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
Department of Biological Sciences, CNISM, University of Naples Federico II, Naples, Italy
CEINGE, Advanced Biotechnologies, Scarl, Naples, Italy
References: Wuerges, J., Lee, J.W., Yim, Y.I., Yim, H.S., Kang, S.O., Djinovic Carugo, K., Crystal structure of nickel-containing superoxide dismutase reveals another type of active site (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 8569-857
Krieg, N.R., Hoffman, P.S., Microaerophily and oxygen toxicity (1986) Annu. Rev. Microbiol., 40, pp. 107-130
Seyler Jr., R.W., Olson, J.W., Maier, R.J., Superoxide dismutase-deficient mutants of Helicobacter pylori are hypersensitive to oxidative stress and defective in host colonization (2001) Infect. Immun., 69, pp. 4034-4040
Purdy, D., Cawthraw, S., Dickinson, J.H., Newell, D.G., Park, S.F., Generation of a superoxide dismutase (SOD)-deficient mutant of Campylobacter coli: evidence for the significance of SOD in Campylobacter survival and colonization (1999) Appl. Environ. Microbiol., 65, pp. 2540-2546
Lah, M.S., Dixon, M.M., Pattridge, K.A., Stallings, W.C., Fee, J.A., Ludwig, M.L., Structure-function in Escherichia coli iron superoxide dismutase: comparisons with the manganese enzyme from Thermus thermophilus (1995) Biochemistry, 34, pp. 1646-1660
Ringe, D., Petsko, G.A., Yamakura, F., Suzuki, K., Ohmori, D., Structure of iron superoxide dismutase from Pseudomonas ovalis at 2.9Å-Ǻ resolution (1983) Proc. Natl. Acad. Sci. U. S. A., 80, pp. 3879-3883
Stoddard, B.L., Howell, P.L., Ringe, D., Petsko, G.A., The 2.1Å-Ǻ resolution structure of iron superoxide dismutase from Pseudomonas ovalis (1990) Biochemistry, 29, pp. 8885-8893
Spiegelhalder, C., Gerstenecker, B., Kersten, A., Schiltz, E., Kist, M., Purification of Helicobacter pylori superoxide dismutase and cloning and sequencing of the gene (1993) Infect. Immun., 61, pp. 5315-5325
Bode, G., Malfertheiner, P., Lehnhardt, G., Nilius, M., Ditschuneit, H., Ultrastructural localization of urease of Helicobacter pylori (1993) Med. Microbiol. Immunol., 182, pp. 233-242
Eschweiler, B., Bohrmann, B., Gerstenecker, B., Schiltz, E., Kist, M., In situ localization of the 60 k protein of Helicobacter pylori, which belongs to the family of heat shock proteins, by immuno-electron microscopy (1993) Zentralbl. Bakteriol., 280, pp. 73-85
Phadnis, S.H., Parlow, M.H., Levy, M., Ilver, D., Caulkins, C.M., Connors, J.B., Dunn, B.E., Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis (1996) Infect. Immun., 64, pp. 905-912
Sabarth, N., Lamer, S., Zimny-Arndt, U., Jungblut, P.R., Meyer, T.F., Bumann, D., Identification of surface proteins of Helicobacter pylori by selective biotinylation, affinity purification, and two-dimensional gel electrophoresis (2002) J. Biol. Chem., 277, pp. 27896-27902
Backert, Kwok, T., Schmid, M., Selbach, M., Moese, S., Peek Jr., R.M., Konig, W., Jungblut, P.R., Subproteomes of soluble and structure-bound Helicobacter pylori proteins analyzed by two-dimensional gel electrophoresis and mass spectrometry (2005) Proteomics, 5, pp. 1331-1345
Vanet, A., Labigne, A., Evidence for specific secretion rather than autolysis in the release of some Helicobacter pylori proteins (1998) Infect. Immun., 66, pp. 1023-1027
Pesci, E.C., Cottle, D.L., Pickett, C.L., Genetic, enzymatic, and pathogenic studies of the iron superoxide dismutase of Campylobacter jejuni (1994) Infect. Immun., 62, pp. 2687-2694
Leslie, A., (1991) Crystallographic Computing, V, pp. 50-61. , D.M., et al. (Ed), Oxford University Press, Oxford
C.C.P.N. 4, The CCP4 suite: programs for protein crystallography (1994) Acta Crystallogr. D Biol. Crystallogr., 50, pp. 760-763
Matthews, B.W., Solvent content of protein crystals (1968) J. Mol. Biol., 33, pp. 491-497
Navaza, J., AMoRe an automated package for molecular replacement (1994) Acta Crystallogr., A50, pp. 157-163
Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., W. GL, Crystallography & NMR system: a new software suite for macromolecular structure determination (1998) Acta Crystallogr. D Biol. Crystallogr., 54, pp. 905-921
Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr., A47, pp. 110-119
Laskowski, R.A., MacArthur, M.W., Moss, M.D., Thorton, J.M., PROCHECK: a program to check the stereochemical quality of protein structure (1993) J. Appl. Crystallogr., 26, pp. 283-291
Wintjens, R., Gilis, D., Rooman, M., Mn/Fe superoxide dismutase interaction fingerprints and prediction of oligomerization and metal cofactor from sequence (2008) Proteins, 70, pp. 1564-1577
Edwards, R.A., Whittaker, M.M., Whittaker, J.W., Baker, E.N., Jameson, G.B., Removing a hydrogen bond in the dimer interface of Escherichia coli manganese superoxide dismutase alters structure and reactivity (2001) Biochemistry, 40, pp. 4622-4632
Munoz, I.G., Moran, J.F., Becana, M., Montoya, G., The crystal structure of an eukaryotic iron superoxide dismutase suggests intersubunit cooperation during catalysis (2005) Protein Sci., 14, pp. 387-394
Borgstahl, G.E., Pokross, M., Chehab, R., Sekher, A., Snell, E.H., Cryo-trapping the six-coordinate, distorted-octahedral active site of manganese superoxide dismutase (2000) J. Mol. Biol., 296, pp. 951-959
Tierney, D.L., Fee, J.A., Ludwig, M.L., Penner-Hahn, J.E., X-ray absorption spectroscopy of the iron site in Escherichia coli Fe(III) superoxide dismutase (1995) Biochemistry, 34, pp. 1661-1668
Hunter, T., Ikebukuro, K., Bannister, W.H., Bannister, J.V., Hunter, G.J., The conserved residue tyrosine 34 is essential for maximal activity of iron-superoxide dismutase from Escherichia coli (1997) Biochemistry, 36, pp. 4925-4933
Xie, J., Yikilmaz, E., Miller, A.F., Brunold, T.C., Second-sphere contributions to substrate-analogue binding in iron(III) superoxide dismutase (2002) J. Am. Chem. Soc., 124, pp. 3769-3774
Yikilmaz, E., Rodgers, D.W., Miller, A.F., The crucial importance of chemistry in the structure-function link: manipulating hydrogen bonding in iron-containing superoxide dismutase (2006) Biochemistry, 45, pp. 1151-1161
Voisin, S., Watson, D.C., Tessier, L., Ding, W., Foote, S., Bhatia, S., Kelly, J.F., Young, N.M., The cytoplasmic phosphoproteome of the Gram-negative bacterium Campylobacter jejuni: evidence for modification by unidentified protein kinases (2007) Proteomics, 7, pp. 4338-4348
Kraulis, P.J., MOLSCRIPT:a program to produce both detailed and schematic plots of protein structures (1991) J. Appl. Crystallogr., 24, pp. 946-950
Esnouf, R.M., Further additions to MolScript version 1.4, including reading and conturing of electron-density maps (1999) Acta Crystallogr. D, 55, pp. 938-940
Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph., 14, pp. 33-38
Barondeau, D. P., Kassmann, C. J., Bruns, C. K., Tainer, J. A., Getzoff, E. D., Nickel superoxide dismutase structure and mechanism (2004) Biochemistry, 43, pp. 8038-8047
Benov, L. T., Fridovich, I., Escherichia coli expresses a copper- and zinc-containing superoxide dismutase (1994) J. Biol. Chem., 269, pp. 25310-25314
Dunn, B. E., Cohen, H., Blaser, M. J., Helicobacter pylori (1997) Clin. Microbiol. Rev., 10, pp. 720-741
Krieg, N. R., Hoffman, P. S., Microaerophily and oxygen toxicity (1986) Annu. Rev. Microbiol., 40, pp. 107-130
Seyler Jr., R. W., Olson, J. W., Maier, R. J., Superoxide dismutase-deficient mutants of Helicobacter pylori are hypersensitive to oxidative stress and defective in host colonization (2001) Infect. Immun., 69, pp. 4034-4040
Lah, M. S., Dixon, M. M., Pattridge, K. A., Stallings, W. C., Fee, J. A., Ludwig, M. L., Structure-function in Escherichia coli iron superoxide dismutase: comparisons with the manganese enzyme from Thermus thermophilus (1995) Biochemistry, 34, pp. 1646-1660
Stoddard, B. L., Howell, P. L., Ringe, D., Petsko, G. A., The 2. 1 - resolution structure of iron superoxide dismutase from Pseudomonas ovalis (1990) Biochemistry, 29, pp. 8885-8893
Phadnis, S. H., Parlow, M. H., Levy, M., Ilver, D., Caulkins, C. M., Connors, J. B., Dunn, B. E., Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis (1996) Infect. Immun., 64, pp. 905-912
Pesci, E. C., Cottle, D. L., Pickett, C. L., Genetic, enzymatic, and pathogenic studies of the iron superoxide dismutase of Campylobacter jejuni (1994) Infect. Immun., 62, pp. 2687-2694
C. C. P. N. 4, The CCP4 suite: programs for protein crystallography (1994) Acta Crystallogr. D Biol. Crystallogr., 50, pp. 760-763
Matthews, B. W., Solvent content of protein crystals (1968) J. Mol. Biol., 33, pp. 491-497
Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., W. GL, Crystallography & NMR system: a new software suite for macromolecular structure determination (1998) Acta Crystallogr. D Biol. Crystallogr., 54, pp. 905-921
Jones, T. A., Zou, J. Y., Cowan, S. W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr., A47, pp. 110-119
Laskowski, R. A., MacArthur, M. W., Moss, M. D., Thorton, J. M., PROCHECK: a program to check the stereochemical quality of protein structure (1993) J. Appl. Crystallogr., 26, pp. 283-291
Edwards, R. A., Whittaker, M. M., Whittaker, J. W., Baker, E. N., Jameson, G. B., Removing a hydrogen bond in the dimer interface of Escherichia coli manganese superoxide dismutase alters structure and reactivity (2001) Biochemistry, 40, pp. 4622-4632
Munoz, I. G., Moran, J. F., Becana, M., Montoya, G., The crystal structure of an eukaryotic iron superoxide dismutase suggests intersubunit cooperation during catalysis (2005) Protein Sci., 14, pp. 387-394
Borgstahl, G. E., Pokross, M., Chehab, R., Sekher, A., Snell, E. H., Cryo-trapping the six-coordinate, distorted-octahedral active site of manganese superoxide dismutase (2000) J. Mol. Biol., 296, pp. 951-959
Tierney, D. L., Fee, J. A., Ludwig, M. L., Penner-Hahn, J. E., X-ray absorption spectroscopy of the iron site in Escherichia coli Fe (III) superoxide dismutase (1995) Biochemistry, 34, pp. 1661-1668
Kraulis, P. J., MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures (1991) J. Appl. Crystallogr., 24, pp. 946-950
Merritt, E. A., Bacon, D. J., Raster3D: photorealistic molecular graphics (1997) Methods Enzymol., 277, pp. 505-524
Esnouf, R. M., Further additions to MolScript version 1. 4, including reading and conturing of electron-density maps (1999) Acta Crystallogr. D, 55, pp. 938-940
The crystal structure of the superoxide dismutase from Helicobacter pylori reveals a structured C-terminal extension
Superoxide dismutases (SODs) are key enzymes for fighting oxidative stress. Helicobacter pylori produces a single SOD (HpSOD) which contains iron. The structure of this antioxidant protein has been determined at 2.4 angstrom resolution. It is a dimer of two identical subunits with one iron ion per monomer. The protein shares 53% sequence identity with the corresponding enzyme from Escherichia coli. The model is compared with those of other dimeric Fe-containing SODs. HpSOD shows significant differences in relation to other SODs, the most important being an extended C-terminal tail. This structure provides a model for closely related sequences from species such as Campylobacter, where no structures are currently known. The structure of extended carboxyl termini is discussed in light of putative functions it may serve. (C) 2008 Elsevier B.V. All rights reserved.
The crystal structure of the superoxide dismutase from Helicobacter pylori reveals a structured C-terminal extension
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S * Fusion in Coq(479 views) Lecture Notes In Computer Science (ISSN: 0302-9743, 0302-974335404636319783540463634, 0302-974335402975459783540297543), 2001; 2178LNCS: 583-596. Impact Factor:0.415 ViewExport to BibTeXExport to EndNote