Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy
Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia, I-80126, Napoli, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 6, I-80134 Napoli, Italy
References: BALDWIN, J., CHOTHIA, C., Haemoglobin: The structural changes related to ligand binding and its allosteric mechanism (1979) Journal of Molecular Biology, 129, pp. 175-22
BERENBRINK, M., KOLDKJÆR, P., KEPP, O., COSSINS, A.R., Evolution of oxygen secretion in fishes and the emergence of a complex physiological system (2005) Science, 307, pp. 1752-1757
BRITTAIN, T., Root effect hemoglobins (2005) Journal of Inorganic Biochemistry, 99, pp. 120-129
BRUNORI, M., BOSSA, F., BONAVENTURA, C., GIARDINA, B., ANTONINI, E., Hemoglobins from trout: Structural and functional properties (1973) Molecular and Cellular Biochemistry, 1, pp. 189-196
BONAVENTURA, J., GILLEN, R.G., RIGGS, A., The hemoglobin of the Crosspterygian fish, Latimeria chalumnae (Smith) (1974) Archives of Biochemistry and Biophysics, 163, pp. 728-734
BONAVENTURA, C., SULLIVAN, B., BONAVENTURA, J., BRUNORI, M., Spot hemoglobin. Studies on the Root effect hemoglobin of a marine teleost (1976) Journal of Biological Chemistry, 251, pp. 1871-1876
CAMARDELLA, L., CARUSO, C., D'AVINO, R., DI PRISCO, G., RUTIGLIANO, B., TAMBURRINI, M., FERMI, G. & PERUTZ, M. F. 1992. Haemoglobin of the Antarctic fish Pagothenia bernacchii. Amino acid sequence, oxygen equilibria and crystal structure of its carbonmonoxy derivative. Journal of Molecular Biology, 224, 449-460D'AVINO, R., CARUSO, C., TAMBURRINI, M., ROMANO, M., RUTIGLIANO, B., POLVERINO DE LAURETO, P., CAMARDELLA, L., CARRATORE, V. & DI PRISCO, G. 1994. Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi. Journal of Biological Chemistry, 269, 9675-9681DETTAÏ, A., LECOINTRE, G., In search for notothenioid (Teleostei) relatives (2004) Antarctic Science, 16, pp. 71-85
EASTMAN, J.T., Aspects of the morphology of phyletically basal bovichtid fishes of the Antarctic suborder Notothenioidei (Perciformes) (2006) Polar Biology, 29, pp. 754-763
FAGO, A., BENDIXEN, E., MALTE, H., WEBER, R.E., The anodic hemoglobin of Anguilla anguilla. Molecular basis for allosteric effects in a Root effect haemoglobin (1997) Journal of Biological Chemistry, 272, pp. 15628-15635
GERVASIO, F.L., PROCACCI, P., CARDINI, G., GUARNA, A., GIOLITTI, A., SCHETTINO, V., Interaction between aromatic residues. Molecular dynamics and ab initio exploration of the potential energy surface of the tryptophan-histidine pair (2000) Journal of Physical Chemistry, B104, pp. 1108-1114
HARATA, K., MURAKI, M., JIGAMI, Y., Role of Arg115 in the catalytic action of human lysozyme. X ray structure of His115 and Glu115 mutants (1993) Journal of Molecular Biology, 233, pp. 524-535
HUBER, F., BRAUNITZER, G., The primary structure of electric ray haemoglobin (Torpedo marmorata). Bohr effect and phosphate interaction (1989) Biological Chemistry Hoppe-Seyler, 370, pp. 831-838
ITO, N., KOMIYAMA, N.H., FERMI, G., Structure of deoxyhaemoglobin of the Antarctic fish Pagothenia bernacchii with an analysis of the structural basis of the Root effect by comparison of the liganded and unliganded haemoglobin structures (1995) Journal of Molecular Biology, 250, pp. 648-658
KENDREW, J.C., BODO, G., DINTZIS, H.M., PARRISH, R.G., WYCKOFF, H., PHILLIPS, D.C., A three-dimensional model of the myoglobin molecule obtained by X-ray analysis (1958) Nature, 181, pp. 662-666
MAZZARELLA, L., D'AVINO, R., DI PRISCO, G., SAVINO, C., VITAGLIANO, L., MOODY, C.E. & ZAGARI, A. 1999. Crystal structure of Trematomus newnesi hemoglobin re-opens the Root effect question. Journal of Molecular Biology, 287, 897-906MAZZARELLA, L., BONOMI, G., LUBRANO, M., MERLINO, A., RICCIO, A., VERGARA, A., VITAGLIANO, L., DI PRISCO, G., Minimal structural requirements for Root effect: Crystal structure of the cathodic hemoglobin isolated from the Antarctic fish Trematomus newnesi (2006) Proteins, 62, pp. 316-321
MAZZARELLA, L., VERGARA, A., VITAGLIANO, L., MERLINO, A., BONOMI, G., SCALA, S., VERDE, C., DI PRISCO, G., High-resolution crystal structure of deoxy haemoglobin from Trematomus bernacchii at different pH values: The role of histidine residues in modulating the strength of the Root effect (2006) Proteins, 65, pp. 490-498
MONOD, J., WYMAN, J., CHANGEUX, J.P., On the nature of allosteric transitions: A plausible model (1965) Journal of Molecular Biology, 12, pp. 88-118
MORRIS, R.J., NEKAMEYER, W.S., GIBSON, Q.H., Multiple T-state conformations in a fish hemoglobin. Carbon monoxide binding to hemoglobin of Thunnus thynnus (1981) Journal of Biological Chemistry, 256, pp. 4596-4603
MYLVAGANAM, S.E., BONAVENTURA, C., BONAVENTURA, J., GETZOFF, E.D., Structural basis for the Root effect in haemoglobin (1996) Nature Structural Biology, 3, pp. 275-283
NOBLE, R.W., KWIATKOWSKI, L.D., DE YOUNG, A., DAVIS, B.J., HAEDRICH, R.L., TAM, L.T., RIGGS, A.F., Functional properties of hemoglobins from deep-sea fish: Correlations with depth distribution and presence of a swimbladder (1986) Biochimica and Biophysica Acta, 870, pp. 552-563
NOBLE, R.W., PARKHURST, L.J., GIBSON, Q.H., The effect of pH on the reactions of oxygen and carbon monoxide with the hemoglobin of the carp (1970) Cyprinus carpio. Journal of Biological Chemistry, 245, pp. 6628-6633
PAOLI, M., LIDDINGTON, R., TAME, J., WILKINSON, A., DODSON, G., Crystal structure of T-state haemoglobin with oxygen bound at all four haems (1996) Journal of Molecular Biology, 256, pp. 775-792
PELSTER, B., Buoyancy at depth (1997) Deep-sea fish, pp. 195-237. , RANDALL, D. & FARRELL, A.P, eds, San Diego, CA: Academic Press
PERUTZ, M.F., Species adaptation in a protein molecule (1983) Molecular Biology and Evolution, 1, pp. 1-28
PERUTZ, M.F., BRUNORI, M., Stereochemistry of cooperative effects in fish and amphibian hemoglobins (1982) Nature, 229, pp. 421-442
PERUTZ, M.F., KENDREW, J.C., WATSON, H.C., Structure and function of haemoglobin. II. Some relations between polypeptide chain configuration and amino acid sequence (1965) Journal of Molecular Biology, 13, pp. 669-678
PERUTZ, M.F., FERMI, G., LUISI, B., SHANAN, B., LIDDINGTON, R.C., Stereochemistry of cooperative mechanisms in hemoglobin (1987) Accounts of Chemical Research, 20, pp. 309-321
RIGGS, A., The Bohr effect (1988) Annual Review of Physiology, 50, pp. 181-204
RUUD, J.T., Vertebrates without erythrocytes and blood pigment (1954) Nature, 173, pp. 848-850
SAMUNI, U., DANTSKER, D., JUSZCZAK, L.J., BETTATI, S., RONDA, L., MOZZARELLI, A., FRIEDMAN, J.M., Spectroscopic and functional characterization of T state hemoglobin conformations encapsulated in silica gels (2004) Biochemistry, 43, pp. 13 674-13 682
SAMUNI, U., ROCHE, C.J., DANTSKER, D., JUSZCZAK, L.J., FRIEDMAN, J.M., Modulation of reactivity and conformation within the T-quaternary state of human hemoglobin: The combined use of mutagenesis and sol-gel encapsulation (2006) Biochemistry, 45, pp. 2820-2835
TAME, J.R.H., WILSON, J.C. & WEBER, R.E. The crystal structures of trout Hb I in the deoxy and carbonmonoxy forms. 1996. Journal of Molecular Biology, 259, 749-760VERDE, C., DE ROSA, M.C., GIORDANO, D., MOSCA, D., DE PASCALE, D., RAIOLA, L., COCCA, E., DI PRISCO, G., Structure, function and molecular adaptations of haemoglobins of the polar cartilaginous fish Bathyraja eatonii and Raja hyperborea (2005) Biochemical Journal, 389, pp. 297-306
WITTENBERG, J.B., HAEDRICH, R.L., The choroid rete mirabile of the fish eye. II. Distribution and relation to the pseudobranch and to the swimbladder rete mirabile (1974) Biological Bulletin, 146, pp. 137-156
YOKOYAMA, T., CHONG, K.T., MIYAZAKI, G., MORIMOTO, H., SHIH, D.T.B., UNZAI, S., TAME, J.R.H., PARK, S.-Y., Novel mechanisms of pH sensitivity in tuna hemoglobin: A structural explanation of the Root effect (2004) Journal of Biological Chemistry, 279, pp. 28632-28640
YONETANI, T., PARK, S., TSUNESHIGE, A., IMAI, K., KANAORI, K., Global allostery model of hemoglobin (2002) Journal of Biological Chemistry, 277, pp. 34 508-34 520
EASTMAN, J. T., Aspects of the morphology of phyletically basal bovichtid fishes of the Antarctic suborder Notothenioidei (Perciformes) (2006) Polar Biology, 29, pp. 754-763
GERVASIO, F. L., PROCACCI, P., CARDINI, G., GUARNA, A., GIOLITTI, A., SCHETTINO, V., Interaction between aromatic residues. Molecular dynamics and ab initio exploration of the potential energy surface of the tryptophan-histidine pair (2000) Journal of Physical Chemistry, B104, pp. 1108-1114
KENDREW, J. C., BODO, G., DINTZIS, H. M., PARRISH, R. G., WYCKOFF, H., PHILLIPS, D. C., A three-dimensional model of the myoglobin molecule obtained by X-ray analysis (1958) Nature, 181, pp. 662-666
MORRIS, R. J., NEKAMEYER, W. S., GIBSON, Q. H., Multiple T-state conformations in a fish hemoglobin. Carbon monoxide binding to hemoglobin of Thunnus thynnus (1981) Journal of Biological Chemistry, 256, pp. 4596-4603
MYLVAGANAM, S. E., BONAVENTURA, C., BONAVENTURA, J., GETZOFF, E. D., Structural basis for the Root effect in haemoglobin (1996) Nature Structural Biology, 3, pp. 275-283
NOBLE, R. W., KWIATKOWSKI, L. D., DE YOUNG, A., DAVIS, B. J., HAEDRICH, R. L., TAM, L. T., RIGGS, A. F., Functional properties of hemoglobins from deep-sea fish: Correlations with depth distribution and presence of a swimbladder (1986) Biochimica and Biophysica Acta, 870, pp. 552-563
NOBLE, R. W., PARKHURST, L. J., GIBSON, Q. H., The effect of pH on the reactions of oxygen and carbon monoxide with the hemoglobin of the carp (1970) Cyprinus carpio. Journal of Biological Chemistry, 245, pp. 6628-6633
PERUTZ, M. F., Species adaptation in a protein molecule (1983) Molecular Biology and Evolution, 1, pp. 1-28
PERUTZ, M. F., BRUNORI, M., Stereochemistry of cooperative effects in fish and amphibian hemoglobins (1982) Nature, 229, pp. 421-442
PERUTZ, M. F., KENDREW, J. C., WATSON, H. C., Structure and function of haemoglobin. II. Some relations between polypeptide chain configuration and amino acid sequence (1965) Journal of Molecular Biology, 13, pp. 669-678
PERUTZ, M. F., FERMI, G., LUISI, B., SHANAN, B., LIDDINGTON, R. C., Stereochemistry of cooperative mechanisms in hemoglobin (1987) Accounts of Chemical Research, 20, pp. 309-321
RUUD, J. T., Vertebrates without erythrocytes and blood pigment (1954) Nature, 173, pp. 848-850
TAME, J. R. H., WILSON, J. C. & WEBER, R. E. The crystal structures of trout Hb I in the deoxy and carbonmonoxy forms. 1996. Journal of Molecular Biology, 259, 749-760VERDE, C., DE ROSA, M. C., GIORDANO, D., MOSCA, D., DE PASCALE, D., RAIOLA, L., COCCA, E., DI PRISCO, G., Structure, function and molecular adaptations of haemoglobins of the polar cartilaginous fish Bathyraja eatonii and Raja hyperborea (2005) Biochemical Journal, 389, pp. 297-306
WITTENBERG, J. B., HAEDRICH, R. L., The choroid rete mirabile of the fish eye. II. Distribution and relation to the pseudobranch and to the swimbladder rete mirabile (1974) Biological Bulletin, 146, pp. 137-156
The Root effect - a structural and evolutionary perspective
Haemoglobin carries oxygen from the environment to tissues; in vertebrates, it is contained in specialized cells, called erythrocytes. Over the last century, the study of the chemical properties of this haernoprotein has provided a wealth of information. One of its most important and ancient physiological features is the Root effect, found in many teleost fish (and some amphibians). The Root effect corresponds to an extreme pH sensitivity and can be described as an exaggerated Bohr effect: it dictates to what extent the oxygen tension can be raised in acid-producing tissues. It is likely that the eye choroid rete represents the most ancient anatomical structure associated with the presence of Root effect haemoglobins. This review describes our overall understanding of the molecular properties, biological occurrence, physiological role and evolutionary origin of Root effect haemoglobins. The current knowledge of the structural properties of Root effect haemoglobins is discussed in the light of recent results obtained on the haemoglobins of the cold-adapted notothenioids Trematomus newnesi and T. bernacchii.
The Root effect - a structural and evolutionary perspective
No results.
The Root effect - a structural and evolutionary perspective