Assessing the acid-base and conformational properties of histidine residues in human prion protein (125-228) by means of pKα calculations and molecular dynamics simulations
Assessing the acid-base and conformational properties of histidine residues in human prion protein (125-228) by means of pKα calculations and molecular dynamics simulations(627 views) Langella E, Improta R, Crescenzi O, Barone V
Keywords: Conformational Transition, Electrostatic Calculation, Histidine Titration, Molecular Dynamics, Pkα, Prion Protein, Acid Base Balance, Article, Carboxy Terminal Sequence, Human, Molecular Model, Priority Journal, Protein Conformation, Protein Domain, Protein Structure, Proton Transport, Simulation, Titrimetry, Amino Acid Sequence, Computer Simulation, Hydrogen-Ion Concentration, Kinetics, Magnetic Resonance Spectroscopy, Peptide Fragments,
Affiliations: *** IBB - CNR ***
Dipartimento di Chimica, Universitá Federico II, Complesso di Monte S. Angelo, Napoli, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
References: Griffith, J.S., Self-replication and scrapie (1967) Nature, 215, pp. 1043-104
Prusiner, S.B., Molecular biology of prion diseases (1991) Science, 252, pp. 1515-1522
Prusiner, S.B., McKinley, M.P., Bowman, K.A., Bolton, D.C., Bendheim, P.E., Groth, D.F., Glenner, G.G., Scrapie prions aggregate to form amyloid-like birefringent rods (1983) Cell, 35, pp. 349-358
Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R., Wüthrich, K., NMR structure of the mouse prion protein domain PrP(121-231) (1996) Nature, 382, pp. 180-182
Donne, D.G., Viles, J.H., Groth, D., Mehlhorn, I., James, T.L., Cohen, F.E., Prusiner, S.B., Structure of the recombinant full-length hamster prion protein PrP(29-231): The N terminus is highly flexible (1997) Proc Natl Acad Sci USA, 94, pp. 13452-13457
Lopez Garcia, F., Zhan, R., Riek, R., Wüthrich, K., NMR structure of the bovine prion protein (2000) Proc Natl Acad Sci USA, 97, pp. 8334-8339
Zahn, R., Liu, A., Luhrs, T., Riek, R., Von Schroetter, C., Garcia, F., Billeter, M., NMR solution structure of the human prion protein (2000) Proc Natl Acad Sci USA, 97, pp. 145-150
Knaus, K.J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W., Yee, V.C., Crystal structure of the human prion protein reveals a mechanism for oligomerization (2001) Nat Struct Biol, 8, pp. 770-774
Calzolai, L., Zahn, R., Influence of pH on NMR structure and stability of the human prion protein globular domain (2003) J Biol Chem, 278, pp. 35592-35596
Haire, L.F., Whyte, S.M., Vasisht, N., Gill, A.C., Verma, C., Dodson, E.J., Dodson, G.G., The crystal structure of the globular domain of sheep prion protein (2004) J Mol Biol, 336, pp. 1175-1183
Pan, K.M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Huang, Z., Conversion of α-helixes into β-sheets features in the formation of the scrapie prion proteins (1993) Proc Natl Acad Sci USA, 90, pp. 10962-10966
Safar, J., Roller, P.P., Gajdusek, D.C., Gibbs Jr., C.J., Thermal stability and conformational transitions of scrapie amyloid (prion) protein correlate with infectivity (1993) Protein Sci, 2, pp. 2206-2216
Supattapone, S., Prion protein conversion in vitro (2004) J Mol Med, 82, pp. 348-356
Chien, P., Weissman, J.S., DePace, A.H., Emerging principles of conformation-based prion inheritance (2004) Annu Rev Biochem, 73, pp. 617-656
Leffers, K.W., Schell, J., Jansen, K., Lucassen, R., Kaimann, T., Nagel-Steger, L., Tatzelt, J., The structural transition of the prion protein into its pathogenic conformation is induced by unmasking hydrophobic sites (2004) J Mol Biol, 344, pp. 839-853
Armen, R.S., DeMarco, M.L., Alonso, D.O., Daggett, V., Pauling and Corey's α-pleated sheet structure may define the prefibrillar amyloidogenic intermediate in amyloid disease (2004) Proc Natl Acad Sci USA, 101, pp. 11622-11627
Hornemann, S., Glockshuber, R., A scrapie-like unfolding intermediate of the prion protein domain PrP(121-231) induced by acidic pH (1998) Proc Natl Acad Sci USA, 95, pp. 6010-6014
Kelly, J.W., The environmental dependency of protein folding best explains prion and amyloid diseases (1998) Proc Natl Acad Sci USA, 95, pp. 930-932
Swietnicki, W., Petersen, R., Gambetti, P., Surewicz, W.K., pH-dependent stability and conformation of the recombinant human prion protein PrP(90-231) (1997) J Biol Chem, 272, pp. 27517-27520
Jackson, G.S., Hill, A.F., Joseph, C., Hosszu, L., Power, A., Waltho, J.P., Clarke, A.R., Multiple folding pathways for heterologously expressed human prion protein (1999) Biochim Biophys Acta, 1431, pp. 1-13
Alonso, D.O.V., DeArmond, S.J., Cohen, F.E., Daggett, V., Mapping the early steps in the pH-induced conformational conversion of the prion protein (2001) Proc Natl Acad Sci USA, 98, pp. 2985-2989
Alonso, D.O.V., An, C., Daggett, V., Simulations of biomolecules: Characterization of the early steps in the pH-induced conformational conversion of the hamster, bovine and human forms of the prion protein (2002) Philos Trans R Soc Lond A, 360, pp. 1165-1178
Sekijima, M., Motono, C., Yamasaki, S., Kaneko, K., Akiyama, Y., Molecular dynamics simulation of dimeric and monomeric forms of human prion protein: Insight into dynamics and properties (2003) Biophys J, 85, pp. 1176-1185
Gu, W., Wang, T., Zhu, J., Shi, Y., Liu, H., Molecular dynamics simulation of the unfolding of the human prion protein domain under low pH and high temperature conditions (2003) Biophys Chem, 104, pp. 79-94
Langella, E., Improta, R., Barone, V., Checking the pH-induced conformational transition of prion protein by molecular dynamics simulations: Effect of protonation of histidine residues (2004) Biophys J, 87, pp. 3623-3632
Kuwata, K., Li, H., Yamada, H., Legname, G., Prusiner, S.B., Akasaka, K., James, T.L., Locally disordered conformer of the hamster prion protein: A crucial intermediate to PrPSc? (2002) Biochemistry, 41, pp. 12277-12283
Kuwata, K., Kamatari, Y.O., Akasaka, K., James, T.L., Slow conformational dynamics in the hamster prion protein (2004) Biochemistry, 43, pp. 4439-4446
Bashford, D., Gerwert, K., Electrostatic calculations of the pKα values of ionizable groups in bacteriorhodopsin (1992) J Mol Biol, 224, pp. 473-486
Bashford, D., Case, D.A., Dalvit, C., Tennant, L., Wright, P.E., Electrostatic calculations of side-chain pKα values in myoglobin and comparison with NMR data for histidines (1993) Biochemistry, 32, pp. 8045-8056
Pauly, P.C., Harris, D.A., Copper stimulates endocytosis of the prion protein (1998) J Biol Chem, 273, pp. 33107-33110
Hornshaw, M.P., McDermott, J.R., Candy, J.M., Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein (1995) Biochem Biophys Res Commun, 207, pp. 621-629
Cereghetti, G.M., Schweiger, A., Glockshuber, R., Van Doorslaer, S., Stability and Cu(II) binding of prion protein variants related to inherited human prion diseases (2003) Biophys J, 84, pp. 1985-1997
Van Doorslaer, S., Cereghetti, G.M., Glockshuber, R., Schweiger, A., Unraveling the Cu2+ binding sites in the C-terminal domain of the murine prion protein: A pulse EPR and ENDOR study (2001) J Phys Chem B, 105, pp. 1631-1639
Cereghetti, M.G., Schweiger, A., Glockshuber, R., Van Doorslaer, S., Electron paramagnetic resonance evidence for binding of Cu2+ to the C-terminal domain of the murine prion protein (2001) Biophys J, 81, pp. 516-525
Fogolari, F., Brigo, A., Molinari, H., The Poisson-Boltzmann equation for biomolecular electrostatics: A tool for structural biology (2002) J Mol Recognit, 15, pp. 377-392
Ullmann, G.M., Knapp, E.-W., Electrostatic models for computing protonation and redox equilibria in proteins (1999) Eur Biophys J, 28, pp. 533-551
Sitkoff, D., Sharp, K.A., Honig, B., Accurate calculation of hydration free energies using macroscopic solvent models (1994) J Phys Chem, 98, pp. 1978-1988
Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Furguson, D.M., Spellmeyer, D.C., Kollman, P.A., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (1995) J Am Chem Soc, 117, pp. 5179-5197
Nozaki, Y., Tanford, C., Examination of titration behavior (1967) Methods Enzymol, 11, pp. 715-734
Tanokura, M., 1H-NMR study on the tautomerism of the imidazole ring of histidine residues. I. Microscopic pK values and molar ratios of tautomers in histidine-containing peptides (1983) Biochim Biophys Acta, 742, pp. 576-1558
Beroza, P., Fredkin, D.R., Okamura, M.Y., Feher, G., Protonation of interacting residues in a protein by a Monte Carlo method: Application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides (1991) Proc Natl Acad Sci USA, 88, pp. 5804-5808
Van Der Spoel, D., Berendsen, H.J.C., Van Buuren, A.R., Apol, M.E.F., Meulenhoff, P.J., Sijbers, A., (1995) Gromacs User Manual, , Biomos BV, Niienborgh 4, 9747 AG Groningen, The Netherlands
Van Gunsteren, W.F., Berendsen, H.J.C., (1987) Gromos87 Manual, , Biomos BV, Niienborgh 4, 9747 AG Groningen, The Netherlands
Van Buuren, A.R., Marrink, S.J., Berendsen, H.J.C., A molecular dynamics study of the decane/water interface (1993) J Phys Chem, 97, pp. 9206-9212
Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.T., Hermans, J., Interaction models for water in relation to proteins hydration (1981) Intermolecular Forces, pp. 331-342. , Pullman BD, editor. Dordrecht: Reidel Publishing Company
Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M., LINCS: A linear constraint solver for molecular simulations (1997) J Comp Chem, 18, pp. 1463-1472
Darden, T., York, D., Pedersen, L., Particle mesh Ewald: An N×log(N) method for Ewald sums in large systems (1993) J Chem Phys, 98, pp. 10089-10092
Darden, T., Perera, L., Li, L., Pedersen, L., New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm and its use in nucleic acid simulations (1999) Structure, 7, pp. R55-R60
Georgescu, R.E., Alexov, E.G., Gunner, M.R., Combining conformational flexibility and continuum electrostatics for calculating pKαs in proteins (2002) Biophysical J, 83, pp. 1731-1748
Kim, J., Mao, J., Gunner, M.R., Are acidic and basic groups in buried proteins predicted to be ionized? (2005) J Mol Biol, 348, pp. 1283-1298
Van Vlijmen, H.W., Schaefer, M., Karplus, M., Improving the accuracy of protein pKα calculations: Conformational averaging versus the average structure (1998) Proteins, 33, pp. 145-158
You, T.J., Bashford, D., Conformation and hydrogen ion titration of proteins: A continuum electrostatic model with conformational flexibility (1995) Biophys J, 69, pp. 1721-1733
Koumanov, A., Karshikoff, A., Friis, E.P., Borchert, T.V., Conformational averaging in pK calculations: Improvement and limitations in prediction of ionization properties of proteins (2001) J Phys Chem B, 105, pp. 9339-9344
Antosiewicz, J., McCammon, J.A., Gilson, M.K., The determinants of pKαs in proteins (1996) Biochemistry, 35, pp. 7819-7833
Ullmann, G.M., Noodelmann, L., Case, D.A., Density functional calculation of pKα values and redox potentials in the bovine Rieske iron-sulfur protein (2002) J Biol Inorg Chem, 7, pp. 632-639
Ironside, J.W., Prion diseases in man (1998) J Pathol, 186, pp. 227-234
Zuegg, J., Gready, J.E., Molecular dynamics simulations of human prion protein: Importance of correct treatment of electrostatic interactions (1999) Biochemistry, 38, pp. 13862-13876
El-Bastawissy, E., Knaggs, M.H., Gilbert, I.H., Molecular dynamics simulations of wild-type and point mutation human prion protein at normal and elevated temperature (2001) J Mol Graphics, 20, pp. 145-154
Gsponer, J., Ferrara, P., Caflisch, A., Flexibility of the murine prion protein and its Asp178Asn mutant investigated by molecular dynamics simulations (2001) J Mol Graphics, 20, pp. 169-182
Cervenakova, L., Buetefisch, C., Taller, I., Lee, H.-S., Stone, G., Gibbs, C.J.J., Brown, P., Novel PRNP sequence variant associated with familial encephalopathy (1999) Am J Med Genet, 88, pp. 653-656
Wlodek, S.T., Antosiewicz, J., McCammon, J.A., Prediction of titration properties of structures of a protein derived from molecular dynamics trajectories (1997) Protein Sci, 6, pp. 373-382
Griffith, J. S., Self-replication and scrapie (1967) Nature, 215, pp. 1043-104
Prusiner, S. B., Molecular biology of prion diseases (1991) Science, 252, pp. 1515-1522
Prusiner, S. B., McKinley, M. P., Bowman, K. A., Bolton, D. C., Bendheim, P. E., Groth, D. F., Glenner, G. G., Scrapie prions aggregate to form amyloid-like birefringent rods (1983) Cell, 35, pp. 349-358
Donne, D. G., Viles, J. H., Groth, D., Mehlhorn, I., James, T. L., Cohen, F. E., Prusiner, S. B., Structure of the recombinant full-length hamster prion protein PrP (29-231): The N terminus is highly flexible (1997) Proc Natl Acad Sci USA, 94, pp. 13452-13457
Knaus, K. J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W., Yee, V. C., Crystal structure of the human prion protein reveals a mechanism for oligomerization (2001) Nat Struct Biol, 8, pp. 770-774
Haire, L. F., Whyte, S. M., Vasisht, N., Gill, A. C., Verma, C., Dodson, E. J., Dodson, G. G., The crystal structure of the globular domain of sheep prion protein (2004) J Mol Biol, 336, pp. 1175-1183
Pan, K. M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Huang, Z., Conversion of -helixes into -sheets features in the formation of the scrapie prion proteins (1993) Proc Natl Acad Sci USA, 90, pp. 10962-10966
Leffers, K. W., Schell, J., Jansen, K., Lucassen, R., Kaimann, T., Nagel-Steger, L., Tatzelt, J., The structural transition of the prion protein into its pathogenic conformation is induced by unmasking hydrophobic sites (2004) J Mol Biol, 344, pp. 839-853
Armen, R. S., DeMarco, M. L., Alonso, D. O., Daggett, V., Pauling and Corey's -pleated sheet structure may define the prefibrillar amyloidogenic intermediate in amyloid disease (2004) Proc Natl Acad Sci USA, 101, pp. 11622-11627
Kelly, J. W., The environmental dependency of protein folding best explains prion and amyloid diseases (1998) Proc Natl Acad Sci USA, 95, pp. 930-932
Jackson, G. S., Hill, A. F., Joseph, C., Hosszu, L., Power, A., Waltho, J. P., Clarke, A. R., Multiple folding pathways for heterologously expressed human prion protein (1999) Biochim Biophys Acta, 1431, pp. 1-13
Alonso, D. O. V., DeArmond, S. J., Cohen, F. E., Daggett, V., Mapping the early steps in the pH-induced conformational conversion of the prion protein (2001) Proc Natl Acad Sci USA, 98, pp. 2985-2989
Alonso, D. O. V., An, C., Daggett, V., Simulations of biomolecules: Characterization of the early steps in the pH-induced conformational conversion of the hamster, bovine and human forms of the prion protein (2002) Philos Trans R Soc Lond A, 360, pp. 1165-1178
Pauly, P. C., Harris, D. A., Copper stimulates endocytosis of the prion protein (1998) J Biol Chem, 273, pp. 33107-33110
Hornshaw, M. P., McDermott, J. R., Candy, J. M., Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein (1995) Biochem Biophys Res Commun, 207, pp. 621-629
St ckel, J., Safar, J., Wallace, A. C., Cohen, F. E., Pnisiner, S. B., Prion protein selectively binds copper (II) ions (1998) Biochemistry, 37, pp. 7185-7193
Cereghetti, G. M., Schweiger, A., Glockshuber, R., Van Doorslaer, S., Stability and Cu (II) binding of prion protein variants related to inherited human prion diseases (2003) Biophys J, 84, pp. 1985-1997
Cereghetti, M. G., Schweiger, A., Glockshuber, R., Van Doorslaer, S., Electron paramagnetic resonance evidence for binding of Cu2+ to the C-terminal domain of the murine prion protein (2001) Biophys J, 81, pp. 516-525
Ullmann, G. M., Knapp, E. -W., Electrostatic models for computing protonation and redox equilibria in proteins (1999) Eur Biophys J, 28, pp. 533-551
Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz Jr., K. M., Furguson, D. M., Spellmeyer, D. C., Kollman, P. A., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (1995) J Am Chem Soc, 117, pp. 5179-5197
Van Gunsteren, W. F., Berendsen, H. J. C., (1987) Gromos87 Manual, , Biomos BV, Niienborgh 4, 9747 AG Groningen, The Netherlands
Van Buuren, A. R., Marrink, S. J., Berendsen, H. J. C., A molecular dynamics study of the decane/water interface (1993) J Phys Chem, 97, pp. 9206-9212
Georgescu, R. E., Alexov, E. G., Gunner, M. R., Combining conformational flexibility and continuum electrostatics for calculating pK s in proteins (2002) Biophysical J, 83, pp. 1731-1748
Van Vlijmen, H. W., Schaefer, M., Karplus, M., Improving the accuracy of protein pK calculations: Conformational averaging versus the average structure (1998) Proteins, 33, pp. 145-158
You, T. J., Bashford, D., Conformation and hydrogen ion titration of proteins: A continuum electrostatic model with conformational flexibility (1995) Biophys J, 69, pp. 1721-1733
Ullmann, G. M., Noodelmann, L., Case, D. A., Density functional calculation of pK values and redox potentials in the bovine Rieske iron-sulfur protein (2002) J Biol Inorg Chem, 7, pp. 632-639
Ironside, J. W., Prion diseases in man (1998) J Pathol, 186, pp. 227-234
Wlodek, S. T., Antosiewicz, J., McCammon, J. A., Prediction of titration properties of structures of a protein derived from molecular dynamics trajectories (1997) Protein Sci, 6, pp. 373-382
Assessing the acid-base and conformational properties of histidine residues in human prion protein (125-228) by means of pKα calculations and molecular dynamics simulations
Assessing the acid-base and conformational properties of histidine residues in human prion protein (125-228) by means of pKα calculations and molecular dynamics simulations
Assessing the acid-base and conformational properties of histidine residues in human prion protein (125-228) by means of pKα calculations and molecular dynamics simulations