Essential roles for Fe65, Alzheimer amyloid precursor-binding protein, in the cellular response to DNA damage(506 views) Minopoli G, Stante M, Napolitano F, Telese F, Aloia L, De Felice M, Di Lauro R, Pacelli R, Brunetti A, Zambrano N, Russo T
CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy
Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
BioGeM Scarl-CEINGE, 80145 Napoli, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Università di Napoli Federico II, 80131 Napoli, Italy
SEMM, European School of Molecular Medicine, Italy
University Campus Bio-Medico, Rome, Italy
Italian National Research Center on Aging, Cosenza, Italy
Federico II University School of Medicine, Naples, Italy
Viale della Resistenza Pal. Alfa Scala H, I-87036 Rende (CS), Italy
Department of Clinical Science and Bioimaging, Section of Radiology, University of Chieti, via dei Vestini, Chieti 66013, Italy
Department of Bioimaging and Radiological Sciences, Catholic University of Rome, Italy
References: Russo, T., Faraonio, R., Minopoli, G., De Candia, P., De Renzis, S., Zambrano, N., (1998) FEBS Lett, 434, pp. 1-
Fiore, F., Zambrano, N., Minopoli, G., Donini, V., Duilio, A., Russo, T., (1995) J. Biol. Chem, 270, pp. 30853-30856
Guenette, S.Y., Chen, J., Jondro, P.D., Tanzi, R.E., (1996) Proc. Natl. Acad. Sci. U. S. A, 93, pp. 10832-10837
Duilio, A., Faraonio, R., Minopoli, G., Zambrano, N., Russo, T., (1998) Biochem. J, 330, pp. 513-519
Kinoshita, A., Whelan, C.M., Smith, C.J., Mikhailenko, I., Rebeck, G.W., Strickland, D.K., Hyman, B.T., (2001) J. Neurosci, 21, pp. 8354-8361
Hoe, H.S., Magill, L.A., Guenette, S., Fu, Z., Vicini, S., Rebeck, G.W., (2006) J. Biol. Chem, 281, pp. 24521-24530
Pietrzik, C.U., Yoon, I.S., Jaeger, S., Busse, T., Weggen, S., Koo, E.H., (2004) J. Neurosci, 24, pp. 4259-4265
Cao, X., Sudhof, T.C., (2001) Science, 293, pp. 115-120
Ermekova, K.S., Zambrano, N., Linn, H., Minopoli, G., Gertler, F., Russo, T., Sudol, M., (1997) J. Biol. Chem, 272, pp. 32869-32877
Zambrano, N., Bruni, P., Minopoli, G., Mosca, R., Molino, D., Russo, C., Schettini, G., Russo, T., (2001) J. Biol. Chem, 276, pp. 19787-19792
Telese, F., Bruni, P., Donizetti, A., Gianni, D., D'Ambrosio, C., Scaloni, A., Zambrano, N., Russo, T., (2005) EMBO Rep, 6, pp. 77-82
Sabo, S.L., Ikin, A.F., Buxbaum, J.D., Greengard, P., (2001) J. Cell Biol, 153, pp. 1403-1414
Kimberly, W.T., Zheng, J.B., Guenette, S.Y., Selkoe, D.J., (2001) J. Biol. Chem, 276, pp. 40288-40292
Gao, Y., Pimplikar, S.W., (2001) Proc. Natl. Acad. Sci. U. S. A, 98, pp. 14979-14984
Scheinfeld, M.H., Ghersi, E., Laky, K., Fowlkes, B.J., D'Adamio, L., (2002) J. Biol. Chem, 277, pp. 44195-44201
Guenette, S. Y., Chen, J., Jondro, P. D., Tanzi, R. E., (1996) Proc. Natl. Acad. Sci. U. S. A, 93, pp. 10832-10837
Hoe, H. S., Magill, L. A., Guenette, S., Fu, Z., Vicini, S., Rebeck, G. W., (2006) J. Biol. Chem, 281, pp. 24521-24530
Pietrzik, C. U., Yoon, I. S., Jaeger, S., Busse, T., Weggen, S., Koo, E. H., (2004) J. Neurosci, 24, pp. 4259-4265
Ermekova, K. S., Zambrano, N., Linn, H., Minopoli, G., Gertler, F., Russo, T., Sudol, M., (1997) J. Biol. Chem, 272, pp. 32869-32877
Sabo, S. L., Ikin, A. F., Buxbaum, J. D., Greengard, P., (2001) J. Cell Biol, 153, pp. 1403-1414
Kimberly, W. T., Zheng, J. B., Guenette, S. Y., Selkoe, D. J., (2001) J. Biol. Chem, 276, pp. 40288-40292
Scheinfeld, M. H., Ghersi, E., Laky, K., Fowlkes, B. J., D'Adamio, L., (2002) J. Biol. Chem, 277, pp. 44195-44201
Baek, S. H., Ohgi, K. A., Rose, D. W., Koo, E. H., Glass, C. K., Rosenfeld, M. G., (2002) Cell, 110, pp. 55-67
Walsh, D. M., Selkoe, D. J., (2004) Neuron, 44, pp. 181-193
King, G. D., Scott Turner, R., (2004) Exp. Neurol, 185, pp. 208-219
Holway, A. H., Kim, S. H., La Volpe, A., Michael, W. M., (2006) J. Cell Biol, 172, pp. 999-1008
Rolig, R. L., McKinnon, P. J., (2000) Trends Neurosci, 23, pp. 417-424
Parshad, R. P., Sanford, K. K., Price, F. M., Melnick, L. K., Nee, L. E., Schapiro, M. B., Tarone, R. E., Robbins, J. H., (1996) Proc. Natl. Acad. Sci. U. S. A, 93, pp. 5146-5150
Reddy, P. H., (2006) J. Neurochem, 96, pp. 1-13
Kruman, I. I., Wersto, R. P., Cardozo-Pelaez, F., Smilenov, L., Chan, S. L., Chrest, F. J., Emokpae, R., Mattson, M. P., (2004) Neuron, 41, pp. 540-561
Iezzi, R., Cotroneo, A.R., Filippone, A., Multidetector CT in abdominal aortic aneurysm treated with endovascular repair: Are unenhanced and delayed phase enhanced images effective for endoleak detection? (2006) Radiology, 241 (3), pp. 915-92
Golzarian, J., Dussaussois, L., Abada, H.T., Helical CT of aorta after endoluminal stent-graft therapy: Value of biphasic acquisition (1998) AJR Am J Roentgenol, 171 (2), pp. 329-331
Golzarian, J., Valenti, D., Endoleakage after endovascular treatment of abdominal aortic aneurysms: Diagnosis, significance and treatment (2006) Eur Radiol, 16 (12), pp. 2849-2857
Wintersperger, B., Jakobs, T., Herzog, P., Aorto-iliac multidetector-row CT angiography with low kV settings: Improved vessel enhancement and simultaneous reduction of radiation dose (2005) Eur Radiol, 15 (2), pp. 334-341
Essential roles for Fe65, Alzheimer amyloid precursor-binding protein, in the cellular response to DNA damage
Fe65 interacts with the cytosolic domain of the Alzheimer amyloid precursor protein (APP). The functions of the Fe65 are still unknown. To address this point we generated Fe65 knockout (KO) mice. These mice do not show any obvious phenotype; however, when fibroblasts (mouse embryonic fibroblasts), isolated from Fe65 KO embryos, were exposed to low doses of DNA damaging agents, such as etoposide or H2O2, an increased sensitivity to genotoxic stress, compared with wild type animals, clearly emerged. Accordingly, brain extracts from Fe65 KO mice, exposed to non-lethal doses of ionizing radiations, showed high levels of gamma-H2AX and p53, thus demonstrating a higher sensitivity to X-rays than wild type mice. Nuclear Fe65 is necessary to rescue the observed phenotype, and few minutes after the exposure of MEFs to DNA damaging agents, Fe65 undergoes phosphorylation in the nucleus. With a similar timing, the proteolytic processing of APP is rapidly affected by the genotoxic stress: in fact, the cleavage of the APP COOH-terminal fragments by gamma-secretase is induced soon after the exposure of cells to etoposide, in a Fe65-dependent manner. These results demonstrate that Fe65 plays an essential role in the response of the cells to DNA damage.
Essential roles for Fe65, Alzheimer amyloid precursor-binding protein, in the cellular response to DNA damage