High resolution crystal structure of deoxy hemoglobin from Trematomus bernacchii at different pH values: The role of histidine residues in modulating the strength of the root effect
High resolution crystal structure of deoxy hemoglobin from Trematomus bernacchii at different pH values: The role of histidine residues in modulating the strength of the root effect(389 views) Mazzarella L, Vergara A, Vitagliano L, Merlino A, Bonomi G, Scala S, Verde C, Di Prisco G
Proteins (ISSN: 0887-3585, 1097-0134, 1097-0134electronic), 2006 Nov 1; 65(2): 490-498.
Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia, I-80126 Naples, Italy
Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 6, I-80134 Naples, Italy
Istituto di Biochimica delle Proteine, CNR, via Pietro Castellino 111, I-80131 Naples, Italy
References: Yang, F., Phillips Jr., G.N., Crystal structures of CO-, deoxy- and Met-myoglobins at various pH values (1996) J Mol Biol, 256, pp. 762-77
Berisio, R., Lamzin, V.S., Sica, F., Wilson, K.S., Zagari, A., Mazzarella, L., Protein titration in the crystal state (1999) J Mol Biol, 292, pp. 845-854
Nar, H., Messerschmidt, A., Huber, R., Van De Kamp, M., Canters, G.W., Crystal structure analysis of oxidized Pseudomonas aeruginosa azurin at pH 5.5 and pH 9.0. A pH-induced conformational transition involves a peptide bond flip (1991) J Mol Biol, 221, pp. 765-772
Yokoyama, T., Chong, K.T., Miyazaki, G., Morimoto, H., Shih, D.T.B., Unzai, S., Tame, J.R.H., Park, S.-Y., Novel mechanisms of pH sensitivity in Tuna hemoglobin: A structural explanation of the Root effect (2004) J Biol Chem, 279, pp. 28632-28640
Perutz, M.F., Fermi, G., Luisi, B., Shaanan, B., Liddington, R.C., Stereochemistry of cooperative mechanisms in hemoglobin (1987) Acc Chem Res, 9, pp. 309-321
Bonaventura, C., Crumbliss, A.L., Weber, R.E., New insights into the proton-dependent oxygen affinity of Root effect haemoglobins (2004) Acta Phys Scand, 182, pp. 245-258
Brittain, T., The Root effect in hemoglobins (2005) J Inorg Biochem, 99, pp. 120-129
Weber, R.E., Fago, A., Functional adaptation and its molecular basis in vertebrate hemoglobins, neuroglobins, and cytoglobins (2004) Respir Physiol Neurobiol, 144, pp. 141-159
Pelster, B., Decker, H., The Root effect - A physiological perspective (2004) Micron, 35, pp. 73-74
Tame, J.R.H., Wilson, J.C., Weber, R.E., The crystal structure of Trout Hb I in the deoxy and carbomonoxy forms (1996) J Mol Biol, 259, pp. 249-760
Verde, C., Parisi, E., Di Prisco, G., The evolution of polar fish hemoglobin: A phylogenetic analysis of the ancestral amino acid residues linked to the Root effect (2003) J Mol Evol, 57 (SUPPL. 1), pp. S258-S267
Berenbrink, M., Koldkiaer, P., Kepp, O., Cossins, A.R., Evolution of oxygen secretion in fishes and the emergence of a complex physiological system (2005) Science, 307, pp. 1752-1757
Camardella, L., Caruso, C., D'Avino, R., Di Prisco, G., Rutigliano, B., Tamburrini, M., Fermi, G., Perutz, M.F., Hemoglobin of the Antarctic fish Pagothenia bernacchii. Amino acid sequence, oxygen equilibria and crystal structure of its carbonmonoxy derivative (1992) J Mol Biol, 224, pp. 449-460
Ito, N., Komiyama, N.H., Fermi, G., Structure of deoxyhemoglobin of the Antarctic fish Pagothenia bernacchii with an analysis of the structural basis of the Root effect by comparison of the liganded and unliganded hemoglobin structures (1995) J Mol Biol, 250, pp. 648-658
Mazzarella, L., Bonomi, G., Lubrano, M.C., Merlino, A., Vergara, A., Vitagliano, L., Verde, C., Di Prisco, G., Minimal structural requirement of Root effect: Crystal structure of the catodic hemoglobin isolated from Trematomus newnesi (2006) Proteins: Struct Funct Bioinformatics, 62, pp. 316-321
D'Avino, R., Caruso, C., Tamburrini, M., Romano, M., Rutigliano, B., Polverino De Laureto, P., Camardella, L., Di Prisco, G., Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi (1994) J Biol Chem, 269, pp. 9675-9681
Perutz, M.F., Preparation of haemoglobin crystals (1968) J Cryst Growth, 2, pp. 54-56
Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol, 276, pp. 307-326
Jones, T.A., Zou, J.Y., Cowan, S.W., Kjedgaard, M., Improved methods for binding protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr D: Biol Crystallogr, 56, pp. 714-721
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., The protein data bank (2000) Nucleic Acid Res, 28, pp. 235-242
Forsyth, R., Antosiewicz, J., Robertson, A., Empirical relationships between protein structure and carboxyl pKa values in proteins (2002) Proteins: Struct Funct Genet, 48, pp. 388-403
Brunger, A.T., (1996) X-PLOR Version 3.85, , New Haven, CT: Yale University Press
Gervasio, F.L., Procacci, P., Cardini, G., Guarna, A., Giolitti, A., Schettino, V., Interaction between aromatic residues. Molecular dynamics and ab initio exploration of the potential energy surface of the tryptophan-histidine pair (2000) J Phys Chem B, 104, pp. 1108-1114
Parkhurst, L.J., Goss, D.J., Perutz, M.F., Kinetic and equilibrium studies on the role of the b-147 histidine in the Root effect and cooperativity in carp hemoglobin (1983) Biochemistry, 22, pp. 5401-5409
Vitagliano, L., Bonomi, G., Riccio, A., Di Prisco, G., Smulevich, G., Mazzarella, L., The oxidation process of Antarctic fish hemoglobins (2004) Eur J Biochem, 271, pp. 1651-1659
Riccio, A., Vitagliano, L., Di Prisco, G., Zagari, A., Mazzarella, L., The crystal structure of a tetrameric hemoglobin in a partial hemichrome state (2002) Proc Natl Acad Sci USA, 99, pp. 9801-9806
Baldwin, J., Chothia, C., Hemoglobin: The structural changes related to ligand binding and its allosteric mechanism (1979) J Mol Biol, 129, pp. 175-220
Paoli, M., Liddington, R., Tame, J., Wilkinson, A., Dodson, G., Crystal structure of T state hemoglobin with oxygen bound at all four hemes (1996) J Mol Biol, 256, pp. 775-792
Srinivasan, R., Rose, D.G., The T-to-R transformation in hemoglobin: A reevaluation (1994) Proc Natl Acad Sci USA, 91, pp. 11113-11117
Harata, K., Muraki, M., Jigami, Y., Role of Arg115 in the catalytic action of human lysozyme. X ray structure of His115 and Glu115 mutants (1993) J Mol Biol, 233, pp. 524-535
Ackers, G.K., Deciphering the molecular code of hemoglobin allostery (1998) Adv Prot Chem, 51, pp. 185-253
Perutz, M. F., Fermi, G., Luisi, B., Shaanan, B., Liddington, R. C., Stereochemistry of cooperative mechanisms in hemoglobin (1987) Acc Chem Res, 9, pp. 309-321
Weber, R. E., Fago, A., Functional adaptation and its molecular basis in vertebrate hemoglobins, neuroglobins, and cytoglobins (2004) Respir Physiol Neurobiol, 144, pp. 141-159
Tame, J. R. H., Wilson, J. C., Weber, R. E., The crystal structure of Trout Hb I in the deoxy and carbomonoxy forms (1996) J Mol Biol, 259, pp. 249-760
Perutz, M. F., Preparation of haemoglobin crystals (1968) J Cryst Growth, 2, pp. 54-56
Jones, T. A., Zou, J. Y., Cowan, S. W., Kjedgaard, M., Improved methods for binding protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr D: Biol Crystallogr, 56, pp. 714-721
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E., The protein data bank (2000) Nucleic Acid Res, 28, pp. 235-242
Brunger, A. T., (1996) X-PLOR Version 3. 85, , New Haven, CT: Yale University Press
Gervasio, F. L., Procacci, P., Cardini, G., Guarna, A., Giolitti, A., Schettino, V., Interaction between aromatic residues. Molecular dynamics and ab initio exploration of the potential energy surface of the tryptophan-histidine pair (2000) J Phys Chem B, 104, pp. 1108-1114
Parkhurst, L. J., Goss, D. J., Perutz, M. F., Kinetic and equilibrium studies on the role of the b-147 histidine in the Root effect and cooperativity in carp hemoglobin (1983) Biochemistry, 22, pp. 5401-5409
Ackers, G. K., Deciphering the molecular code of hemoglobin allostery (1998) Adv Prot Chem, 51, pp. 185-253
High resolution crystal structure of deoxy hemoglobin from Trematomus bernacchii at different pH values: The role of histidine residues in modulating the strength of the root effect
The Root effect is a widespread property in fish hemoglobins (Hbs) that produces a drastic reduction of cooperativity and oxygen-binding ability at acidic pH. Here, we report the high-resolution structure of the deoxy form of Hb isolated from the Antarctic fish Trematomus bernacchii (HbTb) crystallized at pH 6.2 and 8.4. The structure at acidic pH has been previously determined at a moderate resolution (Ito et al., J Mol Biol 1995;250:648-658). Our results provide a clear picture of the events occurring upon the pH increase from 6.2 to 8.4, observed within a practically unchanged crystal environment. In particular, at pH 8.4, the interaspartic hydrogen bond at the alpha(1)beta(2) interface is partially broken, suggesting a pK(a) close to 8.4 for Asp95 alpha. In addition, a detailed survey of the histidine modifications, caused by the change in pH, also indicates that at least three hot regions of the molecule are modified (E beta helix, C beta-tail, CD alpha corner) and can be considered to be involved at various levels in the release of the Root protons. Most importantly, at the CD alpha corner, the break of the salt bridge Asp48 alpha-His55 alpha allows us to describe a detailed mechanism that transmits the modification from the CD alpha corner far to the a heme. More generally, the results shed light on the role played by the histidine residues in modulating the strength of the Root effect and also support the emerging idea that the structural determinants, at least for a part of the Root effect, are specific of each Hb endowed with this property.
High resolution crystal structure of deoxy hemoglobin from Trematomus bernacchii at different pH values: The role of histidine residues in modulating the strength of the root effect
High resolution crystal structure of deoxy hemoglobin from Trematomus bernacchii at different pH values: The role of histidine residues in modulating the strength of the root effect
Cusanno F, Cisbani E, Colilli S, Fratoni R, Garibaldi F, Giuliani F, Gricia M, Lucentini M, Magliozzi ML, Santarivenere F, Torrioli S, Cinti MN, Pani R, Pellegrini R, Simonetti G, Schillaci O, Del Vecchio S, Salvatore M, Majewski S, De Vincentis G, Scopinaro F * Results of clinical trials with SPEM(278 views) Nucl Instrum Methods Phys Res Sect A, 2007 Feb 1; 497(1): 46-50. Impact Factor:3.221 ViewExport to BibTeXExport to EndNote