A new spot test for sulfhydryl-containing compounds(450 views) Cappiello M, Alterio V, Amodeo P, Del Corso A, Scaloni A, Pedone C, Moschini R, De Donatis GM, De Simone G, Mura U
Institute of Biological Chemistry University of Roma, 00185 Roma, Italy
Department of Physiology and Biochemistry, University of Pisa, I-56126 Pisa, Italy
Institute of Biostructures and Bioimages, CNR, I-80134 Naples, Italy
Institute of Biomolecular Chemistry, CNR, Comprensorio Olivetti, I-80078 Pozzuoli (Naples), Italy
Proteomics and Mass Spectrometry Laboratory, ISPAAM, CNR, I-80147 Naples, Italy
References: Stadtman, (1957) Methods in Enzymology, 3, pp. 938-944. , S.P. Colowick, N.O. Kaplan, Academic Press, New Yor
Shinohara, (1935) J. Biol. Chem, 109, pp. 665-670
Grassetti, Murray, Jr., The use of 2,2′-dithiobis-(5-nitropyridine) as a selective reagent for the detection of thiols (1969) Journal of Chromatography A, 41, pp. 121-123
Glaser, Maeda, Meienhofer, (1970) J. Chromatgr, 50, pp. 151-153
Burt, Ridge, Rydon, 4,4′-Bis(dimethylamino)diphenylcarbinol, a sensitive spray reagent for the detection of thiols and carboxylic acids (1975) Journal of Chromatography A, 118, pp. 240-241
Friedman, (1973) The chemistry and Biochemistry of the Sulphydryl Group in Amino Acids, Peptides and Proteins, pp. 275-310. , Pergamon Press, Oxford
Massey, (1959) Biochem. Biophys. Acta, 34, pp. 255-256
Rajagopalan, Handler, (1962) Biochem. Biophys. Res. Commun, 8, pp. 43-47
Taylor, A., Aminopeptidases: Structure and function (1993) FASEB J., 7, pp. 290-29
Umezawa, H., Screening of small molecular microbial products modulating immune responses and bestatin (1980) Recent Results Cancer Res., 75, pp. 115-125
Taylor, A., Daims, M., Lee, J., Surgenor, T., Identification and quantification of leucine aminopeptidase in aged normal and cataractous human lenses and ability of bovine lens LAP to cleave bovine crystalline (1982) Curr. Eye Res., 2, pp. 47-56
Pulido-Cejudo, G., Conway, B., Proulx, P., Brown, R., Izaguirre, C. A., Bestatin-mediated inhibition of leucine aminopeptidase may hinder HIV infection (1997) Antiviral Res., 36, pp. 167-177
Carpenter, F. H., Vahl, J. M., Leucine aminopeptidase (bovine lens). Mechanism of activation by Mg 2+ and Mn2+ of the zinc metalloenzyme, amino acid composition, and sulfhydryl content (1973) J. Biol. Chem., 248, pp. 294-304
Thompson, G. A., Carpenter, F. H., Leucine aminopeptidase (bovine lens). The relative binding of cobalt and zinc to leucine aminopeptidase and the effect of cobalt substitution on specific activity (1976) J. Biol. Chem., 251, pp. 1618-1624
Allen, M. P., Yamada, A. H., Carpenter, F. H., Kinetic parameters of metal-substituted leucine aminopeptidase from bovine lens (1983) Biochemistry, 22, pp. 3778-3783
Str ter, N., Lipscomb, W. N., Two-metal ion mechanism of bovine lens leucine aminopeptidase: Active site solvent structure and binding mode of L-Leucinal, a gem-diolate transition state analog, by X-ray crystallography (1995) Biochemistry, 34, pp. 14792-14800
Kim, H., Lipscomb, W. N., X-ray crystallographic determination of the structure of bovine lens leucine aminopeptidase complexed with amastatin: Formulation of a catalytic mechanism featuring a gem-diolate transition state (1993) Biochemistry, 32, pp. 8465-8478
Burley, S. K., David, P. R., Sweet, R. M., Taylor, A., Lipscomb, W. N., Structure determination and refinement of bovine lens leucine aminopeptidase and its complex with bestatin (1992) J. Mol. Biol., 224, pp. 113-140
Ocain, T. D., Rich, D. H., L-Lysinethiol: A subnanomolar inhibitor of aminopeptidase B (1987) Biochem. Biophys. Res. Commun., 145, pp. 1038-1042
Chan, W. W. -C., L-Leucinthiol. A potent inhibitor of leucine aminopeptidase (1983) Biochem. Biophys. Res. Commun., 116, pp. 297-302
Gordon, E. M., Godfrey, J. D., Delaney, N. G., Asaad, M. M., Von Langen, D., Cushman, D. W., Design of novel inhibitors of aminopeptidases. Synthesis of peptide-derived diamino thiols and sulfur replacement analogs of bestatin (1988) J. Med. Chem., 31, pp. 2199-2211
Beattie, R. E., Elmore, D. T., Williams, C. H., Guthrie, D. J., The behavior of leucine aminopeptidase towards thionopeptides (1987) Biochem. J., 245, pp. 285-288
Cappiello, M., Lazzaretti, A., Buono, F., Scaloni, A., D'Ambrosio, C., Amodeo, P., Mendez, B. L., Mura, U., New role for leucyl aminopeptidase in glutathione turnover (2004) Biochem. J., 378, pp. 35-44
Josch, C., Klotz, L. O., Sies, H., Identification of cytosolic leucyl aminopeptidase (EC 3. 4. 11. 1) as the major cysteinylglycine-hydrolyzing activity in rat liver (2003) Biol. Chem., 384, pp. 213-218
Hanson, H., Frohne, M., Crystalline leucine aminopeptidase from lens (-aminoacyl-peptide hydrolase
Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
Dixon, M., Webb, E. C., Enzyme inhibition and activation (1979) Enzymes, 3rd Ed., pp. 332-467. , Longman, London
Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., 276, pp. 307-326
Br nger, A. T., Adams, P. D., Clore, G. M., De Lano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Warren, G. L., Crystallography and NMR System: A new software suite for macromolecular structure determination (1998) Acta Crystallogr., D54, pp. 905-921
Jones, T. A., Zou, J. Y., Cowan, S. W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr., A47, pp. 110-119
Engh, R. A., Huber, R., Accurate bond and angle parameters for X-ray protein structure refinement (1991) Acta Crystallogr., A47, pp. 392-400
Laskowski, R. A., MacArthur, M. W., Moss, D. S., Thornton, J. M., PROCHECK: A program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallogr., 26, pp. 283-291
Case, D. A., Pearlman, D. A., Caldwell, J. W., Cheatham III, T. E., Ross, W. S., Simmerling, C. L., Darden, T. A., Kollman, P. A., (1999) AMBER 6. 0, , University of California, San Francisco
Weiser, J., Shenkin, P. S., Still, W. C., Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO) (1999) J. Comput. Chem., 20, pp. 217-230
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., Klein, M. L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79, pp. 926-935
Park, H., Merz Jr., K. M., Force field design and molecular dynamics simulations of the carbapenem- and cephamycin-resistant dinuclear zinc metallo- -lactamase from Bacteroides fragilis and its complex with a biphenyl tetrazole inhibitor (2005) J. Med. Chem., 48, pp. 1630-1637
Toba, S., Colombo, G., Merz Jr., K. M., Solvent dynamics and mechanism of proton transfer in human carbonic anhydrase II (1999) J. Am. Chem. Soc., 121, pp. 2290-2302
Stole, R. H., Karplus, M., Zinc binding in proteins and solution: A simple but accurate nonbonded representation (1995) Proteins, 23, pp. 12-31
York, D. M., Darden, T. A., Pedersen, L. G., The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods (1993) J. Chem. Phys., 99, pp. 8345-8348
Koradi, R., Billeter, M., W thrich, K., MOLMOL: A program for display and analysis of macromolecular structures (1996) J. Mol. Graphics, 14, pp. 51-55
Borghi, C., Bacchelli, S., Degli Esposti, D., Ambrosioni, E. A., A review of the angiotensm-converting enzyme inhibitor, zofenopril, in the treatment of cardiovascular diseases (2004) Expert Opin. Pharmacother., 5, pp. 1965-1977
Lowther, W. T., Matthews, B. W., Metalloaminopeptidases: Common functional themes in disparate structural surroundings (2002) Chem. Rev., 102, pp. 4581-4607
Li, J. -Y., Chen, L. -L., Cui, Y. -M., Luo, Q. -I., Li, J., Nan, F. -J., Ye, Q. -Z., Specificity for inhibitors of metal-substituted methionine aminopeptidase (2003) Biochem. Biophys. Res. Commun., 307, pp. 172-179
Kishishita, S., Okajima, T., Kim, M., Yamaguchi, H., Hirota, S., Suzuki, S., Kuroda, S., Mure, M., Role of copper ion in bacterial copper amine oxidase: Spectroscopic and crystallographic studies of metal-substituted enzymes (2003) J. Am. Chem. Soc., 125, pp. 1041-1055
Holland, D. R., Hausrath, A. C., Juers, D., Matthews, B. W., Structural analysis of zinc substitutions in the active site of thermolysin (1995) Protein Sci., 4, pp. 1955-1965
Aalbers, T. G., Houtman, J. P., Makkink, B., Trace-element concentrations in human autopsy tissue (1987) Clin. Chem., 33, pp. 2057-2064
Rasi, V., Costantini, S., Moramarco, A., Giordano, R., Giustolisi, R., Gabrieli, C. B., Inorganic element concentrations in cataractous human lenses (1992) Ann. Ophthalmol., 24, pp. 459-464
Stanojevic-Paovic, A., Hristic, V., Cuperlovic, M., Jovanovic, S., Krsmanovic, J., Macro- and microelements in the cataractous eye lens (1987) Ophthalmic Res., 19, pp. 230-234
Srivastava, V. K., Varshney, N., Pandey, D. C., Role of trace elements in senile cataract (1992) Acta Ophthalmol. Scand., 70, pp. 839-841
eki, O., Bardak, Y., Totan, Y., Kavakli, S., Akyol, ., zdemir, ., Karel, F., Nickel, chromium, manganese, iron and aluminum levels in human cataractous and normal lenses (1999) Ophthalmic Res., 31, pp. 332-336
Enoiu, M., Aberkane, H., Salazar, J. F., Leroy, P., Groffen, J., Siest, G., Wellman, M., Evidence for the pro-oxidant effect of -glutamyltranspeptidase- related enzyme (2000) Free Radical Biol. Med., 29, pp. 825-833
Dominici, S., Valentini, M., Mallearo, E., Del Bello, B., Paolicchi, A., Lorenzini, E., Tongiani, R., Pompella, A., Redox modulation of cell surface protein thiols in U937 lymphoma cells: The role of -glutamyl transpeptidase-dependent H2O2 production and S-thiolation (1999) Free Radical Biol. Med., 27, pp. 623-635
Lou, M. F., Redox regulation in the lens (2003) Prog. Retinal Eye Res., 22, pp. 657-682
Badiou, S., Bellet, H., Lehmann, S., Cristol, J. -P., Jaber, S., Elevated plasma cysteinylglycine levels caused by cilastatin-associated antibiotic treatment (2005) Clin. Chem. Lab. Med., 43, pp. 332-334
Carpenter, F.H., Vahl, J.M., Leucine aminopeptidase (bovine lens). Mechanism of activation by Mg 2+ and Mn2+ of the zinc metalloenzyme, amino acid composition, and sulfhydryl content (1973) J. Biol. Chem., 248, pp. 294-304
Thompson, G.A., Carpenter, F.H., Leucine aminopeptidase (bovine lens). The relative binding of cobalt and zinc to leucine aminopeptidase and the effect of cobalt substitution on specific activity (1976) J. Biol. Chem., 251, pp. 1618-1624
Allen, M.P., Yamada, A.H., Carpenter, F.H., Kinetic parameters of metal-substituted leucine aminopeptidase from bovine lens (1983) Biochemistry, 22, pp. 3778-3783
Sträter, N., Lipscomb, W.N., Two-metal ion mechanism of bovine lens leucine aminopeptidase: Active site solvent structure and binding mode of L-Leucinal, a gem-diolate transition state analog, by X-ray crystallography (1995) Biochemistry, 34, pp. 14792-14800
Burley, S.K., David, P.R., Sweet, R.M., Taylor, A., Lipscomb, W.N., Structure determination and refinement of bovine lens leucine aminopeptidase and its complex with bestatin (1992) J. Mol. Biol., 224, pp. 113-140
Ocain, T.D., Rich, D.H., L-Lysinethiol: A subnanomolar inhibitor of aminopeptidase B (1987) Biochem. Biophys. Res. Commun., 145, pp. 1038-1042
Chan, W.W.-C., L-Leucinthiol. A potent inhibitor of leucine aminopeptidase (1983) Biochem. Biophys. Res. Commun., 116, pp. 297-302
Gordon, E.M., Godfrey, J.D., Delaney, N.G., Asaad, M.M., Von Langen, D., Cushman, D.W., Design of novel inhibitors of aminopeptidases. Synthesis of peptide-derived diamino thiols and sulfur replacement analogs of bestatin (1988) J. Med. Chem., 31, pp. 2199-2211
Beattie, R.E., Elmore, D.T., Williams, C.H., Guthrie, D.J., The behavior of leucine aminopeptidase towards thionopeptides (1987) Biochem. J., 245, pp. 285-288
EC 3.4.11.1) (1976) Methods Enzymol., 45, pp. 504-520
Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
Brünger, A.T., Adams, P.D., Clore, G.M., De Lano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Warren, G.L., Crystallography and NMR System: A new software suite for macromolecular structure determination (1998) Acta Crystallogr., D54, pp. 905-921
Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr., A47, pp. 110-119
Engh, R.A., Huber, R., Accurate bond and angle parameters for X-ray protein structure refinement (1991) Acta Crystallogr., A47, pp. 392-400
Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., PROCHECK: A program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallogr., 26, pp. 283-291
Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham III, T.E., Ross, W.S., Simmerling, C.L., Darden, T.A., Kollman, P.A., (1999) AMBER 6.0, , University of California, San Francisco
Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79, pp. 926-935
Stole, R.H., Karplus, M., Zinc binding in proteins and solution: A simple but accurate nonbonded representation (1995) Proteins, 23, pp. 12-31
York, D.M., Darden, T.A., Pedersen, L.G., The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods (1993) J. Chem. Phys., 99, pp. 8345-8348
Lowther, W.T., Matthews, B.W., Metalloaminopeptidases: Common functional themes in disparate structural surroundings (2002) Chem. Rev., 102, pp. 4581-4607
Li, J.-Y., Chen, L.-L., Cui, Y.-M., Luo, Q.-I., Li, J., Nan, F.-J., Ye, Q.-Z., Specificity for inhibitors of metal-substituted methionine aminopeptidase (2003) Biochem. Biophys. Res. Commun., 307, pp. 172-179
Holland, D.R., Hausrath, A.C., Juers, D., Matthews, B.W., Structural analysis of zinc substitutions in the active site of thermolysin (1995) Protein Sci., 4, pp. 1955-1965
Aalbers, T.G., Houtman, J.P., Makkink, B., Trace-element concentrations in human autopsy tissue (1987) Clin. Chem., 33, pp. 2057-2064
Srivastava, V.K., Varshney, N., Pandey, D.C., Role of trace elements in senile cataract (1992) Acta Ophthalmol. Scand., 70, pp. 839-841
Çekiç, O., Bardak, Y., Totan, Y., Kavakli, S., Akyol, Ö., Özdemir, Ö., Karel, F., Nickel, chromium, manganese, iron and aluminum levels in human cataractous and normal lenses (1999) Ophthalmic Res., 31, pp. 332-336
Lou, M.F., Redox regulation in the lens (2003) Prog. Retinal Eye Res., 22, pp. 657-682
A new spot test for sulfhydryl-containing compounds
Bovine lens leucyl aminopeptidase (blLAP), a homohexameric metallopeptidase preferring bulky and hydrophobic amino acids at the N-terminus of (di) peptides, contains two Zn2+ ions per subunit that are essential for catalytic activity. They may be replaced by other divalent cations with different exchange kinetics. The protein readily exchangeable site (site 1) can be occupied by Zn2+, Mn2+, Mg2+, or Co2+, while the tight binding site (site 2) can be occupied by Zn2+ or Co 2+. We recently reported that introduction of Mn2+ into site 1 generates a novel activity of blLAP toward CysGly [Cappiello, M., et al. (2004) Biochem. J. 378, 35-44], which in contrast is not hydrolyzed by the (Zn/Zn) enzyme. This finding, while disclosing a potential specific role for blLAP in glutathione metabolism, raised a question about the features required for molecules to be a substrate for the enzyme. To clarify the interaction of the enzyme with sulfhydryl-containing derivatives, (Zn/Zn) - and (Mn/Zn) blLAP forms were prepared and functional-structural studies were undertaken. Thus, a kinetic analysis of various compounds with both enzyme forms was performed; the crystal structure of (Zn/Zn) blLAP in complex with the peptidomimetic derivative Zofenoprilat was determined, and a modeling study on the CysGly- (Zn/Zn) blLAP complex was carried out. This combined approach provided insight into the interaction of blLAP with sulfhydryl-containing derivatives, showing that the metal exchange in site 1 modulates binding to these molecules that may result in enzyme substrates or inhibitors, depending on the nature of the metal. 2006 American Chemical Society
A new spot test for sulfhydryl-containing compounds
No results.
A new spot test for sulfhydryl-containing compounds
Aloj L, Aurilio M, Rinaldi V, D'Ambrosio L, Tesauro D, Peitl PK, Maina T, Mansi R, Von Guggenberg E, Joosten L, Sosabowski JK, Breeman WA, De Blois E, Koelewijn S, Melis M, Waser B, Beetschen K, Reubi JC, De Jong M * The EEE project(449 views) Proc Int Cosm Ray Conf Icrc Universidad Nacional Autonoma De Mexico, 2007; 5(HEPART2): 977-980. Impact Factor:0 ViewExport to BibTeXExport to EndNote
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S * Fusion in Coq(479 views) Lecture Notes In Computer Science (ISSN: 0302-9743, 0302-974335404636319783540463634, 0302-974335402975459783540297543), 2001; 2178LNCS: 583-596. Impact Factor:0.415 ViewExport to BibTeXExport to EndNote