The first crystal structure of a thioacylenzyme intermediate in the ALDH family: New coenzyme conformation and relevance to catalysis(388 views) D'Ambrosio K, Pailot A, Talfournier F, Didierjean C, Benedetti E, Aubry A, Branlant G, Corbier C
Biochemistry (ISSN: 0006-2960, 1520-4995, 1520-4995electronic), 2006 Mar 7; 45(9): 2978-2986.
LCM3B, Groupe Biocristallographie, UMR 7036, 54506 Vandoeuvre Cedex, France
Istituto di Biostrutture e Bioimmagini, Dipartimento delle Scienze Biologica, Università degli Studi di Napoli Federico II, 80134 Napoli, Italy
MAEM, UMR 7567, Faculté des Sciences, 54506 Vandoeuvre Cedex, France
References: Segal, H.L., Boyer, P.D., The role of sulfhydryl groups in the activity of D-glyceraldehyde-3- phosphate dehydrogenase (1953) J. Biol. Chem., 204, pp. 265-28
Shone, C.C., Fromm, H.J., Steady-state and pre-steady-state kinetics of coenzyme A linked aldehyde dehydrogenase from Escherichia coli (1981) Biochemistry, 20, pp. 7494-7501
Söhling, B., Gottschalk, G., Purification and characterization of a coenzyme-A-dependent succinate-semialdehyde dehydrogenase from Clostridium kluyveri (1993) Eur. J. Biochem., 212, pp. 121-127
Marchal, S., Rahuel-Clermont, S., Branlant, G., Role of glutamate-268 in the catalytic mechanism of nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans (2000) Biochemistry, 39, pp. 3327-3335
Sheikh, S., Ni, L., Hurley, T.D., Weiner, H., The potential roles of the conserved amino acids in human liver mitochondrial aldehyde dehydrogenase (1997) J. Biol. Chem., 272, pp. 18817-18822
Farres, J., Wang, T.T., Cunningham, S.J., Weiner, H., Investigation of the active site cysteine residue of rat liver mitochondrial aldehyde dehydrogenase by site-directed mutagenesis (1995) Biochemistry, 34, pp. 2592-2598
Vedadi, M., Szittner, R., Smillie, L., Meighen, E., Involvement of cysteine 289 in the catalytic activity of an NADP +-specific fatty aldehyde dehydrogenase from Vibrio harveyi (1995) Biochemistry, 34, pp. 16725-16732
Wang, X., Weiner, H., Involvement of glutamate 268 in the active site of human liver mitochondrial (class 2) aldehyde dehydrogenase as probed by site-directed mutagenesis (1995) Biochemistry, 34, pp. 237-243
Vedadi, M., Meighen, E., Critical glutamic acid residues affecting the mechanism and nucleotide specificity of Vibrio harveyi aldehyde dehydrogenase (1997) Eur. J. Biochem., 246, pp. 698-704
Marchal, S., Branlant, G., Evidence for the chemical activation of essential Cys-302 upon cofactor binding to non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase from Streptococcus mutans (1999) Biochemistry, 38, pp. 12950-12958
Cobessi, D., Tête-Favier, F., Marchal, S., Branlant, G., Aubry, A., Structural and biochemical investigations of the catalytic mechanism of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans (2000) J. Mol. Biol., 300, pp. 141-152
Liu, Z.J., Sun, Y.J., Rose, J., Chung, Y.J., Hsiao, C.D., Chang, W.R., Kuo, I., Wang, B.C., The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold (1997) Nat. Struct. Biol., 4, pp. 317-326
Johansson, K., El-Ahmad, M., Ramaswamy, S., Hjelmqvist, L., Jörnvall, H., Eklund, H., Structure of betaine aldehyde dehydrogenase at 2.1 Å resolution (1998) Protein Sci., 7, pp. 2106-2117
Steinmetz, C.G., Xie, P., Weiner, H., Hurley, D.T., Structure of mitochondrial aldehyde dehydrogenase: The genetic component of ethanol aversion (1997) Structure, 5, pp. 701-711
Moore, S.A., Baker, H.M., Blythe, T.J., Kitson, K.E., Kitson, T.M., Baker, E.N., Sheep liver cytosolic aldehyde dehydrogenase: The structure reveals the basis for the retinal specificity of class 1 aldehyde dehydrogenases (1998) Structure, 6, pp. 1541-1551
Perez-Miller, S.J., Hurley, T.D., Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase (2003) Biochemistry, 42, pp. 7100-7109
Lorentzen, E., Hensel, R., Knura, T., Ahmed, H., Pohl, E., Structural basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase from Thermoproteus tenax (2004) J. Mol. Biol., 341, pp. 815-828
Roth, M., Carpentier, P., Kaikati, O., Joly, J., Charrault, P., Pirocchi, M., Kahn, R., Ferrer, J.L., FIP: A highly automated beamline for multiwavelength anomalous diffraction experiments (2002) Acta Crystallogr., Sect. D: Biol. Crystallogr., 58, pp. 805-814
Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., 276, pp. 307-326
Brünger, A.T., Adams, P.D., Clore, G.M., Delano, W.L., Gros, P., Grosse-Kunsteleve, R.W., Jiang, J.S., Warren, G.L., Crystallography and NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr., Sect. D: Biol. Crystallogr., 54, pp. 905-921
Laskowsky, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., PROCHECK: A program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallogr., 26, pp. 283-291
Esnouf, R.M., Further additions to MolScript version 1.4, including reading and contouring of electron-density maps (1999) Acta Crystallogr., Sect. D: Biol. Crystallogr., 55, pp. 938-940
Koradi, R., Billeter, M., Wuthrich, K., MOLMOL: A program for display and analysis of macromolecular structures (1996) J. Mol. Graphics, 14, pp. 51-55
Brzozowski, A.M., Walton, J., Clear strategy screens for macromolecule crystallisation (2001) J. Appl. Crystallogr., 34, pp. 97-101
Rossmann, M.G., Moras, D., Olsen, K.W., Chemical and biological evolution of nucleotide-binding protein (1974) Nature, 250, pp. 194-199
Lamb, A.L., Newcomer, M.E., The structure of retinal dehydrogenase type II 2.7 Å resolution: Implications for retinal specificity (1999) Biochemistry, 38, pp. 6003-6011
Ahvazi, B., Coulombe, R., Delarge, M., Vedadi, M., Zhang, L., Meighen, E., Vrielink, A., Crystal structure of the NADP+-dependent aldehyde dehydrogenase from Vibrio harveyi: Structural implications for cofactor specificity and affinity (2000) Biochem. J., 349, pp. 853-861
Marchal, S., Cobessi, D., Rahuel-Clermont, S., Tête-Favier, F., Aubry, A., Branlant, G., Chemical mechanism and substrate bindin sites of NADP-dependent aldehyde dehydrogenase from Streptococcus mutans (2001) Chem.-Biol. Interact., 130-132, pp. 15-28
Montgomery, M.K., McFall-Ngai, M.J., The muscle-derived lens of a squid bioluminescent organ is biochemically convergent with the ocular lens. Evidence for recruitment of aldehyde dehydrogenase as a predominant structural protein (1992) J. Biol. Chem., 267, pp. 20999-21003
Zinovieva, R.D., Tomarev, S.I., Piatigorsky, J., Aldehyde dehydrogenase-derived ω-crystallins of squid and octopus. Specialization for lens expression (1993) J. Biol. Chem., 268, pp. 11449-11455
Harrigan, P.J., Trentham, D.R., Kinetic studies on oxidized nicotinamide-adenine dinucleotide-facilitated reactions of D-glyceraldehyde 3-phosphate dehydrogenase (1974) Biochem. J., 143, pp. 353-363
Segal, H. L., Boyer, P. D., The role of sulfhydryl groups in the activity of D-glyceraldehyde-3- phosphate dehydrogenase (1953) J. Biol. Chem., 204, pp. 265-28
Shone, C. C., Fromm, H. J., Steady-state and pre-steady-state kinetics of coenzyme A linked aldehyde dehydrogenase from Escherichia coli (1981) Biochemistry, 20, pp. 7494-7501
S hling, B., Gottschalk, G., Purification and characterization of a coenzyme-A-dependent succinate-semialdehyde dehydrogenase from Clostridium kluyveri (1993) Eur. J. Biochem., 212, pp. 121-127
Cobessi, D., T te-Favier, F., Marchal, S., Branlant, G., Aubry, A., Structural and biochemical investigations of the catalytic mechanism of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans (2000) J. Mol. Biol., 300, pp. 141-152
Liu, Z. J., Sun, Y. J., Rose, J., Chung, Y. J., Hsiao, C. D., Chang, W. R., Kuo, I., Wang, B. C., The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold (1997) Nat. Struct. Biol., 4, pp. 317-326
Steinmetz, C. G., Xie, P., Weiner, H., Hurley, D. T., Structure of mitochondrial aldehyde dehydrogenase: The genetic component of ethanol aversion (1997) Structure, 5, pp. 701-711
Moore, S. A., Baker, H. M., Blythe, T. J., Kitson, K. E., Kitson, T. M., Baker, E. N., Sheep liver cytosolic aldehyde dehydrogenase: The structure reveals the basis for the retinal specificity of class 1 aldehyde dehydrogenases (1998) Structure, 6, pp. 1541-1551
Perez-Miller, S. J., Hurley, T. D., Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase (2003) Biochemistry, 42, pp. 7100-7109
Br nger, A. T., Adams, P. D., Clore, G. M., Delano, W. L., Gros, P., Grosse-Kunsteleve, R. W., Jiang, J. S., Warren, G. L., Crystallography and NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr., Sect. D: Biol. Crystallogr., 54, pp. 905-921
Roussel, P. A., Cambillau, C., (1991) TURBO-FRODO, Silicon Graphics Applications Directory, , Silicon Graphics, Mountain View, CA
Laskowsky, R. A., MacArthur, M. W., Moss, D. S., Thornton, J. M., PROCHECK: A program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallogr., 26, pp. 283-291
Esnouf, R. M., Further additions to MolScript version 1. 4, including reading and contouring of electron-density maps (1999) Acta Crystallogr., Sect. D: Biol. Crystallogr., 55, pp. 938-940
Brzozowski, A. M., Walton, J., Clear strategy screens for macromolecule crystallisation (2001) J. Appl. Crystallogr., 34, pp. 97-101
Rossmann, M. G., Moras, D., Olsen, K. W., Chemical and biological evolution of nucleotide-binding protein (1974) Nature, 250, pp. 194-199
Lamb, A. L., Newcomer, M. E., The structure of retinal dehydrogenase type II 2. 7 resolution: Implications for retinal specificity (1999) Biochemistry, 38, pp. 6003-6011
Montgomery, M. K., McFall-Ngai, M. J., The muscle-derived lens of a squid bioluminescent organ is biochemically convergent with the ocular lens. Evidence for recruitment of aldehyde dehydrogenase as a predominant structural protein (1992) J. Biol. Chem., 267, pp. 20999-21003
Zinovieva, R. D., Tomarev, S. I., Piatigorsky, J., Aldehyde dehydrogenase-derived -crystallins of squid and octopus. Specialization for lens expression (1993) J. Biol. Chem., 268, pp. 11449-11455
Harrigan, P. J., Trentham, D. R., Kinetic studies on oxidized nicotinamide-adenine dinucleotide-facilitated reactions of D-glyceraldehyde 3-phosphate dehydrogenase (1974) Biochem. J., 143, pp. 353-363
The first crystal structure of a thioacylenzyme intermediate in the ALDH family: New coenzyme conformation and relevance to catalysis
Crystal structures of several members of the nonphosphorylating CoA-independent aldehyde dehydrogenase (ALDH) family have shown that the peculiar binding mode of the cofactor to the Rossmann fold results in a conformational flexibility for the nicotinamide moiety of the cofactor. This has been hypothesized to constitute an essential feature of the catalytic mechanism because the conformation of the cofactor required for the acylation step is not appropriate for the deacylation step. In the present study, the structure of a reaction intermediate of the E268A-glyceraldehyde 3-phosphate dehydrogenase (GAPN) from Streptococcus mutans, obtained by soaking the crystals of the enzyme/NADP complex with the natural substrate, is reported. The substrate is bound covalently in the four monomers and presents the geometric characteristics expected for a thioacylenzyme intermediate. Control experiments assessed that reduction of the coenzyme has occurred within the crystal. The structure reveals that reduction of the cofactor upon acylation leads to an extensive motion of the nicotinamide moiety with a flip of the reduced pyridinium ring away from the active site without significant changes of the protein structure. This event positions the reduced nicotinamide moiety in a pocket that likely constitutes the exit door for NADPH. Arguments are provided that the structure reported here constitutes a reasonable picture of the first thioacylenzyme intermediate characterized thus far in the ALDH family and that the position of the reduced nicotinamide moiety observed in GAPN is the one suitable for the deacylation step within all of the nonphosphorylating CoA-independent ALDH family.
The first crystal structure of a thioacylenzyme intermediate in the ALDH family: New coenzyme conformation and relevance to catalysis