Activity of anchored human matrix metalloproteinase-1 catalytic domain on Au(111) surfaces monitored by ESI-MS(575 views) Grasso G, D'Agata R, Rizzarelli E, Spoto G, D'Andrea LD, Pedone C, Picardi A, Romanelli A, Fragai M, Yeo KJ
J Mass Spectrom (ISSN: 1076-5174, 1096-9888), 2005 Dec; 40(12): 1565-1571.
Consorzio Interuniversitario di Ricerca in Chimica dei Metalli Nei Sistemi Biologici, Via C. Ulpiani 27, 70126, Bari, Italy
Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy
Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli Federico II, Via Mezzocannone 16, Napoli, Italy
Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi, 6, Sesto Fiorentino, Italy
Department of Agricultural Biotechnology, University of Florence, P.le delle Cascine, 24, Florence, Italy
References: Massova, I., Kotra, L.P., Fridman, R., Mobashery, S., Matrix metalloproteinases: Structures, evolution, and diversification (1998) FASEB J., 12, p. 107
Christopher, M., Molecular determinants of metalloproteinase substrate specificity: Matrix metalloproteinase substrate binding domains, modules, and exosites (2002) Mol. Biotechnol., 22, p. 51
Nagase, H., Woessner, J.F., Matrix metalloproteinases (1999) J. Biol. Chem., 274, p. 21491
Pardo, A., Selman, M., MMP-1: The elder of the family (2005) Int. J. Biochem. Cell Biol., 37, p. 283
Bauer, E.A., Eisen, A.Z., Jeffrey, J.J., Immunologic relationship of a purified human skin collagenase to other human and animal collagenases (1970) Biochim. Biophys. Acta, 206, p. 152
Goldberg, G.I., Wilhelm, S.M., Kronberger, A., Bauer, E.A., Grant, G.A., Eisen, A.Z., Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation-induced rat protein (1986) J. Biol. Chem., 261, p. 6600
Lovejoy, B., Hassell, A.M., Luther, M.A., Weigl, D., Jordan, S.R., Crystal structures of recombinant 19-kDa human fibroblast collagenase complexed to itself (1994) Biochemistry, 33, p. 8207
Coussens, L.M., Werb, Z., Matrix metalloproteinases and the development of cancer (1996) Chem. Biol., 3, p. 895
Liu, Z., Zhou, X.Y., Shapiro, S.D., Shipley, J.M., Twining, S.S., Diaz, L.A., The serpin alpha1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo (2000) Cell, 102, p. 647
Farkas, E., Katz, Y., Bhusare, S., Reich, R., Röschenthaler, G., Königsmann, M., Breuer, E., Carbamoylphosphonate based matrix metalloproteinase (MMP) inhibitor metal complexes - Solution studies and stability constants. Towards a Zinc Selective Binding Group (2004) J. Biol. Inorg. Chem., 9, p. 307
Koivunen, E., Arap, W., Valtanen, H., Rainisalo, A., Medina, O.P., Heikkilä, P., Kantor, C., Pasqualini, R., Tumor targeting with a selective gelatinase inhibitor (1999) Nat. Biotechnol., 17, p. 768
Dive, V., Andarawewa, K.L., Boulay, A., Matziari, M., Beau, F., Guerin, E., Rousseau, B., Rio, M., Dosing and scheduling influence the antitumor efficacy of a phosphinic peptide inhibitor of matrix metalloproteinases (2005) Int. J. Cancer, 113, p. 775
Xia, T., Akers, K., Eisen, A.Z., Seltzer, J.L., Comparison of cleavage site specificity of gelatinases A and B using collagenous peptides (1996) Biochim. Biophys. Acta, 1293, p. 259
Weingarten, H., Feder, J., Spectrophotometric assay for vertebrate collagenase (1985) Anal. Biochem., 147, p. 437
Beekman, B., Drijfhout, J.W., Bloemhoff, W., Ronday, H.K., Tak, P.P., Te Koppele, J.M., Convenient fluorometric assay for matrix metalloproteinase activity and its application in biological media (1996) FEBS Lett., 390, p. 221
Liu, Y., Kati, W., Chen, C., Tripathy, R., Molla, A., Kohlbreuner, W., Use of a fluorescence plate reader for measuring kinetic parameters with inner filter effect correction (1999) Anal. Biochem., 267, p. 331
Babiak, P., Reymond, J., A high-throughput, low-volume enzyme assay on solid support (2005) Anal. Chem., 77, p. 373
Min, D., Mrksich, M., Profiling kinase activities by using a peptide chip and mass spectrometry (2004) Angew. Chem. Int. Ed. Engl., 43, p. 5973
Houseman, B.T., Huk, J.H., Kron, S.J., Mrksich, M., Peptide chips for the quantitative evaluation of protein kinase activity (2002) Nat. Biotechnol., 20, p. 270
Huber, A., Demartis, S., Neri, D., The use of biosensor technology for the engineering of antibodies and enzymes (1999) J. Mol. Recognit., 12, p. 198
Lauer-Fields, J.L., Nagase, H., Fields, G.B., Development of a solid-phase assay for analysis of matrix metalloproteinase activity (2004) J. Biomol. Tech., 15, p. 305
Nedelkov, D., Nelson, R.W., Analysis of native proteins from biological fluids by biomolecular interaction analysis mass spectrometry (BIA/MS): Exploring the limit of detection, identification of non-specific binding and detection of multi-protein complexes (2001) Biosens. Bioelectron., 16, p. 1071
Borch, J., Roepstorff, P., Screening for enzyme inhibitors by surface plasmon resonance combined with mass spectrometry (2004) Anal. Chem., 76, p. 5243
Olson, M.W., Gervasi, D.C., Mobashery, S., Fridman, R., Kinetic analysis of the binding of human matrix metalloproteinase-2 and -9 to tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 (1997) J. Biol. Chem., 272, p. 29975
Pieper-Fürst, U., Kleuser, U., Stöcklein, W.F.M., Warsinke, A., Scheller, F.W., Detection of subpicomolar concentrations of human matrix metalloproteinase-2 by an optical biosensor (2004) Anal. Biochem., 332, p. 160
Johnsson, B., Löfas, S., Lindquist, G., Immobilization of proteins to a carboxy methyldextran-modified gold surface for biospecific interaction analysis insurface plasmon resonance sensors (1991) Anal. Biochem., 198, p. 268
Dordi, B., Schönherr, H., Vancso, G.J., Reactivity in the confinement of self-assembled monolayers: Chain length effects on the hydrolysis of N-hydroxysuccinimide ester disulfides on gold (2003) Langmuir, 19, p. 5780
Weingarten, H., Martin, R., Feder, J., Synthetic substrates of vertebrate collagenase (1985) Biochemistry, 24, p. 6730
MacPherson, L.J., Bayburt, E.K., Capparelli, M.P., Carroll, B.J., Goldstein, R., Justice, M.R., Zhu, L., Parker, D.T., Discovery of CGS 27023A, a non-peptidic, potent, and orally active stromelysin inhibitor that blocks cartilage degradation in rabbits (1997) J. Med. Chem., 40, p. 2525
Lide, D.R., (1990) Handbook of Chemistry and Physics, 71st Ed., , CRC Press: Boston
Jung, L.S., Campbell, C.T., Chinowsky, T.M., Mar, M.N., Yee, S.S., Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films (1998) Langmuir, 14, p. 5636
Armstrong, S.H., Budkak, M.J.E., Morrison, C., Hasson, M., Preparation and properties of serum and plasma proteins. XII. The refractive properties of the proteins of human plasma and certain purified fraction (1947) J. Am. Chem. Soc., 69, p. 1747
Darnell, J.E., Lodish, H., Baltimore, D., (1990) Molecular Cell Biology, , Scientific American Books: New York
Leslie, T.E., Lilley, T.H., Aqueous solutions containing amino acids and peptides. Part 20. Volumetric behavior of some terminally substituted amino acids and peptides at 298.15 K (1985) Biopolymers, 24, p. 695
Wang, X., Sakuma, T., Asafu-Adjaye, E., Shiu, G.K., Determination of ginsenosides in plant extracts from Panax ginseng and Panax quinquefolius L. by LC/MS/MS (1999) Anal. Chem., 71, p. 1579
Mauri, P., Migliazza, B., Pietta, P., Liquid chromatography/electrospray mass spectrometry of bioactive terpenoids in Ginkgo biloba L (1999) J. Mass Spectrom., 34, p. 1361
Iavarone, A.T., Udekwu, O.A., Williams, E.R., Buffer loading for counteracting metal salt-induced signal suppression in electrospray ionization (2004) Anal. Chem., 76, p. 3944
Neumann, U., Kubota, H., Frei, K., Ganu, V., Leppert, D., Characterization of Mca-Lys-Pro-Leu-Gly-Leu-Dppa-Ala-Arg-NH2, a fluorogenic substrate with increased specificity constants for collagenases and tumor necrosis factor converting enzyme (2004) Anal. Biochem., 328, p. 166
Pi, N., Armstrong, J.I., Bertozzi, C.R., Leary, J.A., Kinetic analysis of NodST sulfotransferase using an electrospray ionization mass spectrometry assay (2002) Biochemistry, 41, p. 13283
Bauer, E. A., Eisen, A. Z., Jeffrey, J. J., Immunologic relationship of a purified human skin collagenase to other human and animal collagenases (1970) Biochim. Biophys. Acta, 206, p. 152
Goldberg, G. I., Wilhelm, S. M., Kronberger, A., Bauer, E. A., Grant, G. A., Eisen, A. Z., Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation-induced rat protein (1986) J. Biol. Chem., 261, p. 6600
Coussens, L. M., Werb, Z., Matrix metalloproteinases and the development of cancer (1996) Chem. Biol., 3, p. 895
Liu, Z., Zhou, X. Y., Shapiro, S. D., Shipley, J. M., Twining, S. S., Diaz, L. A., The serpin alpha1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo (2000) Cell, 102, p. 647
Houseman, B. T., Huk, J. H., Kron, S. J., Mrksich, M., Peptide chips for the quantitative evaluation of protein kinase activity (2002) Nat. Biotechnol., 20, p. 270
Lauer-Fields, J. L., Nagase, H., Fields, G. B., Development of a solid-phase assay for analysis of matrix metalloproteinase activity (2004) J. Biomol. Tech., 15, p. 305
Olson, M. W., Gervasi, D. C., Mobashery, S., Fridman, R., Kinetic analysis of the binding of human matrix metalloproteinase-2 and -9 to tissue inhibitor of metalloproteinase (TIMP) -1 and TIMP-2 (1997) J. Biol. Chem., 272, p. 29975
Pieper-F rst, U., Kleuser, U., St cklein, W. F. M., Warsinke, A., Scheller, F. W., Detection of subpicomolar concentrations of human matrix metalloproteinase-2 by an optical biosensor (2004) Anal. Biochem., 332, p. 160
Johnsson, B., L fas, S., Lindquist, G., Immobilization of proteins to a carboxy methyldextran-modified gold surface for biospecific interaction analysis insurface plasmon resonance sensors (1991) Anal. Biochem., 198, p. 268
Dordi, B., Sch nherr, H., Vancso, G. J., Reactivity in the confinement of self-assembled monolayers: Chain length effects on the hydrolysis of N-hydroxysuccinimide ester disulfides on gold (2003) Langmuir, 19, p. 5780
MacPherson, L. J., Bayburt, E. K., Capparelli, M. P., Carroll, B. J., Goldstein, R., Justice, M. R., Zhu, L., Parker, D. T., Discovery of CGS 27023A, a non-peptidic, potent, and orally active stromelysin inhibitor that blocks cartilage degradation in rabbits (1997) J. Med. Chem., 40, p. 2525
Lide, D. R., (1990) Handbook of Chemistry and Physics, 71st Ed., , CRC Press: Boston
Jung, L. S., Campbell, C. T., Chinowsky, T. M., Mar, M. N., Yee, S. S., Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films (1998) Langmuir, 14, p. 5636
Armstrong, S. H., Budkak, M. J. E., Morrison, C., Hasson, M., Preparation and properties of serum and plasma proteins. XII. The refractive properties of the proteins of human plasma and certain purified fraction (1947) J. Am. Chem. Soc., 69, p. 1747
Darnell, J. E., Lodish, H., Baltimore, D., (1990) Molecular Cell Biology, , Scientific American Books: New York
Leslie, T. E., Lilley, T. H., Aqueous solutions containing amino acids and peptides. Part 20. Volumetric behavior of some terminally substituted amino acids and peptides at 298. 15 K (1985) Biopolymers, 24, p. 695
Iavarone, A. T., Udekwu, O. A., Williams, E. R., Buffer loading for counteracting metal salt-induced signal suppression in electrospray ionization (2004) Anal. Chem., 76, p. 3944
Clark, I. M., Mitchell, R. E., Powell, L. K., Bigg, H. F., Cawston, T. E., O'Hare, M. C., Recombinant porcine collagenase: Purification and autolysis (1995) Arch. Biochem. Biophys., 316, p. 123
Activity of anchored human matrix metalloproteinase-1 catalytic domain on Au(111) surfaces monitored by ESI-MS
Matrix metalloproteinases (MMPs) are a family of Zn-dependent endo-peptidases known for their ability to cleave several components of the extracellular matrix, but which can also cleave many non-matrix proteins. There are many evidences that MMPs are involved in physiological and pathological processes, and a huge effort has been put in the development of possible inhibitors that could reduce the activity of MMPs, as it is clear that the ability to monitor and control such activity plays a pivotal role in the search for potential drugs aimed at finding a cure for several diseases such as pulmonary emphysema, rheumatoid arthritis, fibrotic disorders and cancer. A powerful method currently available to study enzyme-inhibitor interactions is based on the use of the surface plasmon resonance (SPR) technique. When MMP interactions are studied, a procedure by which inhibitors are normally anchored on sensor chips and SPR technique is used in order to study their interaction with MMPs molecules is usually followed. This is because it is currently believed that MMPs cannot be anchored on the sensor-chip surface without losing their activity. However, this approach gives rise to problems, as the anchoring of low-molecular-weight inhibitors on gold surfaces easily affects their ability to interact with MMPs. For this reason, the anchoring of MMPs is highly desirable. A new experimental protocol that couples the Fourier transform-SPR (FT-SPR) technique with electrospray ionization-mass spectroscopy (ESI-MS) is described here for the evaluation of the activity of MMP-1 catalytic domain (cdMMP-1) anchored on gold surfaces. The cdMMP-1 surface coverage is calculated by using FT-SPR and the enzyme activity is estimated by ESI-MS. The proposed method is label-free. Copyright (c) 2005 John Wiley & Sons, Ltd.
Activity of anchored human matrix metalloproteinase-1 catalytic domain on Au(111) surfaces monitored by ESI-MS