Department of Biological Chemistry, University of Naples 'Federico II', Via Mezzocannone 16, 80134 Naples, Italy
CIRPEB and IBB-CNR, University of Naples 'Federico II', Via Mezzocannone 16, 80134 Naples, Italy
CNR-IEOS, c/o Department of Cellular and Molecular Biology and Pathology 'L. Califano', University of Naples 'Federico II', Via Pansini 5, 80131 Naples, Italy
References: Not available.
Antineoplastic cyclic astin analogues kill tumour cells via caspase-mediated induction of apoptosis
Astins, a family of cyclopentapeptides, isolated from the roots of a medicinal plant Aster tataricus (Compositae), show antitumour activity. Their chemical structures consist of a 16-membered ring system containing a unique beta,gamma-dichlorinated proline [Pro(Cl-2)], other non-coded amino acid residues, and a cis conformation in one of the peptide bonds. The beta,gamma-dichlorinated proline residue is considered to play an important role in their antineoplastic activities in vitro on nasopharynx carcinoma (KB) cells and in vivo on sarcoma 180 ascites and P388 lymphocytic leukaemia in mice. The acyclic astins without Pro(Cl-2) do not show antitumour activity against S-180 ascites in vivo, suggesting that the cyclic nature of astins plays an important role in their antitumour activities. We synthesized new astin-related cyclopeptides differing from the natural product for the presence of some non-proteinogenic amino acid residues: Aib, Abu, -S(beta(3))-hPhe and a peptide bond surrogate (-SO2-NH-) and we tested for their antitumour effect. We observed cytotoxic effects of the newly synthesized cyclic astins, but not with the acyclic analogue astins. We also observed that the cyclic astin induced apoptosis in a human papillary thyroid carcinoma cell line (NPA cell line) and that apoptotis was associated with activation of caspases. The caspase family inhibitor, Z-Val-Asp-(OMe)-FMK, protected NPA cells from cyclic analogue astin-induced apoptosis. To determine which caspase was specifically activated, we assayed caspase activity in astin-treated cells in the presence of specific caspase and 8, 9 or 3 inhibitors, i.e. Z-IETD-FMK, Z-LEHD-FMK Z-DEVD-FMK, which inhibit caspases 8, 9 and 3, respectively. The data presented here show selective antineoplastic properties of the newly synthesized cyclic astins, and suggest, for the first time, a mechanism for their antineoplastic action through the activation of apoptotic pathway.
Antineoplastic cyclic astin analogues kill tumour cells via caspase-mediated induction of apoptosis
No results.
Antineoplastic cyclic astin analogues kill tumour cells via caspase-mediated induction of apoptosis
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(455 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote