Keywords: Omega Dihedral Angle, Peptide Group Planarity, Protein Geometry-Conformation, Protein Structure, Statistical Analyses, Amino Acid Sequence, Article, Correlation Analysis, Disulfide Bond, Priority Journal, Protein Analysis, Protein Conformation, Protein Secondary Structure, Stereochemistry, Databases, Models, Molecular, Molecular Structure,
Affiliations: *** IBB - CNR ***
Ist. di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
Dipto. Delle Scienze Biologiche, Sezione Biostrutture, Univ. Studi di Napoli Federico II, Via Mezzocannone 16, I-80134 Napoli, Italy
CEINGE, Biotecnologie Avanzate Scarl, Via Pansini 5, I-80121 Napoli, Italy
Ctro. Interuniversitario Ric. Sui P., Via Mezzocannone 16, I-80134 Napoli, Italy
References: Pauling, L., Corey, R.B., Branson, H.R., The structure of proteins: Two hydrogen-bonded helical configurations of the peptide chain (1951) Proc. Natl Acad. Sci. USA, 37, pp. 205-21
Eisenberg, D., The discovery of the α-helix and β-sheet, the principal structural features of proteins (2003) Proc. Natl Acad. Sci. USA, 100, pp. 11207-11210
Edison, A.S., Linus Pauling and the planar peptide bond (2001) Nature Struct. Biol., 8, pp. 201-202
Ramachandran, G.N., Need for nonplanar peptide units in polypeptide chains (1968) Biopolymers, 6, pp. 1494-1496
MacArthur, M.W., Thornton, J.M., Deviations from planarity of the peptide bond in peptides and proteins (1996) J. Mol. Biol., 264, pp. 1180-1195
Karplus, P.A., Experimentally observed conformation-dependent geometry and hidden strain in proteins (1996) Protein Sci., 5, pp. 1406-1420
Kuszewski, J., Gronenborn, A.M., Clore, G.M., Improvements and extensions in the conformational database potential for the refinement of NMR and X-ray structures of proteins and nucleic acids (1997) J. Magn. Reson., 1, pp. 171-177
Dauter, Z., Lamzin, V.S., Wilson, K.S., The benefits of atomic resolution (1997) Curr. Opin. Struct. Biol., 7, pp. 681-688
Lecomte, C., Guillot, B., Muzet, N., Pichon-Pesme, V., Jelsch, C., Ultra-high-resolution X-ray structure of proteins (2004) Cell. Mol. Life Sci., 61, pp. 774-782
Esposito, L., Vitagliano, L., Mazzarella, L., Recent advances in atomic resolution protein crystallography (2002) Protein Pept. Letters, 9, pp. 95-105
Priestle, J.P., Improved dihedral-angle restraints for protein structure refinement (2003) J. Appl. Crystallog., 36, pp. 34-42
Carugo, O., Cemazar, M., Zahariev, S., Hudáky, I., Gáspári, Z., Perczel, A., Pongor, S., Vicinal disulfide turns (2003) Protein Eng., 16, pp. 637-639
Hayward, S., Peptide-plane flipping in proteins (2001) Protein Sci., 10, pp. 2219-2227
Cieplak, A.S., Solid-state conformations of linear oligopeptides and aliphatic amides. A model of chiral perturbation of a conjugated system (1985) J. Am. Chem. Soc., 107, pp. 271-273
Jeffrey, G.A., Houk, K.N., Paddon-Row, M.N., Rondan, N.G., Mitra, J., Pyramidalization of carbonyl carbons in asymmetric environments: Carboxylates, amides, and amino acids (1985) J. Am. Chem. Soc., 107, pp. 321-326
Caramella, P., Rondan, N.G., Paddon-Row, M.N., Houk, K.N., Origin of π-facial stereoselectivity in additions to π-bonds: Generality of the anti-periplanar effect (1981) J. Am. Chem. Soc., 103, pp. 2438-2440
Head-Gordon, T., Head-Gordon, M., Frisch, M.J., Brooks III, C.L., Pople, J.A., Theoretical study of blocked glycine and alanine peptide analogues (1991) J. Am. Chem. Soc., 113, pp. 5989-5997
Ramek, M., Yu, C.-H., Sakon, J., Schafer, L., Ab initio study of the conformational dependence of the nonplanarity of the peptide group (2000) J. Phys. Chem. a, 104, pp. 9636-9645
Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., PROCHECK: A program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallog., 26, pp. 283-291
Edison, A. S., Linus Pauling and the planar peptide bond (2001) Nature Struct. Biol., 8, pp. 201-202
Ramachandran, G. N., Need for nonplanar peptide units in polypeptide chains (1968) Biopolymers, 6, pp. 1494-1496
MacArthur, M. W., Thornton, J. M., Deviations from planarity of the peptide bond in peptides and proteins (1996) J. Mol. Biol., 264, pp. 1180-1195
Karplus, P. A., Experimentally observed conformation-dependent geometry and hidden strain in proteins (1996) Protein Sci., 5, pp. 1406-1420
Priestle, J. P., Improved dihedral-angle restraints for protein structure refinement (2003) J. Appl. Crystallog., 36, pp. 34-42
Cieplak, A. S., Solid-state conformations of linear oligopeptides and aliphatic amides. A model of chiral perturbation of a conjugated system (1985) J. Am. Chem. Soc., 107, pp. 271-273
Jeffrey, G. A., Houk, K. N., Paddon-Row, M. N., Rondan, N. G., Mitra, J., Pyramidalization of carbonyl carbons in asymmetric environments: Carboxylates, amides, and amino acids (1985) J. Am. Chem. Soc., 107, pp. 321-326
Ramek, M., Yu, C. -H., Sakon, J., Schafer, L., Ab initio study of the conformational dependence of the nonplanarity of the peptide group (2000) J. Phys. Chem. a, 104, pp. 9636-9645
Laskowski, R. A., MacArthur, M. W., Moss, D. S., Thornton, J. M., PROCHECK: A program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallog., 26, pp. 283-291
Correlation Between Omega And Psi Dihedral Angles In Protein Structures
The planarity of the peptide group is one of the fundamental features of protein structure that is described in every chemistry and biochemistry textbook. By surveying a dataset of 163 atomic resolution protein structures we here identify the stereochemical conditions that favor significant deformations of peptide bond planarity. In particular, we demonstrate that the values of the omega dihedral angle are strictly correlated to the values of the adjacent Psi angle. This trend is also observed in highly strained states such as those occurring in vicinal disulfide bridges. These findings provide direct evidence for the mutual influence of the geometrical parameters that describe the protein structure. (c) 2005 Elsevier Ltd. All rights reserved
Correlation Between Omega And Psi Dihedral Angles In Protein Structures