Determination of the concentration scaling law of the scattering coefficient of water solutions of intralipid at 832 nm by comparison between collimated detection measurements and Monte Carlo simulations
Determination of the concentration scaling law of the scattering coefficient of water solutions of intralipid at 832 nm by comparison between collimated detection measurements and Monte Carlo simulations(312 views) Autiero M, Liuzzi R, Riccio P, Roberti G
Keywords: Absorption Coefficient, Intralipid, Monte Carlo Simulations, Optical Parameters, Optical Transillumination, Parallel Computing, Photon Transport, Scattering Coefficient, Scattering Media, Transmittance Measurements, Water, Aqueous Solution, Article, Calibration, Collimator, Laser, Light Scattering, Monte Carlo Method, Phantom, Priority Journal, Radiation Scattering, Chemistry, Physical, Fat Emulsions, Intravenous, Models, Chemical, Normal Distribution,
Affiliations: *** IBB - CNR ***
Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Napoli I-80126, Italy
Istituto Nazionale di Fisica Della Materia, Napoli I-80126, Italy
Consiglio Nazionale Delle Istituto-Ricerche di Biostrutture e Bioimmagini, Napoli I-80131, Italy
Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, I-80131 Napoli, Italy
References: Hebden, J.C., Gonzales, F.M., Gibson, A., Hillman, E.M.C., Yusof, R.Md., Everdell, N., Delpy, D.T., Martelli, F., Assessment of an in situ temporal calibration method for time-resolved optical tomography (2003) J Biomed Opt, 8, pp. 87-9
Kumar, D., Singh, M., Non-invasive imaging of optical parameters of biological tissues (2003) Med Biol Eng Comput, 41, pp. 310-316
Iizuka, M.N., Sherar, M.D., Vltkin, I.A., Optical phantom materials for near infrared laser photocoagulation studies (1999) Lasers Surg Med, 25, pp. 159-169
Wilson, B.C., Patterson, M.S., Burns, D.M., Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light (1986) Lasers Med Sci, 1, pp. 235-244
Barajas, O., Ballangrud, A.M., Miller, G.G., Moore, R.B., Tulip, J., Monte Carlo modelling of angular radiance in tissue phantoms and human prostate: PDT light dosimetry (1997) Phys Med Biol, 42, pp. 1675-1687
De Jode, M.L., Monte Carlo simulations of the use of isotropic light dosimetry probes to monitor energy fluence in biological tissues (1999) Phys Med Biol, 44, pp. 3027-3037
Ripley, P.M., Laufer, J.G., Gordon, A.D., Connell, R.J., Bown, S.G., Near-infrared optical properties of ex vivo human uterus determined by the Monte Carlo inversion technique (1999) Phys Med Biol, 44, pp. 2451-2462
Simpson, C.R., Kohl, M., Essenpreis, M., Cope, M., Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique (1998) Phys Med Biol, 43, pp. 2465-2478
Graaff, R., Dassel, C.M., Koelink, M.H., De Mul, F.F.M., Aarnoudse, J.G., Zijilstra, W.G., Optical properties of human dermis in vitro and in vivo (1993) Appl Opt, 32, pp. 435-447
Beek, J.F., Blokland, P., Posthumus, P., Aalders, M., Pickering, J.W., Sterenborg, H.J.C.M., Van Gemert, M.J.C., In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm (1997) Phys Med Biol, 42, pp. 2255-2261
Colasanti, A., Guida, G., Kisslinger, A.M., Liuzzi, R., Quarto, M., Riccio, P., Roberti, G., Villani, F., Application of parallel computing to a Monte Carlo code for photon transport in turbid media (1998) SPIE, 3566, pp. 73-78
Colasanti, A., Kisslinger, A.M., Liuzzi, R., Quarto, M., Riccio, P., Roberti, G., Villani, F., Transmission measurements on tissue-like phantoms: A simple system for optical parameters determination (1997) SPIE, 3194, pp. 471-477
Keizjer, M., Jacques, S.L., Prahl, S.A., Welch, A.J., Light distributions in artery tissue. Monte Carlo simulations for finite-diameter laser beams (1989) Lasers Surg Med, 9, pp. 148-154
Jentink, H.W., De Mull, F.F.M., Hermsen, R.G.A., Greve, J., Monte Carlo simulations of laser Doppler blood flow measurement in tissue (1991) Appl Opt, 29, pp. 2371-2381
Farrel, T.J., Patterson, M.S., Wilson, B., A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo (1992) Med Phys, 19, pp. 879-888
Jacques, S.L., Wang, L., Monte Carlo modeling of light transport in tissue (1995) Optical-Thermal Response of Laser-Irradiated Tissue, pp. 73-100. , Welch AJ, van Gemert MJC, editors. New York: Plenum
Cheong, W.F., Prahl, S.A., Welch, A.J., A review of the optical properties of biological tissues (1990) IEEE J Quantum Electronics, 26, pp. 2166-2185
Madsen, S.J., Patterson, M., Wilson, B.C., The use of India ink as an optical absorber in tissue simulating phantoms (1982) Phys Med Biol, 37, pp. 985-993
Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A., Valentini, G., A solid tissue phantom for photon migration studies (1997) Phys Med Biol, 42, pp. 1971-1979
Flock, S.T., Jacques, S.L., Wilson, B.C., Star, W.M., Van Gemert, M.J.C., A phantom medium for light propagation studies (1992) Lasers Surg Med, 12, pp. 510-519
Van Staveren, H.J., Moes, C.J.M., Van Marle, J., Prahl, S.A., Van Gemert, M.J.C., Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm (1991) Appl Opt, 30, pp. 4507-4514
Zaccanti, G., Del Bianco, S., Martelli, F., Measurements of optical properties of high-density media (2003) Appl Opt, 42, pp. 4023-4030
Choukeife, J.E., L'Huillier, J.P., Measurements of scattering effects within tissue-like media at two wavelengths of 632.8 nm and 680 nm (1999) Lasers Med Sci, 14, pp. 286-296
Nomura, Y., Hazeki, O., Tamura, M., Exponential attenuation of light along nonlinear path through the biological model (1989) Adv Exp Med Biol, 248, pp. 77-80
Nomura, Y., Tamura, M., Quantitative analysis of the hemoglobin oxygenation state of rat brain in vivo by picosecond time-resolved spectrophotometry (1991) J Biochem, 109, pp. 455-461
Hasegawa, Y., Yamada, Y., Tamura, M., Nomura, Y., Monte Carlo simulations of light transmission through living tissues (1991) Appl Opt, 30, pp. 4515-4520
Furutsu, K., Yamada, Y., Diffusion approximation in heavily dissipative medium (1994) Phys Rev E, 50, pp. 3634-3640
Nakai, T., Nishimura, G., Yamamoto, K., Tamura, M., Expression of optical diffusion coefficient in high-absorption turbid media (1997) Phys Med Biol, 42, pp. 2541-2549
Bondani, M., Redaelli, D., Spinelli, A., Andreoni, A., Roberti, G., Riccio, P., Liuzzi, R., Rech, I., Photon time-of-flight distributions through turbid media directly measured with single-photon avalanche diodes (2003) J Opt Soc Am B, 20, pp. 2383-2388
Giusto, A., Saija, R., Iatì, M.A., Denti, P., Borghese, F., Sindoni, O.I., Optical properties of high-density dispersions of particles. Application to Intralipid solutions (2003) Appl Opt, 42, pp. 4375-4380
Hebden, J. C., Gonzales, F. M., Gibson, A., Hillman, E. M. C., Yusof, R. Md., Everdell, N., Delpy, D. T., Martelli, F., Assessment of an in situ temporal calibration method for time-resolved optical tomography (2003) J Biomed Opt, 8, pp. 87-9
Iizuka, M. N., Sherar, M. D., Vltkin, I. A., Optical phantom materials for near infrared laser photocoagulation studies (1999) Lasers Surg Med, 25, pp. 159-169
Wilson, B. C., Patterson, M. S., Burns, D. M., Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light (1986) Lasers Med Sci, 1, pp. 235-244
De Jode, M. L., Monte Carlo simulations of the use of isotropic light dosimetry probes to monitor energy fluence in biological tissues (1999) Phys Med Biol, 44, pp. 3027-3037
Ripley, P. M., Laufer, J. G., Gordon, A. D., Connell, R. J., Bown, S. G., Near-infrared optical properties of ex vivo human uterus determined by the Monte Carlo inversion technique (1999) Phys Med Biol, 44, pp. 2451-2462
Simpson, C. R., Kohl, M., Essenpreis, M., Cope, M., Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique (1998) Phys Med Biol, 43, pp. 2465-2478
Beek, J. F., Blokland, P., Posthumus, P., Aalders, M., Pickering, J. W., Sterenborg, H. J. C. M., Van Gemert, M. J. C., In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm (1997) Phys Med Biol, 42, pp. 2255-2261
Jentink, H. W., De Mull, F. F. M., Hermsen, R. G. A., Greve, J., Monte Carlo simulations of laser Doppler blood flow measurement in tissue (1991) Appl Opt, 29, pp. 2371-2381
Farrel, T. J., Patterson, M. S., Wilson, B., A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo (1992) Med Phys, 19, pp. 879-888
Jacques, S. L., Wang, L., Monte Carlo modeling of light transport in tissue (1995) Optical-Thermal Response of Laser-Irradiated Tissue, pp. 73-100. , Welch AJ, van Gemert MJC, editors. New York: Plenum
Cheong, W. F., Prahl, S. A., Welch, A. J., A review of the optical properties of biological tissues (1990) IEEE J Quantum Electronics, 26, pp. 2166-2185
Madsen, S. J., Patterson, M., Wilson, B. C., The use of India ink as an optical absorber in tissue simulating phantoms (1982) Phys Med Biol, 37, pp. 985-993
Flock, S. T., Jacques, S. L., Wilson, B. C., Star, W. M., Van Gemert, M. J. C., A phantom medium for light propagation studies (1992) Lasers Surg Med, 12, pp. 510-519
Van Staveren, H. J., Moes, C. J. M., Van Marle, J., Prahl, S. A., Van Gemert, M. J. C., Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm (1991) Appl Opt, 30, pp. 4507-4514
Choukeife, J. E., L'Huillier, J. P., Measurements of scattering effects within tissue-like media at two wavelengths of 632. 8 nm and 680 nm (1999) Lasers Med Sci, 14, pp. 286-296
Determination of the concentration scaling law of the scattering coefficient of water solutions of intralipid at 832 nm by comparison between collimated detection measurements and Monte Carlo simulations
Background and Objectives: Intralipid (IP) is a scatterer extensively used in the building of phantoms for Biomedical Optics measurements. Recently, deviations from the linearity have been shown for the concentration scaling law of the scattering coefficient of IP water solutions at visible wavelengths. In this work this scaling law was determined at 832 nm. Study Design/Materials and Methods: Space resolved transmittance measurements of a laser beam at 832 nm through water solutions of IP and ink were performed and compared with the corresponding results of Monte Carlo simulations. Results: The comparison provides a quadratic dependence of mu'(S) on the volume-to-volume scatterer concentration, C-IP, in the range of C-IP values (0.0024 < C-IP < 0.0075). These deviations from the linear behavior are related to the failure of the independent scatterer approximation. Conclusion: The quadratic dependence of mu'(S) on C-IP is in agreement with recent results obtained by other groups with different experimental techniques and is validated by a recent theoretical work. (c) 2005 Wiley-Liss, Inc.
Determination of the concentration scaling law of the scattering coefficient of water solutions of intralipid at 832 nm by comparison between collimated detection measurements and Monte Carlo simulations
No results.
Determination of the concentration scaling law of the scattering coefficient of water solutions of intralipid at 832 nm by comparison between collimated detection measurements and Monte Carlo simulations