Ist. di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 1-80134 Napoli, Italy
Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, United States
References: Bennett, M.J., Schlunegger, M.P., Eisenberg, D., 3D Domain swapping: A mechanism for oligomer assembly (1995) Protein Sci., 4, pp. 2455-246
Schlunegger, M.P., Bennett, M.J., Eisenberg, D., Oligomer formation by 3D domain swapping: A model for protein assembly and misassembly (1997) Adv. Protein Chem., 50, pp. 61-122
Bennett, M.J., Choe, S., Eisenberg, D., Refined structure of dimeric diphtheria toxin at 2.0 Å resolution (1994) Protein Sci., 3, pp. 1444-1463
Liu, Y., Eisenberg, D., 3D domain swapping: As domains continue to swap (2002) Protein Sci., 11, pp. 1285-1299
Newcomer, M.E., Protein folding and three-dimensional domain swapping: A strained relationship? (2002) Curr. Opin. Struct. Biol., 12, pp. 48-53
Rousseau, F., Schymkowitz, J.W.H., Itzhaki, L.S., The unfolding story of three-dimensional domain swapping (2003) Structure, 11, pp. 243-251
Canals, A., Pous, J., Guasch, A., Benito, A., Ribo, M., Vilanova, M., Coll, M., The structure of an engineered domain-swapped ribonuclease dimer and its implications for the evolution of proteins toward oligomerization (2001) Structure, 9, pp. 967-976
Cohen, F.E., Prusiner, S.B., Pathologic conformations of prion proteins (1998) Annu. Rev. Biochem., 67, pp. 793-819
Liu, Y., Hart, P.J., Schlunegger, M.P., Eisenberg, D., The crystal structure of a 3D domain-swapped dimer of RNase a at a 2.1-Å resolution (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 3437-3442
Liu, Y., Gotte, G., Libonati, M., Eisenberg, D., A domain-swapped RNase a dimer with implications for amyloid formation (2001) Nat. Struct. Biol., 8, pp. 211-214
Sinha, N., Tsai, C.J., Nussinov, R., A proposed structural model for amyloid fibril elongation: Domain swapping forms an interdigitating β-structure polymer (2001) Protein Eng., 14, pp. 93-103
Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, M., Jaskolski, M., Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping (2001) Nat. Struct. Biol., 8, pp. 316-320
Piccoli, R., Di Donato, A., D'Alessio, G., Co-operativity in seminal ribonuclease function. Kinetic studies (1988) Biochem. J., 253, pp. 329-336
Vitagliano, L., Adinolfi, S., Sica, F., Merlino, A., Zagari, A., Mazzarella, L., A potential allosteric subsite generated by domain swapping in bovine seminal ribonuclease (1999) J. Mol. Biol., 293, pp. 569-577
Crestfield, A.M., Stein, W.H., Moore, S., On the aggregation of bovine pancreatic ribonuclease (1962) Arch. Biochem. Biophys., 1, pp. 217-222
Sorrentino, S., Barone, R., Bucci, E., Gotte, G., Russo, N., Libonati, M., D'Alessio, G., The two dimeric forms of RNase A (2000) FEBS Lett., 466, pp. 35-39
Gotte, G., Bertoldi, M., Libonati, M., Structural versatility of bovine ribonuclease A. Distinct conformers of trimeric and tetrameric aggregates of the enzyme (1999) Eur. J. Biochem., 265, pp. 680-687
Nenci, A., Gotte, G., Bertoldi, M., Libonati, M., Structural properties of trimers and tetramers of ribonuclease A (2001) Protein Sci., 10, pp. 2017-2027
Matousek, J., Gotte, G., Pouckova, P., Soucek, J., Slavik, T., Vottariello, F., Libonati, M., Antitumor activity and other biological actions of oligomers of ribonuclease A (2003) J. Biol. Chem., 278, pp. 23817-23822
Merlino, A., Vitagliano, L., Ceruso, M.A., Mazzarella, L., Dynamic properties of the N-terminal swapped dimer of ribonuclease A (2004) Biophys. J., 86, pp. 2382-2391
Gotte, G., Vottariello, F., Libonati, M., Thermal aggregation of ribonuclease A. A contribution to the understanding of the role of 3D domain swapping in protein aggregation (2003) J. Biol. Chem., 278, pp. 10763-10769
Daggett, V., Molecular dynamics simulations of the protein unfolding/folding reaction (2002) Acc. Chem. Res., 35, pp. 422-429
Alonso, D.O.V., Alm, E., Daggett, V., Characterization of the unfolding pathway of the cell-cycle protein p13suc1 by molecular dynamics simulations: Implications for domain swapping (2000) Structure, 8, pp. 101-110
Berisio, R., Sica, F., Lamzin, V.S., Wilson, K.S., Zagari, A., Mazzarella, L., Atomic resolution structures of ribonuclease a at six pH values (2002) Acta Crystallogr., D58, pp. 441-450
Esposito, L., Vitagliano, L., Sica, F., Sorrentino, G., Zagari, A., Mazzarella, L., The ultrahigh-resolution crystal structure of ribonuclease A containing an isoaspartyl residue: Hydration and sterochemical analysis (2000) J. Mol. Biol., 297, pp. 713-732
Levitt, M., (1990) ENCAD, Computer Program, Energy Calculations and Dynamics, , Molecular Applications Group, Palo Alto, CA
Levitt, M., Hirshberg, M., Sharon, R., Daggett, V., Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solutions (1995) Comput. Phys. Commun., 91, pp. 215-231
Kell, G.S., Precise representation of volume properties of water at one atmosphere (1967) J. Chem. Eng. Data, 12, pp. 66-68
Beck, D.A.C., Armen, R.S., Daggett, V., Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides (2005) Biochemistry, 44, pp. 609-616
Vitagliano, L., Merlino, A., Zagari, A., Mazzarella, L., Reversibile substrate-induced domain motions in ribonuclease A (2002) Proteins, 46, pp. 97-104
Daggett, V., Kollman, P.A., Kuntz, I.D., A molecular dynamics simulation of polyalanine: An analysis of equilibrium motions and helix-coil transitions (1991) Biopolymers, 31, pp. 1115-1134
Thomas, A.S., Elcock, A.H., Molecular simulations suggest protein salt bridges are uniquely suited to life at high temperatures (2004) J. Am. Chem. Soc., 126, pp. 2208-2214
Park, C., Raines, R.T., Dimer formation by a monomeric protein (2000) Protein Sci., 9, pp. 2026-2033
Wlodawer, A., Structure of bovine pancreatic ribonuclease by X-ray and neutron diffraction (1985) Biological Macromolecules and Assembly, pp. 394-439. , Jurnak, F., and McPherson, A., Eds. Wiley, New York
Neira, J.L., Sevilla, P., Menendez, M., Bruix, M., Rico, M., Hydrogen exchange in ribonuclease a and ribonuclease S: Evidence for residual structure in the unfolded state under native conditions (1999) J. Mol. Biol., 285, pp. 627-643
Navon, A., Ittah, V., Laity, J.H., Scheraga, H.A., Haas, E., Gussakovsky, E.E., Local and long-range interactions in the thermal unfolding transition of bovine pancreatic ribonuclease A (2001) Biochemistry, 40, pp. 93-104
Neira, J.L., Rico, M., Folding studies on ribonuclease A, a model protein (1997) Folding Des., 2, pp. R1-R11
Labhardt, A.M., Secondary structure in ribonuclease. I. Equilibrium folding transitions seen by amide CD (1982) J. Mol. Biol., 157, pp. 331-355
Seshadri, S., Oberg, K.A., Fink, A.L., Thermally denatured ribonuclease A retains secondary structure as shown by FTIR (1994) Biochemistry, 33, pp. 1351-1355
Torrent, J., Connelly, J.P., Coll, M.G., Ribó, M., Lange, R., Vilanova, M., Pressure versus heat-induced unfolding of ribonuclease A: The case of hydrophobic interactions within a chain-folding initiation site (1999) Biochemistry, 38, pp. 15952-15961
Sosnick, T.R., Trewhella, J., Denatured states of ribonuclease A have compact dimensions and residual secondary structure (1992) Biochemistry, 31, pp. 8329-8355
Fabian, H., Mantsch, H.H., Ribonuclease A revisited: Infrared spectroscopic evidence for lack of native-like secondary structure in the thermally denatured state (1995) Biochemistry, 34, pp. 13651-13655
Robertson, A.D., Baldwin, R.L., Hydrogen exchange in thermally denatured ribonuclease A (1991) Biochemistry, 32, pp. 5222-5232
Kulman, B., O'Neill, J.W., Kim, D.E., Zhang, K.Y., Baker, D., Conversion of monomeric protein L to an obligate dimer by computational protein design (2001) Proc. Natl. Acad. Sci. U.S.A., 98, pp. 10687-10691
Piccoli, R., De Lorenzo, C., Dal Piaz, F., Pucci, P., D'Alessio, G., Trypsin shed light on the singular case of seminal RNase a dimer with two quaternary conformations (2000) J. Biol. Chem., 11, pp. 8000-8006
D'Alessio, G., Di Donato, A., Mazzarella, L., Piccoli, R., Seminal ribonuclease: The importance of diversity (1997) Ribonucleases: Structures and Functions, pp. 383-423. , D'Alessio, G., and Riordan, J. F., Eds. Academic Press, New York
Piccoli, R., Tamburrini, M., Piccialli, G., Di Donato, A., Parente, A., D'Alessio, G., The dual-mode quaternary structure of seminal RNase (1992) Proc. Natl. Acad. Sci. U.S.A., 89, pp. 1870-1874
Mazzarella, L., Capasso, S., Demasi, D., Di Lorenzo, G., Mattia, C.A., Zagari, A., Bovine seminal ribonuclease: Structure at 1.9 Å resolution (1993) Acta Crystallogr., D49, pp. 389-402
Kraulis, P.J., MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures (1991) J. Appl. Crystallogr., 24, pp. 946-950
Bennett, M. J., Schlunegger, M. P., Eisenberg, D., 3D Domain swapping: A mechanism for oligomer assembly (1995) Protein Sci., 4, pp. 2455-246
Bennett, M. J., Choe, S., Eisenberg, D., Refined structure of dimeric diphtheria toxin at 2. 0 resolution (1994) Protein Sci., 3, pp. 1444-1463
Newcomer, M. E., Protein folding and three-dimensional domain swapping: A strained relationship? (2002) Curr. Opin. Struct. Biol., 12, pp. 48-53
Cohen, F. E., Prusiner, S. B., Pathologic conformations of prion proteins (1998) Annu. Rev. Biochem., 67, pp. 793-819
Liu, Y., Hart, P. J., Schlunegger, M. P., Eisenberg, D., The crystal structure of a 3D domain-swapped dimer of RNase a at a 2. 1- resolution (1998) Proc. Natl. Acad. Sci. U. S. A., 95, pp. 3437-3442
Crestfield, A. M., Stein, W. H., Moore, S., On the aggregation of bovine pancreatic ribonuclease (1962) Arch. Biochem. Biophys., 1, pp. 217-222
Alonso, D. O. V., Alm, E., Daggett, V., Characterization of the unfolding pathway of the cell-cycle protein p13suc1 by molecular dynamics simulations: Implications for domain swapping (2000) Structure, 8, pp. 101-110
Kell, G. S., Precise representation of volume properties of water at one atmosphere (1967) J. Chem. Eng. Data, 12, pp. 66-68
Beck, D. A. C., Armen, R. S., Daggett, V., Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides (2005) Biochemistry, 44, pp. 609-616
Thomas, A. S., Elcock, A. H., Molecular simulations suggest protein salt bridges are uniquely suited to life at high temperatures (2004) J. Am. Chem. Soc., 126, pp. 2208-2214
Neira, J. L., Sevilla, P., Menendez, M., Bruix, M., Rico, M., Hydrogen exchange in ribonuclease a and ribonuclease S: Evidence for residual structure in the unfolded state under native conditions (1999) J. Mol. Biol., 285, pp. 627-643
Neira, J. L., Rico, M., Folding studies on ribonuclease A, a model protein (1997) Folding Des., 2, pp. R1-R11
Labhardt, A. M., Secondary structure in ribonuclease. I. Equilibrium folding transitions seen by amide CD (1982) J. Mol. Biol., 157, pp. 331-355
Sosnick, T. R., Trewhella, J., Denatured states of ribonuclease A have compact dimensions and residual secondary structure (1992) Biochemistry, 31, pp. 8329-8355
Robertson, A. D., Baldwin, R. L., Hydrogen exchange in thermally denatured ribonuclease A (1991) Biochemistry, 32, pp. 5222-5232
Kraulis, P. J., MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures (1991) J. Appl. Crystallogr., 24, pp. 946-950
Merritt, E. A., Bacon, D. J., Raster3D: Photorealistic molecular graphics (1997) Methods Enzymol., 277, pp. 505-524
Insight into ribonuclease A domain swapping by molecular dynamics unfolding simulations
Bovine pancreatic ribonuclease (RNase A) deserves a special place among the numerous proteins that form oligomers by three-dimensional domain swapping. In fact, under destabilizing conditions and at high protein concentrations, it can swap two different domains, the N-terminal alpha-helix or the C-terminal beta-strand, leading to dimers with different quaternary structures. With the change in the unfolding conditions, the relative abundance of the two dimers varies, and the prevalence of one dimer over the other is inverted. To investigate the dynamic behavior of the termini, four independent 10 ns high-temperature molecular dynamics simulations of RNase A were carried out at two different pH values in an attempt to reproduce the experimental conditions of neutral and very low pH that favor the formation of the N- and C-terminal domain-swapped dimers, respectively. In agreement with experimental data, under mild unfolding conditions, a partial or complete opening of the N-terminal arm is observed, whereas the dislocation of the C-terminus away from the core of the structure occurs only during the low-pH simulations. Furthermore, the picture emerging from this study indicates that the same protein can have different pathways for domain swapping. Indeed, in RNase A the C-terminal swapping requires a substantial unfolding of the monomers, whereas the N-terminal swapping can occur through only partial unfolding.
Insight into ribonuclease A domain swapping by molecular dynamics unfolding simulations