Dipartimento di Chimica, Univ. di Napoli Federico II, Complesso Univ. Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
Istituto Biostrutture E Bioimmagini, CNR, Via mezzocannone 16, 80134 Napoli, Italy
Adamo, C., Barone, V., (1999) J. Chem. Phys., 110, p. 6158
Foresman, J.B., Frisch, A.E., A description of basis sets and standard computational methods can be found (1996) Exploring Chemistry with Electronic Structure Methods, 2nd Ed., , Gaussian Inc.: Pittsburgh, PA
Improta, R., Benzi, C., Barone, V.J., (2001) Am. Chem. Soc., 123, p. 12568
Improta, R., Mele, F., Crescenzi, O., Benzi, C., Barone, V., (2002) J. Am. Chem. Soc., 124, p. 7857
Langella, E., Improta, R., Barone, V., (2002) J. Am. Chem. Soc., 124, p. 11531
Cossi, M., Scalmani, G., Rega, N., Barone, V., (2002) J. Chem. Phys., 117, p. 43
Miertus, S., Scrocco, E., Tomasi, J., (1981) Chem. Phys., 55, p. 117
Amovilli, C., Barone, V., Cammi, R., Cances, E., Cossi, M., Mennucci, B., Pomelli, C.S., Tomasi, J., (1998) Adv. Quantum Chem., 32, p. 227
Barone, V., Cossi, M., Tomasi, J., (1997) Chem. Phys., 107, p. 3210
Barone, V., (1995) Recent Advances in Density Functional Methods, p. 287. , Chong, D. P., Ed.
World Scientific: Singapore
Creamer, T.P., Campbell, M.N., (2002) Adv. Protein Chem., 62, p. 263
De Zotti, M., (2002) Test di Laurea, , Università di Padova: Padova
Benzi, C., Improta, R., Scalmani, G., Barone, V., (2002) J. Comput. Chem., 23, p. 341
Paul, G., Kebarle, P., (1989) J. Am. Chem. Soc., 111, p. 464
Antonello, S., Crisma, M., Formaggio, F., Moretto, A., Taddei, F., Toniolo, C., Maran, F., (2002) J. Am. Chem. Soc., 124, p. 11503
Langella, E., Rega, N., Improta, R., Crescenzi, O., Barone, V., (2000) J. Comput. Chem., 23, p. 650
Karle, I.L., Balaram, P., (1990) Biochemistry, 29, p. 6747
Karle, I.L., Das, C., Balaram, P., (2000) Proc. Natl. Acad. Sci. U.S.A., 97, p. 3034
Improta, R., Rega, N., Aleman, C., Barone, V., (2001) Macromolecules, 34, p. 7550
Benedetti, E., Bavoso, A., Di Blasio, B., Pavone, V., Pedone, C., Crisma, M., Bonora, G.M., Toniolo, C., (1982) J. Am. Chem. Soc., 104, p. 2437
Wu, Q., Yang, W., (2002) J. Chem. Phys., 116, p. 515
Savéant, J.-M., (1987) J. Am. Chem. Soc., 109, p. 6788
Adamo, C., Scuseria, G.E., Barone, V., (1999) J. Chem. Phys., 111, p. 2889
Cossi, M., Barone, V., (2001) J. Chem. Phys., 115, p. 4708
Beratan, D.N., Onuchic, J.N., Hopfield, J.I., (1987) J. Chem. Phys., 86, p. 4488
Skourtis, S.S., Beratan, D.N., (1999) Electron Transfer: From Isolated Molecules to Biomolecules, (PART 1), p. 377. , Jortner, J., Bixon, M., Eds.
Marcus, R. A., Sutin, N., (1985) Biochim. Biophys. Acta, 811, p. 26
Regan, J. J., Onuchic, J. N., (1999) Electron Transfer: From Isolated Molecules to Biomolecules, (PART 2), p. 497. , Jortner, J., Bixon, M., Eds.
Gray, H. B., Winkler, J. R., (2001) Electron Transfer in Chemistry, 1, p. 3. , Balzani, V., Ed.
Isicd, S. S., Ogawa, M. Y., Wishart, J. F., (1992) Chem. Rev., 92, p. 381
Defelippis, M. R., Faraggi, M., Klapper, M. H., (1990) J. Am. Chem. Soc., 112, p. 5640
Mishra, A. K., Chandrasekar, R., Faraggi, M., Klapper, M. H., (1994) J. Am. Chem. Sac., 116, p. 1414
Galka, M. M., Kraatz, H. -B., (2002) ChemPhysChem, 3, p. 356
Schanze, K. S., Cabana, L. A., (1990) J. Phys. Chem., 94, p. 2740
Fernando, S. R. L., Kozlov, G. V., Ogawa, M. Y., (1998) Inorg. Chem., 37, p. 1900
Mutz, M. W., Case, M. A., Wishart, I. F., Ghadiri, M. R., McLendon, G. L., (1999) J. Am. Chem. Soc., 121, p. 858
Burns, C. S., Rochelle, L., Forbes, M. D. E., (2001) Org. Lett., 3, p. 2197
Kise Jr., K. J., Bowler, B. E., (2003) Inorg. Chem., 42, p. 3891
Newton, M. D., (1991) Chem. Rev., 91, p. 767
Paddon-Row, M. N., (2003) Aus. J. Chem., 56, p. 729
Schuster, G. B., (2000) Acc. Chem. Res., 33, p. 253
Davis, W. B., Svec, W. A., Ratner, M. A., Wasielewski, M. R., (1998) Nature, 596, p. 60
Page, C. C., Moser, C. C., Chen, X., Dutton, P. L., (1999) Nature, 402, p. 47
Kelley, S. O., Barton, J. K., (1999) Science, 283, p. 375
Li, X. -Q., Zhang, H., Yan, Y. J., (2001) J. Phys. Chem. a, 105, p. 9563
Berlin, Y. A., Burin, A. L., Ratner, M. A., (2002) Chem. Phys., 275, p. 61
Kopple, K. D., Miller, R. R., Muller, T. C., (1962) Polyamino Acids, Polypeptides, and Proteins, p. 295. , Stahmann, M. A., Ed.
Petrov, E. G., Shevchenko, Ye. V., Teslenko, V. I., May, V., (2001) J. Chem. Phys., 115, p. 7107
Petrov, E. G., May, V., (2001) J. Phys. Chem. B, 105, p. 10176
Petrov, E. G., Zelinskyy, Ya. R., May, V., (2002) J. Phys. Chem. B, 106, p. 3092
Schlag, E. W., Sheu, S. -Y., Yang, D. -Y., Selzle, H. L., Lin, S. H., (2000) Proc. Nat. Acad. Sci., 97, p. 1068
Sheu, S. -Y., Schlag, E. W., Yang, D. -Y., Selzle, H. L., (2001) J. Phys. Chem. a, 105, p. 6353
Ungar, L. W., Newton, M. D., Voth, G. A., (1999) J. Phys. Chem. B, 103, p. 7367
Shin, Y. -G., Newton, M. D., Isied, S. S., (2003) J. Am. Chem. Soc., 125, p. 3722
Denkers, R. L., Maran, F., Wayner, D. D. M., Workentin, M. S., (1999) J. Am. Chem. Soc., 121, p. 7239
De Rege, P. J. F., Williams, S. A., Therien, M. J., (1995) Science, 269, p. 1409
Kirby, J. P., Roberts, J. A., Nocera, D. G., (1997) J. Am. Chem. Soc., 119, p. 9230
Williamson, D. A., Bowler, B. E., (1998) J. Am. Chem. Soc., 120, p. 10902
Dwyer, T. M., Mortl, S., Kemter, K., Bacher, A., Fauq, A., Frerman, F. E., (1999) Biochemistry, 38, p. 9735
Newton, M. D., (1977) J. Electroanal. Chem., 438, p. 3
Gessmann, R., Br ckner, H., Petratos, K., (2003) J. Pept. Sci., 9, p. 753
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery Jr., J. A., Pople, J. A., (2003) Gaussian 03, Revision B. 05, , Gaussian, Inc.: Pittsburgh, PA
Foresman, J. B., Frisch, A. E., A description of basis sets and standard computational methods can be found (1996) Exploring Chemistry with Electronic Structure Methods, 2nd Ed., , Gaussian Inc.: Pittsburgh, PA
Creamer, T. P., Campbell, M. N., (2002) Adv. Protein Chem., 62, p. 263
Karle, I. L., Balaram, P., (1990) Biochemistry, 29, p. 6747
Karle, I. L., Das, C., Balaram, P., (2000) Proc. Natl. Acad. Sci. U. S. A., 97, p. 3034
Sav ant, J. -M., (1987) J. Am. Chem. Soc., 109, p. 6788
Beratan, D. N., Onuchic, J. N., Hopfield, J. I., (1987) J. Chem. Phys., 86, p. 4488
Skourtis, S. S., Beratan, D. N., (1999) Electron Transfer: From Isolated Molecules to Biomolecules, (PART 1), p. 377. , Jortner, J., Bixon, M., Eds.
Understanding Electron Transfer across Negatively-Charged Aib Oligopeptides
The physicochemical effects modulating the conformational behavior and the rate of intramolecular dissociative electron transfer in phthalimide-Aib n-peroxide peptides (n = 0-3) have been studied by an integrated density functional/continuum solvent model. We found that three different orientations of the phthalimide ring are possible, labeled φhel, φC7, and φpII. In the condensed phase, they are very close in energy when the system is neutral and short. When the peptide chain length increases and the system is negatively charged, Ohei becomes instead the most stable conformer. Our calculations confirm that the 3 10-helix is the most stable secondary structure for the peptide bridge. However, upon charge injection in the phthalimide end of the phthalimide-Aib3-peroxide, the peptide bridge can adopt an α-helix conformation as well. The study of the dependence of the frontier orbitals on the length and on the conformation of the peptide bridge (in agreement with experimental indications) suggests that for n = 3 the process could be influenced by a 310 → α-helix conformational transition of the peptide chain.
Understanding Electron Transfer across Negatively-Charged Aib Oligopeptides
Kállay C, Dávid A, Timári S, Nagy EM, Sanna D, Garribba E, Micera G, De Bona P, Pappalardo G, Rizzarelli E, Sóvágó I * Copper(II) complexes of rat amylin fragments(357 views) Dalton T (ISSN: 1477-9234, 1477-9226, 1477-9234electronic), 2011 Oct 14; 40(38): 9711-9721. Impact Factor:3.838 ViewExport to BibTeXExport to EndNote