Seto, C.T., Whitesides, G.M., (1993) J. Am. Chem. Soc., 115, p. 905
De Rossi, U., Dähne, S., Meskers, S.C.J., Dekkers, H.O.J.M., (1996) Angew. Chem. Int. Ed. Engl., 35, p. 760
Ferrarini, A., Moro, G.J., Nordio, P.L., (1996) Mol. Phys., 87, p. 495
Atwood, J.L., Mac Gillivray, L.R., (1997) Nature, 389, p. 469
Saurez, M., Branda, N., Lehn, J.-M., De Cian, A., Fischer, J., (1998) Helv. Chim. Acta, 81, p. 1
Rowan, A., Nolte, R.J.M., (1998) Angew. Chem. Int. Ed. Engl., 37, p. 63
Ribò, J.M., Crusats, J., Sagues, F., Claret, J., Rubires, R., (2001) Science, 292, p. 2063
Stryer, L., Blout, E.R., (1961) J. Am. Chem. Soc., 83, p. 1411
Gibbs, E.J., Tinoco, I., Maestre, M.F., Ellinas, P.A., Pasternack, R.F., (1988) Biochem. Biophys. Res. Commun., 157, p. 350
Pasternack, R.F., Giannetto, A., Pagano, P., Gibbs, E.J., (1991) J. Am. Chem. Soc., 113, p. 7799
Purrello, R., Monsù Scolaro, L., Bellacchio, E., Gurrieri, S., Romeo, A., (1998) Inorg. Chem., 37, p. 3647
Bellacchio, E., Lauceri, R., Monsù Scolaro, L., Romeo, A., Purrello, R., (1998) J. Am. Chem. Soc., 120, p. 12353
Lauceri, R., Raudino, A., Monsù Scolaro, L., Micali, N., Purrello, R., (2002) J. Am. Chem. Soc., 124, p. 894
Purrello, R., Raudino, A., Monsù Scolaro, L., Loisi, A., Bellacchio, E., Lauceri, R., (2000) J. Phys. Chem., 104, p. 10900
Yashima, E., Maeda, K., Okamoto, Y., (1999) Nature, 399, p. 449
Ishikawa, M., Maeda, K., Mitsutsuji, Y., Yashima, E., (2004) J. Am. Chem. Soc., 126, p. 732
Prins, L.J., De Jong, F., Timmermann, P., Reinhoudt, D.N., (2000) Nature, 408, p. 181
Ziegler, M., Davis, A.V., Johnson, D.W., Raymond, K.N., (2003) Angew. Chem. Int. Ed. Engl., 42, p. 665
Cantor, C., Schimmel, P.R., (1980) Biophysical Chemistry, , W. H. Freeman and Company: New York
Kondeputi, D. K., Kaufman, R. J., Singh, N., (1990) Science, 250, p. 97
Seto, C. T., Whitesides, G. M., (1993) J. Am. Chem. Soc., 115, p. 905
De Rossi, U., D hne, S., Meskers, S. C. J., Dekkers, H. O. J. M., (1996) Angew. Chem. Int. Ed. Engl., 35, p. 760
Atwood, J. L., Mac Gillivray, L. R., (1997) Nature, 389, p. 469
Rib, J. M., Crusats, J., Sagues, F., Claret, J., Rubires, R., (2001) Science, 292, p. 2063
Gibbs, E. J., Tinoco, I., Maestre, M. F., Ellinas, P. A., Pasternack, R. F., (1988) Biochem. Biophys. Res. Commun., 157, p. 350
Pasternack, R. F., Giannetto, A., Pagano, P., Gibbs, E. J., (1991) J. Am. Chem. Soc., 113, p. 7799
Purrello, R., Mons Scolaro, L., Bellacchio, E., Gurrieri, S., Romeo, A., (1998) Inorg. Chem., 37, p. 3647
Prins, L. J., De Jong, F., Timmermann, P., Reinhoudt, D. N., (2000) Nature, 408, p. 181
Transfer, memory and amplification of chirality in porphyrin aggregates
The aggregation process of the tetraanionic H2TPPS and the tetracationic CuT4 porphyrins leads, in aqueous solution and in the presence of a suitable chiral template, to the formation of remarkably stable and kinetically inert chiral porphyrin heteroassemblies. These properties enable the aggregates to survive template chirality disruption and its complete removal from the solution, maintaining unaltered the imprinted chiral structure. The free-template "imprinted" porphyrin aggregate is an excellent mold for the amplification of its own structure.
Transfer, memory and amplification of chirality in porphyrin aggregates