High Resolution Crystallographic Studies Of Alpha-Hemolysin-Phospholipid Complexes Define Heptamer-Lipid Head Group Interactions: Implication For Understanding Protein-Lipid Interactions
High Resolution Crystallographic Studies Of Alpha-Hemolysin-Phospholipid Complexes Define Heptamer-Lipid Head Group Interactions: Implication For Understanding Protein-Lipid Interactions(320 views) Galdiero S, Gouaux E
Protein Sci (ISSN: 0961-8368, 1469-896xelectronic), 2004 Jun; 13(6): 1503-1511.
Howard Hughes Medical Institute, Dept. of Biochem./Molec. Biophys., Columbia University, New York, NY 10032, United States
Dipartimento di Chimica Biologica, Ist. di Biostrutture/Bioimmagini-CNR, University of Naples Federico II, 80134, Naples, Italy
References: Bayley, H., Cremer, P.S., Stochastic sensors inspired by biology (2001) Nature, 413, pp. 226-23
Bhakdi, S., Tranum-Jensen, J., S. aureus α-toxin (1991) Microbiol. Rev., 55, pp. 733-751
Bhakdi, S., Fussle, R., Tranum-Jensen, J., Staphylococcal α-toxin: Oligomerization of hydrophilic monomers to form amphiphilic hexamers induced through contact with deoxycholate micelles (1981) Proc. Natl. Acad. Sci., 78, pp. 5475-5479
Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Pannu, N.S., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr. D, 54, pp. 905-921
Chattopadhyay, A., McNamee, M.G., Average membrane penetration depth of tryptophan residues of the nicotinic acetylcholine receptor by the parallax method (1991) Biochemistry, 30 (29), pp. 7159-7164
The CCP4 suite: Programs for protein crystallography (1994) Acta Crystallogr. D, 50, pp. 760-763
Ferguson, A.D., Welte, W., Hofmann, E., Lindner, B., Holst, O., Coulton, J.W., Diederichs, K., A conserved structural motif for lipopolysaccharide recognition by procaryotic and eucaryotic proteins (2000) Structure Fold. Des., 8, pp. 585-592
Ferguson, A.D., Braun, V., Fiedler, H.P., Coulton, J.W., Diederichs, K., Welte, W., Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA (2000) Protein Sci., 5, pp. 956-963
Ferreras, M., Hoper, F., Dalla Serra, M., Colin, D.A., Prevost, G., Menestrina, G., The interaction of Staphylococcus aureus bi-component γ-hemolysins and leucocidins with cells and lipid membranes (1998) Biochim. Biophys. Acta, 1414, pp. 108-126
Fyfe, P.K., McAuley, K.E., Roszak, A.W., Isaacs, N.W., Cogdell, R.J., Jones, M.R., Probing the interface between membrane proteins and membrane lipids by X-ray crystallography (2001) Trends Biochem. Sci., 26, pp. 106-112
Gennis, R., (1989) Biomembranes, , Springer-Verlag, New York
Gouaux, E., α-Hemolysin from S. aureus: An archetype of β-barrel, channel forming toxin (1998) J. Struct. Biol., 121, pp. 110-122
Gu, L.Q., Braha, O., Conlan, S., Cheley, S., Bayley, H., Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter (1999) Nature, 398, pp. 686-690
Gu, L.Q., Cheley, S., Bayley, H., Capture of a single molecule in a nanocavity (2001) Science, 291, pp. 636-640
Hunter, S.E., Brown, J.E., Oyston, P.C., Sakurai, J., Titball, R.W., Molecular genetic analysis of β-toxin of Clostridium perfringens reveals sequence homology with α-toxin, γ-toxin, and leukocidin of Staphylococcus aureus (1993) Infect. Immunol., 61, pp. 3958-3965
Jacobs, R.E., White, S.H., The nature of the hydrophobic binding of small peptides at the bilayer interface: Implications for the insertion of transbilayer helices (1989) Biochemistry, 28, pp. 3421-3437
Jones, T.A., Cowan, S., Zou, J.-Y., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47, pp. 110-119
Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., PROCHECK: A program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallogr., 26, pp. 283-291
Luecke, H., Schobart, B., Richter, H.T., Cartailler, P., Lanyi, J.K., Structure of bacteriorhodopsin at 1.55 Å resolution (1999) J. Mol. Biol., 291, pp. 899-911
McAuley, K.E., Fyfe, P.K., Ridge, J.P., Isaacs, N.W., Cogdell, R.J., Jones, M.R., Structural details of an interaction between cardiolipin and an integral membrane protein (1999) Proc. Natl. Acad. Sci., 95, pp. 14706-14711
Menestrina, G., Serra, M.D., Prevost, G., Mode of action of β-barrel pore-forming toxins of the staphylococcal α-hemolysin family (2001) Toxicon, 39, pp. 1661-1672
Olson, R., Gouaux, J., Vibrio cholerae cytolysin is composed of an α-hemolysin-like core (2003) Protein Sci., 12, pp. 379-383
Olson, R., Nariya, H., Yokota, K., Kamio, Y., Gouaux, E., Crystal structure of staphylococcal lukF delineates conformational changes accompanying formation of a transmembrane channel (1999) Nature Struct. Biol., 6, pp. 134-140
Pédelacq, J.D., Maveyraud, L., Prevost, G., Baba-Moussa, L., Gonzalez, A., Courcelle, E., Shepard, W., Mourey, L., The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins (1999) Structure Fold. Des., 7, pp. 277-287
Petosa, C., Collier, R.J., Klimpel, K.R., Leppla, S.H., Liddington, R.C., Crystal structure of the anthrax toxin protective antigen (1997) Nature, 385, pp. 833-838
Rossjohn, J., Feil, S.C., McKinstry, W.J., Tsernoglou, D., Van Der Goot, G., Buckley, J.T., Parker, M.W., Aerolysin - A paradigm for membrane insertion of β-sheet protein toxins (1998) J. Struct. Biol., 121, pp. 92-100
Rossjohn, J., Raja, S.M., Nelson, K.L., Feil, S.C., Van Der Goot, F.G., Parker, M.W., Buckley, J.T., Movement of a loop in domain 3 of aerolysin is required for channel formation (1998) Biochemistry, 37, pp. 741-746
Roth, M., Arnoux, B., Ducruix, A., Reiss-Husson, F., Structure of the detergent phase and protein-detergent interactions in crystals of the wild-type (strain-Y) Rhodobacter sphaeroides photochemical reaction center (1991) Biochemistry, 30, pp. 9403-9413
Satow, Y., Cohen, G.H., Padlan, E.A., Davies, D.V., Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 Å (1986) J. Mol. Biol., 190, pp. 593-596
Song, L., Hohaugh, M.R., Shustak, C., Cheley, S., Bayley, H., Gouaux, J.E., Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore (1996) Science, 274, pp. 1859-1865
Tomita, T., Kamio, Y., Molecular biology of the pore-forming cytolysins from Staphylococcus aureus, α- and γ-hemolysins and leukocidin (1997) Biosci. Biotechnol. Biochem., 61, pp. 565-572
Tsukihara, T., Yoshikawa, S., Crystal structural studies of a membrane protein complex, cytochrome c oxidase from bovine heart (1998) Acta Crystallogr. A, 54, pp. 895-904
Valeva, A., Weisse, A., Walker, B., Kehoe, M., Bayley, H., Bhakdi, S., Palmer, M., Molecular architecture of a toxin pore: A 15-residue sequence lines the transmembrane channel of staphylococcal α-toxin (1996) EMBO J., 15, pp. 1857-1864
Valeva, A., Palmer, M., Bhakdi, S., Staphylococcal α-toxin: Formation of the heptameric pore is partially cooperative and proceeds through multiple intermediate stages (1997) Biochemistry, 36, pp. 13298-13304
Valeva, A., Pongs, J., Bhakdi, S., Palmer, M., Staphylococcal α-toxin: The role of the N-terminus in formation of the heptameric pore - A fluorescence study (1997) Biochim. Biophys. Acta, 1325, pp. 281-286
Valiyaveetil, F.I., Zhou, Y., Mackinnon, R., Lipids in the structure, folding and function of the KcsA K+channel (2002) Biochemistry, 41, pp. 10771-10777
Wah, D.A., Fernandez-Tomero, C., Sanz, L., Romero, A., Calvete, J.J., Sperm coating mechanism from the 1.8 Å crystal structure of PDC-109-Phosphorylcholine complex (2002) Structure, 10, pp. 505-514
Walker, B., Bayley, H., Key residues for membrane binding, oligomerization, and pore-forming activity of staphylococcal α-hemolysin identified by cysteine scanning mutagenesis and targeted chemical modification (1995) J. Biol. Chem., 270, pp. 23065-23071
Walker, B., Braha, O., Cheley, S., Bayley, H., An intermediate in the assembly of a pore-forming protein trapped with a genetically-engineered switch (1995) Chem. Biol., 2, pp. 99-105
Watanabe, M., Tomita, T., Yasuda, T., Membrane-damaging action of staphylococcal α-toxin on phospholipid-cholesterol liposomes (1987) Biochim. Biophys. Acta, 898, pp. 257-265
Zitzer, A., Walev, I., Palmer, M., Bhakdi, S., Characterization of Vibrio cholerae El Tor cytolysin as an oligomerizing pore-forming toxin (1995) Med. Microbiol. Immunol., 184, pp. 37-44
Br nger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Pannu, N. S., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr. D, 54, pp. 905-921
Ferguson, A. D., Welte, W., Hofmann, E., Lindner, B., Holst, O., Coulton, J. W., Diederichs, K., A conserved structural motif for lipopolysaccharide recognition by procaryotic and eucaryotic proteins (2000) Structure Fold. Des., 8, pp. 585-592
Ferguson, A. D., Braun, V., Fiedler, H. P., Coulton, J. W., Diederichs, K., Welte, W., Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA (2000) Protein Sci., 5, pp. 956-963
Fyfe, P. K., McAuley, K. E., Roszak, A. W., Isaacs, N. W., Cogdell, R. J., Jones, M. R., Probing the interface between membrane proteins and membrane lipids by X-ray crystallography (2001) Trends Biochem. Sci., 26, pp. 106-112
Gouaux, E., -Hemolysin from S. aureus: An archetype of -barrel, channel forming toxin (1998) J. Struct. Biol., 121, pp. 110-122
Gu, L. Q., Braha, O., Conlan, S., Cheley, S., Bayley, H., Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter (1999) Nature, 398, pp. 686-690
Gu, L. Q., Cheley, S., Bayley, H., Capture of a single molecule in a nanocavity (2001) Science, 291, pp. 636-640
Hunter, S. E., Brown, J. E., Oyston, P. C., Sakurai, J., Titball, R. W., Molecular genetic analysis of -toxin of Clostridium perfringens reveals sequence homology with -toxin, -toxin, and leukocidin of Staphylococcus aureus (1993) Infect. Immunol., 61, pp. 3958-3965
Jacobs, R. E., White, S. H., The nature of the hydrophobic binding of small peptides at the bilayer interface: Implications for the insertion of transbilayer helices (1989) Biochemistry, 28, pp. 3421-3437
Jones, T. A., Cowan, S., Zou, J. -Y., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47, pp. 110-119
Laskowski, R. A., MacArthur, M. W., Moss, D. S., Thornton, J. M., PROCHECK: A program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallogr., 26, pp. 283-291
McAuley, K. E., Fyfe, P. K., Ridge, J. P., Isaacs, N. W., Cogdell, R. J., Jones, M. R., Structural details of an interaction between cardiolipin and an integral membrane protein (1999) Proc. Natl. Acad. Sci., 95, pp. 14706-14711
P delacq, J. D., Maveyraud, L., Prevost, G., Baba-Moussa, L., Gonzalez, A., Courcelle, E., Shepard, W., Mourey, L., The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins (1999) Structure Fold. Des., 7, pp. 277-287
Valiyaveetil, F. I., Zhou, Y., Mackinnon, R., Lipids in the structure, folding and function of the KcsA K+channel (2002) Biochemistry, 41, pp. 10771-10777
Wah, D. A., Fernandez-Tomero, C., Sanz, L., Romero, A., Calvete, J. J., Sperm coating mechanism from the 1. 8 crystal structure of PDC-109-Phosphorylcholine complex (2002) Structure, 10, pp. 505-514
High Resolution Crystallographic Studies Of Alpha-Hemolysin-Phospholipid Complexes Define Heptamer-Lipid Head Group Interactions: Implication For Understanding Protein-Lipid Interactions
The α-hemolysin is an archetypal pore-forming protein that is secreted from Staphylococcus aureus as a water-soluble monomer. When the monomer binds to the membrane of a susceptible cell, the membrane-bound molecules assemble into the lytic heptamer. Although a bilayer or a bilayer-like environment are essential to toxin assembly, there is no high resolution information on toxin-phospholipid complexes. We have determined the structures of detergent-solubilized α-hemolysin heptamer bound to glycerophosphocholine or dipropanoyl glycerophosphocholine at 1.75-1.80 Å resolution and 110 K. The phosphocholine head group binds to each subunit in a crevice between the rim and the stem domains. The quaternary ammonium group interacts primarily with aromatic residues, whereas the phosphodiester moiety interacts with a conserved arginine residue. These structures provide a molecular basis for understanding why α-hemolysin preferentially assembles on membranes comprised of phosphocholine lipids.
High Resolution Crystallographic Studies Of Alpha-Hemolysin-Phospholipid Complexes Define Heptamer-Lipid Head Group Interactions: Implication For Understanding Protein-Lipid Interactions
No results.
High Resolution Crystallographic Studies Of Alpha-Hemolysin-Phospholipid Complexes Define Heptamer-Lipid Head Group Interactions: Implication For Understanding Protein-Lipid Interactions