Structural investigation of the HIV-1 envelope glycoprotein gp160 cleavage site(376 views) Oliva R, Falcigno L, D'Auria G, Dettin M, Scarinci C, Pasquato A, Di Bello C, Paolillo L
Keywords: Amino Acid Sequence, Catalytic Domain, Circular Dichroism, Consensus Sequence, Furin, Hiv Envelope Protein Gp160 Chemistry Metabolism, Hiv Infections Metabolism Virology, Hiv-1 Chemistry, Humans, Models, Molecular, Molecular Sequence Data, Nuclear Magnetic Resonance, Biomolecular, Peptide Fragments Chemistry, Protein Conformation, Sequence Homology, Subtilisins Chemistry Metabolism, Conformation Analysis, Molecular Modeling, Nmr Spectroscopy, Glycoprotein Gp 160, Virus Glycoprotein, Article, Enzyme Activity, Human Immunodeficiency Virus, Nonhuman, Nuclear Magnetic Resonance Spectroscopy, Priority Journal, Protein Degradation, Protein Structure, Virus Envelope,
Affiliations: *** IBB - CNR ***
Dipartimento di Chimica, Universita di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy.
Ist. Biostrutture/Bioimmagini C.N.R., Universita di Napoli Federico II, Via Mezzocannone 4, 80134 Napoli, Italy
Dipto. Proc. Chimici dell'Ingegneria, Università di Padova, Via Marzolo 9, 35131 Padova, Italy
References: Stein, B.S., Engleman, E.G., (1990) J. Biol. Chem., 265, pp. 2640-264
Weber, J.N., Weiss, R.A., (1988) Sci. Am., 259, pp. 100-109
Hallenberger, S., Bosh, V., Angliker, H., Shaw, E., Klenk, H.D., Garten, W., (1992) Nature, 360, pp. 358-361
Moulard, M., Decroly, E., (2000) Biochim. Biophys. Acta, 1469, pp. 121-132
Nakayama, K., (1997) Biochem. J., 327, pp. 625-635
McCune, J.M., Rabin, L.B., Feinberg, M.B., Lieberman, M., Kosek, J.C., Reyes, G.R., Weissman, I.L., (1988) Cell, 53, pp. 55-67
Freed, E.O., Myers, D.J., Risser, R., (1989) J. Virol., 63, pp. 4670-4675
Guo, H.G., Veronese, F.D., Tschachler, E., Pal, R., Kalyanaraman, V.S., Gallo, R.C., Reitz M.S., Jr., (1990) Virology, 174, pp. 217-224
Brakch, N., Dettin, M., Scarinci, C., Seidah, N.G., Di Bello, C., (1995) Biochem. Biophys. Res. Commun., 213, pp. 356-361
Decroly, E., Wouters, S., Di Bello, C., Lazure, C., Ruysschaert, J.M., Seidah, N.G., (1996) J. Biol. Chem., 271, pp. 30442-30450
Oliva, R., Leone, M., Falcigno, L., D'Auria, G., Dettin, M., Scarinci, C., Di Bello, C., Paolillo, L., (2002) Chem. Eur. J., 8, pp. 1467-1473
Moulard, M., Challoin, L., Canarelli, S., Mabrouk, K., Darbon, H., (1998) Biochemistry, 37, pp. 4510-4517
Callihan, D.E., Logan, T.M., (1999) J. Mol. Biol., 285, pp. 2161-2175
Hubbard, S.J., Beynon, R.J., Thornton, J.M., (1998) Protein Eng., 11, pp. 349-359
Brakch, N., Lazar, N., Panchal, M., Allemandou, F., Boileau, G., Cohen, P., Rholam, M., (2002) Biochemistry, 41, pp. 1630-1639
Bax, A., Davis, D.G., (1985) J. Magn. Res., 65, pp. 355-360
Kumar, A., Wagner, G., Ernst, R.R., Wüthrich, K., (1981) J. Am. Chem. Soc., 103, pp. 3654-3658
Piantini, U., Sørensen, O.W., Ernst, R.R., (1982) J. Am. Chem. Soc., 104, pp. 6800-6801
Piotto, M., Saunder, V., Sklenar, V., (1992) J. Biomol. NMR, 2, pp. 661-665
Griesinger, C., Ernst, E.E., (1987) J. Magn. Res., 75, pp. 261-271
Weiner, S.J., Kollmann, P.A., Nguyen, D.T., Case, D.A., (1986) J. Comput. Chem., 7, pp. 230-238
Stein, B. S., Engleman, E. G., (1990) J. Biol. Chem., 265, pp. 2640-264
Weber, J. N., Weiss, R. A., (1988) Sci. Am., 259, pp. 100-109
McCune, J. M., Rabin, L. B., Feinberg, M. B., Lieberman, M., Kosek, J. C., Reyes, G. R., Weissman, I. L., (1988) Cell, 53, pp. 55-67
Freed, E. O., Myers, D. J., Risser, R., (1989) J. Virol., 63, pp. 4670-4675
Guo, H. G., Veronese, F. D., Tschachler, E., Pal, R., Kalyanaraman, V. S., Gallo, R. C., Reitz M. S., Jr., (1990) Virology, 174, pp. 217-224
Rozwarski, D. A., Diederichs, K., Hecht, R., Boone, T., Karplus, P. A., (1996) Proteins, 26, pp. 304-313
W thrich, K., (1986) Nmr of Proteins and Nucleic Acids, , Wiley, New York
Wishart, D. S., Sykes, B. D., Richards, F. M., (1991) J. Mol. Biol., 222, pp. 311-333
G ntert, P., Mumenthaler, C., W thrich, K., (1997) J. Mol. Biol., 273, pp. 283-298
G ntert, P., W thrich, K., (1991) J. Biomol. NMR, 1, pp. 447-456
Case, D. A., Pearlman, D. A., Caldwell, J. W., Cheatham T. E. III, Ross, W. S., Simmerling, C. L., Darden, T. A., Kollman, P. A., (1996) AMBER 6, , University of California, San Francisco
Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham T. E. III, DeBolt, S., Ferguson, D., Kollman, P. A., (1995) Comp. Phys. Commun., 91, pp. 1-41
Siezen, R. J., Creemers, J. W., Van De Ven, W. J., (1994) Eur. J. Biochem., 222, pp. 255-266
Creemers, J. W., Siezen, R. J., Roebroek, A. J. M., Ayoubi, T. A. Y., Huylebroeck, D., Van De Ven, W. J. M., (1993) J. Biol. Chem., 268, pp. 21826-21834
Jimenez, M. A., Bruix, M., Gonzales, C., Blanco, F. J., Nieto, J. L., Herranz, J., Rico, M., (1993) Eur. J. Biochem., 211, pp. 569-581
Reymond, M. T., Huo, S., Duggan, B., Wright, P. E., Dyson, H. J., (1997) Biochemistry, 36, pp. 5234-5244
Callihan, D. E., Logan, T. M., (1999) J. Mol. Biol., 285, pp. 2161-2175
Hubbard, S. J., Beynon, R. J., Thornton, J. M., (1998) Protein Eng., 11, pp. 349-359
Bax, A., Davis, D. G., (1985) J. Magn. Res., 65, pp. 355-360
Piantini, U., S rensen, O. W., Ernst, R. R., (1982) J. Am. Chem. Soc., 104, pp. 6800-6801
Weiner, S. J., Kollmann, P. A., Nguyen, D. T., Case, D. A., (1986) J. Comput. Chem., 7, pp. 230-238
Structural investigation of the HIV-1 envelope glycoprotein gp160 cleavage site
The selective proteolytic activation of the HIV-1 envelope glycoprotein gp160 by furin and other precursor convertases (PCs) occurs at the carboxyl side of the sequence Arg508-Glu-Lys-Arg511 (site 1), in spite of the presence of another consensus sequence: Lys500-Ala-Lys-Arg503 (site 2). We report on the solution structural analysis of a 19-residue synthetic peptide, p498. which spans the two gp160-processing sites 1 and 2, and is properly digested by furin at site 1. A molecular model is obtained for p498, by means of molecular dynamics simulations, from NMR data collected in trifluoroethanol/water. The peptide N-terminal side presents a 9-residue helical segment, enclosing the processing site 2; the C-terminal segment can be described as a loop exposing the processing site 1. A hypothesis for the docking of p498 onto the catalytic domain of human furin, modeled by homology and fitting previous site-directed mutagenesis studies, is also presented. p498 site 1 is shown to have easy access to the furin catalytic site, unlike the nonphysiological site 2. Finally, on the basis of available data. we suggest a possible structural motif required for the gp160-PCs recognition.
Structural investigation of the HIV-1 envelope glycoprotein gp160 cleavage site
Kállay C, Dávid A, Timári S, Nagy EM, Sanna D, Garribba E, Micera G, De Bona P, Pappalardo G, Rizzarelli E, Sóvágó I * Copper(II) complexes of rat amylin fragments(360 views) Dalton T (ISSN: 1477-9234, 1477-9226, 1477-9234electronic), 2011 Oct 14; 40(38): 9711-9721. Impact Factor:3.838 ViewExport to BibTeXExport to EndNote
Aloj L, Aurilio M, Rinaldi V, D'Ambrosio L, Tesauro D, Peitl PK, Maina T, Mansi R, Von Guggenberg E, Joosten L, Sosabowski JK, Breeman WA, De Blois E, Koelewijn S, Melis M, Waser B, Beetschen K, Reubi JC, De Jong M * The EEE project(449 views) Proc Int Cosm Ray Conf Icrc Universidad Nacional Autonoma De Mexico, 2007; 5(HEPART2): 977-980. Impact Factor:0 ViewExport to BibTeXExport to EndNote