Keywords: Collagen, Proline, Protein Structure Stability, Triple Helix, X-Ray Structure, Collagen Fibril, Glycine, Hydroxyproline, Polypeptide, Article, Crystal Structure, Diffraction, Electricity, Gravity, Molecular Model, Priority Journal, Protein Assembly, Protein Stability, Synchrotron Radiation, Crystallization, Crystallography, Hydrogen Bonding, Oligopeptides, Protein Conformation,
Affiliations: *** IBB - CNR ***
Centro di Studio di Biocristallografia, CNR, I-80134 Napoli, Italy
Dipartimento di Chimica, Università degli Studi di Napoli Federico II, I-80126, Napoli, Italy
CEINGE, Biotecnologie Avanzate Scarl, Napoli, Italy
References: Bella, J., Brodsky, B., Berman, H.M., Hydration structure of a collagen peptide (1995) Structure, 3, pp. 893-90
Bella, J., Eaton, M., Brodsky, B., Berman, H.M., Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution (1994) Science, 266, pp. 75-81
Berisio, R., Vitagliano, L., Mazzarella, L., Zagari, A., Crystal structure determination of the collagen-like polypeptide with repeating sequence Pro-Hyp-Gly: Implications for hydration (2001) Biopolymers, 56, pp. 8-13
Berman, H.M., Bhat, T.N., Bourne, P.E., Feng, Z., Gilliland, G., Weissig, H., Westbrook, J., The protein data bank and the challenge of structural genomics (2000) Nat. Struct. Biol., 7, pp. 957-959
Bretscher, L.E., Jenkins, C.L., Taylor, K.M., DeRider, M.L., Raines, R.T., Conformational stability of collagen relies on a stereoelectronic effect (2001) J. Am. Chem. Soc., 123, pp. 777-778
Esnouf, R.M., Further additions to MolScript version 1.4, including reading and contouring of electron-density maps (1999) Acta Crystallogr. D, 55, pp. 938-940
Esposito, L., Vitagliano, L., Sica, F., Sorrentino, G., Zagari, A., Mazzarella, L., The ultrahigh resolution crystal structure of ribonuclease A containing an isoaspartyl residue: Hydration and sterochemical analysis (2000) J. Mol. Biol., 297, pp. 713-732
Fields, G.B., Prockop, D.J., Perspectives on the synthesis and application of triple-helical, collagen-model peptides (1996) Biopolymers, 40, pp. 345-357
Finney, J.L., Gellatly, B.J., Golton, I.C., Goodfellow, J., Solvent effects and polar interactions in the structural stability and dynamics of globular proteins (1980) Biophys. J., 32, pp. 17-33
Fraser, R.D.B., MacRae, T.P., Suzuki, E., Chain conformation in the collagen molecule (1979) J. Mol. Biol., 129, pp. 463-481
Holmgren, S.K., Bretscher, L.E., Taylor, K.M., Raines, R.T., A hyperstable collagen mimic (1999) Chem. Biol., 6, pp. 63-70
Holmgren, S.K., Taylor, K.M., Bretscher, L.E., Raines, R.T., Code for collagen's stability deciphered (1998) Nature, 392, pp. 666-667
Improta, R., Benzi, C., Barone, V., Understanding the role of stereoelectronic effects in determining collagen stability. I. A quantum mechanical study of proline, hydroxyproline and fluoroproline dipeptide analogues in aqueous solution (2001) J. Am. Chem. Soc., , in press
Inouye, K., Kobayashi, Y., Kyogoku, Y., Kishida, Y., Sakakibara, S., Prockop, D.J., Synthesis and physical properties of (hydroxyprolineproline-glycine)10: Hydroxyproline in the x-position decreases the melting temperature of the collagen triple helix (1982) Arch. Biochem. Biophys., 219, pp. 198-203
Jones, E.Y., Miller, A., Analysis of structural design features in collagen (1991) J. Mol. Biol., 218, pp. 209-219
Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., Improved methods for binding protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47, pp. 110-119
Kramer, R.Z., Venugopal, M.G., Bella, J., Mayville, P., Brodsky, B., Berman, H.M., Staggered molecular packing in crystals of a collagen-like peptide with a single charged pair (2000) J. Mol. Biol., 301, pp. 1191-1205
Kramer, R.Z., Vitagliano, L., Bella, J., Berisio, R., Mazzarella, L., Brodsky, B., Zagari, A., Berman, H.M., X-ray crystallographic determination of a collagen-like peptide with the repeating sequence (Pro-Pro-Gly) (1998) J. Mol. Biol., 280, pp. 623-638
Kraulis, P.J., MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures (1991) J. Appl. Crystallogr., 24, pp. 946-950
Melacini, G., Bonvin, A.M., Goodman, M., Boelens, R., Kaptein, R., Hydration dynamics of the collagen triple helix by NMR (2000) J. Mol. Biol., 300, pp. 1041-1049
Miller, M.H., Nemethy, G., Scheraga, H., Calculation of the structures of collagen models. Role of interchain interactions in determining the triplehelical coiled-coil conformation. 2. Poly(glycyl-prolyl-hydroxyprolyl) (1980) Macromolecules, 13, pp. 470-478
Miller, M.H., Scheraga, H.A., Calculation of the structures of collagen models. Role of interchain interactions in determining the triple-helical coiled-coil conformation. I. Poly(glycyl-prolyl-prolyl) (1976) J. Polym. Sci., 54, pp. 171-200
Murshudov, G.N., Vagin, A.A., Lebedev, A., Wilson, K.S., Dodson, E.J., Efficient anisotropic refinement of macromolecular structures using FFT (1999) Acta Crystallogr. D, 55, pp. 247-255
Nagarajan, V., Kamitori, S., Okuyama, K., Crystal structure analysis of collagen model peptide (Pro-Pro-Gly)10 (1998) J. Biochem., 124, pp. 1117-1123
Navaza, J., AMoRe, an automated package for molecular replacement (1994) Acta Crystallogr. A, 50, pp. 157-163
Némethy, G., Gibson, K.D., Palmer, K.A., Yoon, C.N., Paterlini, G., Zagari, A., Rumsey, S., Scheraga, H.A., Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in ECEPP/3 algoritm, with application to proline-containing peptides (1992) J. Phys. Chem., 96, pp. 6472-6484
Nicholls, A., Sharp, K.A., Honig, B., Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons (1991) Proteins, 11, pp. 281-296
Okuyama, K., Arnott, S., Takayanagi, M., Kakudo, M., Crystal and molecular structure of a collagen-like polypeptide (Pro-Pro-Gly)10 (1981) J. Mol. Biol., 152, pp. 427-443
Okuyama, K., Nagarajan, V., Kamitori, S., 7/2-Helical model for collagen - Evidence from model peptides (1999) Proc. Indian Acad. Sci., Chem. Sci., 111, pp. 19-34
Okuyama, K., Takayanagi, M., Ashida, T., Kakudo, M., A new structural model for collagen (1977) Polym. J., 9, pp. 341-343
Otwinowsky, Z., Minor, W., Processing of x-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., 276, pp. 307-326
Perrakis, A., Morris, R., Lamzin, V.S., Automated protein model building combined with iteractive structure refinement (1999) Nat. Struct. Biol., 6, pp. 458-463
Persikov, A.V., Ramshaw, J.A., Kirkpatrick, A., Brodsky, B., Amino acid propensities for the collagen triple-helix (2000) Biochemistry, 39, pp. 14960-14967
Ramshaw, J.A., Shah, N.K., Brodsky, B., Gly-X-Y tripeptide frequencies in collagen: A context for host-guest triple-helical peptides (1998) J. Struct. Biol., 122, pp. 86-91
Rich, A., Crick, F.H., The molecular structure of collagen (1961) J. Mol. Biol., 3, pp. 483-506
Vitagliano, L., Berisio, R., Mazzarella, L., Zagari, A., Structural bases of collagen stabilization induced by proline hydroxylation (2001) Biopolymers, 36, pp. 459-464
Yonath, A., Traub, W., Polymers of tripeptides as collagen models. IV. Structure analysis of poly(L-proly-glycyl-L-proline) (1969) J. Mol. Biol., 43, pp. 461-477
Berman, H. M., Bhat, T. N., Bourne, P. E., Feng, Z., Gilliland, G., Weissig, H., Westbrook, J., The protein data bank and the challenge of structural genomics (2000) Nat. Struct. Biol., 7, pp. 957-959
Bretscher, L. E., Jenkins, C. L., Taylor, K. M., DeRider, M. L., Raines, R. T., Conformational stability of collagen relies on a stereoelectronic effect (2001) J. Am. Chem. Soc., 123, pp. 777-778
Esnouf, R. M., Further additions to MolScript version 1. 4, including reading and contouring of electron-density maps (1999) Acta Crystallogr. D, 55, pp. 938-940
Fields, G. B., Prockop, D. J., Perspectives on the synthesis and application of triple-helical, collagen-model peptides (1996) Biopolymers, 40, pp. 345-357
Finney, J. L., Gellatly, B. J., Golton, I. C., Goodfellow, J., Solvent effects and polar interactions in the structural stability and dynamics of globular proteins (1980) Biophys. J., 32, pp. 17-33
Fraser, R. D. B., MacRae, T. P., Suzuki, E., Chain conformation in the collagen molecule (1979) J. Mol. Biol., 129, pp. 463-481
Holmgren, S. K., Bretscher, L. E., Taylor, K. M., Raines, R. T., A hyperstable collagen mimic (1999) Chem. Biol., 6, pp. 63-70
Holmgren, S. K., Taylor, K. M., Bretscher, L. E., Raines, R. T., Code for collagen's stability deciphered (1998) Nature, 392, pp. 666-667
Jones, E. Y., Miller, A., Analysis of structural design features in collagen (1991) J. Mol. Biol., 218, pp. 209-219
Jones, T. A., Zou, J. Y., Cowan, S. W., Kjeldgaard, M., Improved methods for binding protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47, pp. 110-119
Kramer, R. Z., Bella, J., Mayville, P., Brodsky, B., Berman, H. M., Sequence dependent conformational variations of collagen triple-helical structure (1999) Nat. Struct. Biol., 6, pp. 454-457
Kramer, R. Z., Venugopal, M. G., Bella, J., Mayville, P., Brodsky, B., Berman, H. M., Staggered molecular packing in crystals of a collagen-like peptide with a single charged pair (2000) J. Mol. Biol., 301, pp. 1191-1205
Kramer, R. Z., Vitagliano, L., Bella, J., Berisio, R., Mazzarella, L., Brodsky, B., Zagari, A., Berman, H. M., X-ray crystallographic determination of a collagen-like peptide with the repeating sequence (Pro-Pro-Gly) (1998) J. Mol. Biol., 280, pp. 623-638
Kraulis, P. J., MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures (1991) J. Appl. Crystallogr., 24, pp. 946-950
Merritt, E. A., Bacon, D. J., Raster3D: Photorealistic molecular graphics (1997) Methods Enzymol., 277, pp. 505-524
Miller, M. H., Nemethy, G., Scheraga, H., Calculation of the structures of collagen models. Role of interchain interactions in determining the triplehelical coiled-coil conformation. 2. Poly (glycyl-prolyl-hydroxyprolyl) (1980) Macromolecules, 13, pp. 470-478
Miller, M. H., Scheraga, H. A., Calculation of the structures of collagen models. Role of interchain interactions in determining the triple-helical coiled-coil conformation. I. Poly (glycyl-prolyl-prolyl) (1976) J. Polym. Sci., 54, pp. 171-200
Murshudov, G. N., Vagin, A. A., Lebedev, A., Wilson, K. S., Dodson, E. J., Efficient anisotropic refinement of macromolecular structures using FFT (1999) Acta Crystallogr. D, 55, pp. 247-255
N methy, G., Gibson, K. D., Palmer, K. A., Yoon, C. N., Paterlini, G., Zagari, A., Rumsey, S., Scheraga, H. A., Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in ECEPP/3 algoritm, with application to proline-containing peptides (1992) J. Phys. Chem., 96, pp. 6472-6484
Persikov, A. V., Ramshaw, J. A., Kirkpatrick, A., Brodsky, B., Amino acid propensities for the collagen triple-helix (2000) Biochemistry, 39, pp. 14960-14967
Ramshaw, J. A., Shah, N. K., Brodsky, B., Gly-X-Y tripeptide frequencies in collagen: A context for host-guest triple-helical peptides (1998) J. Struct. Biol., 122, pp. 86-91
Sheldrick, G. M., Schneider, T. R., SHELXL: High-resolution refinement (1997) Methods Enzymol., 277, pp. 319-343
Crystal structure of the collagen triple helix model [(Pro-Pro-Gly)10]3
The first report of the full-length structure of the collagen-like polypeptide [(Pro-Pro-Gly)10]3 is given. This structure was obtained from crystals grown in a microgravity environment, which diffracted up to 1.3 Å, using synchrotron radiation. The final model, which was refined to an Rfactor of 0.18, is the highest-resolution description of a collagen triple helix reported to date. This structure provides clues regarding a series of aspects related to collagen triple helix structure and assembly. The strict dependence of proline puckering on the position inside the Pro-Pro-Gly triplets and the correlation between backbone and side chain dihedral angles support the propensity-based mechanism of triple helix stabilization/destabilization induced by hydroxyproline. Furthermore, the analysis of [(Pro-Pro-Gly)10]3 packing, which is governed by electrostatic interactions, suggests that charges may act as locking features in the axial organization of triple helices in the collagen fibrils.
Crystal structure of the collagen triple helix model [(Pro-Pro-Gly)10]3