Determinants of the recognition of enteroviral cloverleaf RNA by coxsackievirus B3 proteinase 3C(491 views) Zell R, Sidigi K, Bucci E, Stelzner A, Goerlach M
Institut für Virologie, Klin. der Friedrich-Schiller-Univ., Winzerlaer Str. 10, 07745 Jena, Germany
Institut f r Virologie, Klin. der Friedrich-Schiller-Univ., Winzerlaer Str. 10, 07745 Jena, Germany
References: Andino, R., Rieckhoff, G.E., Achacoso, P.L., Baltimore, D., Poliovirus RNA synthesis utilizes an RNP complex formed around the 5′-end of viral RNA (1993) EMBO J, 12, pp. 3587-359
Blyn, L.B., Swiderek, K.M., Richards, O., Stahl, D.C., Semler, B.L., Ehrenfeld, E., Poly(rC) binding protein 2 binds to stem-loop IV of the poliovirus RNA 5′ noncoding region: Identification by automated liquid chromatography-tandem mass spectrometry (1995) Proc Natl Acad Sci USA, 93, pp. 11115-11120
Böhm, G., Quantitative analysis of proteins for UV circular dichroism spectra by neural networks (1992) Protein Eng, 5, pp. 191-195
Borman, A., Deliat, F.G., Kean, K.M., Sequences within the poliovirus internal ribosome entry segment control viral RNA synthesis (1994) EMBO J, 13, pp. 3149-3157
Gamarnik, A.V., Andino, R., Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA (1997) RNA, 3, pp. 882-892
Görlach, M., Burd, C.G., Dreyfuss, G., The mRNA poly(A)-binding protein: Localization, abundance and RNA-binding specificity (1994) Exp Cell Res, 211, pp. 400-407
Grüne, M., Görlach, M., Soskic, V., Klussmann, S., Bald, R., Fürste, J.P., Erdmann, V.A., Brown, L.R., Initial analysis of 750 MHz NMR spectra of selectively [15N]]-G,U labelled E. coli 5S rRNA (1996) FEBS Lett, 385, pp. 114-118
Hämmerle, T., Molla, A., Wimmer, E., Mutational analysis of the proposed FG loop of poliovirus proteinase 3C identifies amino acids that are necessary for 3CD cleavage and might be determinants of a function distinct from proteolytic activity (1992) J Virol, 66, pp. 6028-6034
Harris, K.S., Xiang, W., Alexander, L., Lane, W.S., Paul, A.V., Wimmer, E., Interaction of poliovirus polypeptide 3CDpro with the 5′ and 3′ termini of the poliovirus genome. Identification of viral and cellular cofactors needed for efficient binding (1994) J Biol Chem, 269, pp. 27004-27014
Huang, H., Alexandrov, A., Chen, X., Barnes III, T.W., Zhang, H., Dutta, K., Pascal, S.M., Structure of an RNA hairpin from HRV-14 (2001) Biochemistry, 40, pp. 8055-8064
Joachims, M., Van Breugel, P.C., Lloyd, R.E., Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro (1999) J Virol, 73, pp. 718-727
Johnson, K.H., Gray, D.M., Morris, P.A., Sutherland, J.C., AU and GC base pairs in synthetic RNAs have characteristic vacuum UV CD bands (1990) Biopolymers, 29, pp. 325-333
Johnson, V.H., Semler, B.L., Defined recombinants of poliovirus and coxsackievirus: Sequence-specific deletions and functional substitutions in the 5′-noncoding regions of viral RNAs (1988) Virology, 162, pp. 47-57
Kelly, R.C., Jensen, D.E., Von Hippel, P.H., DNA "melting" proteins. IV. Fluorescence measurements of binding parameters for bacteriophage T4 gene 32-protein to mono-, oligo- and polynucleotides (1976) J Biol Chem, 251, pp. 7240-7250
Kusov, Y.Y., Gauss-Müller, V., In vitro RNA binding of the hepatitis A virus proteinase 3C (HAV 3Cpro) to secondary structure elements within the 5′-terminus of the HAV genome (1997) RNA, 3, pp. 291-302
Leong, L.E.-C., Walker, P.A., Porter, A.G., Human rhinovirus-14 protease 3C (3Cpro) binds specifically to the 5′-noncoding region of the viral RNA (1993) J Biol Chem, 268, pp. 25735-25739
Lindberg, A.M., Crowell, R.L., Zell, R., Kandolf, R., Pettersson, U., Mutations in capsid polypeptide VP2 alter the tropism of the Nancy strain of Coxsackievirus B3 (1992) Virus Res, 24, pp. 187-196
Matthews, D.A., Dragovich, P.S., Webber, S.E., Fuhrman, S.A., Patick, A.K., Zalman, L.S., Hendrickson, T.F., Worland, S.T., Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes (1999) Proc Natl Acad Sci USA, 96, pp. 11000-11007
Mirmira, S.R., Tinoco Jr., I., A quadruple mutant T4 RNA hairpin with the same structure as the wild-type translational repressor (1996) Biochemistry, 35, pp. 7675-7683
Nicklin, M.J.H., Harris, K.S., Pallai, P.V., Wimmer, E., Poliovirus proteinase 3C: Large-scale expression, purification, and specific cleavage activity on natural and synthetic substrates in vitro (1988) J Virol, 62, pp. 4586-4593
Parsley, T.B., Towner, J.S., Blyn, L.B., Ehrenfeld, E., Semler, B.L., Poly(rC) binding protein 2 forms a ternary complex with the 5′-terminal sequences of poliovirus RNA and the viral 3CD proteinase (1997) RNA, 3, pp. 1124-1134
Rueckert, R.R., Picornaviridae: The viruses and their replication (1995) Virology, 3rd ed., pp. 609-654. , Fields BN, Knipe DM, Howley PM, eds. Philadelphia: Lippincott-Raven Publishers
Ryan, M.D., Flint, M., Virus-encoded proteinases of the picornavirus super-group (1997) J Gen Virol, 78, pp. 699-723
Sprecher, C.A., Johnson Jr., W.C., Circular dichroism of nucleic acids monomers (1977) Biopolymers, 16, pp. 2243-2264
Stoldt, M., Wöhnert, J., Görlach, M., Brown, L.R., The NMR structure of Escherichia coli ribosomal protein L25 shows homology to general stress proteins and glutaminyl-tRNA synthetases (1998) EMBO J, 17, pp. 6377-6384
Todd, S., Towner, J.S., Semler, B.L., Translation and replication properties of the human rhinovirus genome in vivo and in vitro (1997) Virology, 229, pp. 90-97
Walker, P.A., Leong, L.E., Porter, A.G., Sequence and structural determinants of the interaction between the 5′-noncoding region of picornavirus RNA and rhinovirus protease 3C (1995) J Biol Chem, 270, pp. 14510-14516
Wang, Q.M., Johnson, R.B., Activation of human rhinovirus 14 3C protease (2001) Virology, 280, pp. 80-86
Xiang, W., Harris, K.S., Alexander, L., Wimmer, E., Interaction between the 5′-terminal cloverleaf and 3AB/3CDpro of poliovirus is essential for RNA replication (1995) J Virol, 69, pp. 3658-3667
Zell, R., Klingel, K., Sauter, M., Fortmüller, U., Kandolf, R., Coxsackieviral proteins functionally recognize the polioviral cloverleaf structure of the 5′-NTR of a chimeric enterovirus RNA: Influence of species-specific host cell factors on virus growth (1995) Virus Res, 39, pp. 87-103
Zell, R., Sidigi, K., Henke, A., Schmidt-Brauns, J., Hoey, E., Martin, S., Stelzner, A., Functional features of the bovine enterovirus 5′-non-translated region (1999) J Gen Virol, 80, pp. 2299-2309
Zell, R., Stelzner, A., Application of genome sequence information to the classification of bovine enteroviruses: The importance of 5′- and 3′-nontranslated regions (1997) Virus Res, 51, pp. 213-229
Blyn, L. B., Swiderek, K. M., Richards, O., Stahl, D. C., Semler, B. L., Ehrenfeld, E., Poly (rC) binding protein 2 binds to stem-loop IV of the poliovirus RNA 5 noncoding region: Identification by automated liquid chromatography-tandem mass spectrometry (1995) Proc Natl Acad Sci USA, 93, pp. 11115-11120
B hm, G., Quantitative analysis of proteins for UV circular dichroism spectra by neural networks (1992) Protein Eng, 5, pp. 191-195
Gamarnik, A. V., Andino, R., Two functional complexes formed by KH domain containing proteins with the 5 noncoding region of poliovirus RNA (1997) RNA, 3, pp. 882-892
G rlach, M., Burd, C. G., Dreyfuss, G., The mRNA poly (A) -binding protein: Localization, abundance and RNA-binding specificity (1994) Exp Cell Res, 211, pp. 400-407
Gr ne, M., G rlach, M., Soskic, V., Klussmann, S., Bald, R., F rste, J. P., Erdmann, V. A., Brown, L. R., Initial analysis of 750 MHz NMR spectra of selectively [15N]] -G, U labelled E. coli 5S rRNA (1996) FEBS Lett, 385, pp. 114-118
H mmerle, T., Molla, A., Wimmer, E., Mutational analysis of the proposed FG loop of poliovirus proteinase 3C identifies amino acids that are necessary for 3CD cleavage and might be determinants of a function distinct from proteolytic activity (1992) J Virol, 66, pp. 6028-6034
Harris, K. S., Xiang, W., Alexander, L., Lane, W. S., Paul, A. V., Wimmer, E., Interaction of poliovirus polypeptide 3CDpro with the 5 and 3 termini of the poliovirus genome. Identification of viral and cellular cofactors needed for efficient binding (1994) J Biol Chem, 269, pp. 27004-27014
Johnson, K. H., Gray, D. M., Morris, P. A., Sutherland, J. C., AU and GC base pairs in synthetic RNAs have characteristic vacuum UV CD bands (1990) Biopolymers, 29, pp. 325-333
Johnson, V. H., Semler, B. L., Defined recombinants of poliovirus and coxsackievirus: Sequence-specific deletions and functional substitutions in the 5 -noncoding regions of viral RNAs (1988) Virology, 162, pp. 47-57
Kelly, R. C., Jensen, D. E., Von Hippel, P. H., DNA "melting" proteins. IV. Fluorescence measurements of binding parameters for bacteriophage T4 gene 32-protein to mono-, oligo- and polynucleotides (1976) J Biol Chem, 251, pp. 7240-7250
Kusov, Y. Y., Gauss-M ller, V., In vitro RNA binding of the hepatitis A virus proteinase 3C (HAV 3Cpro) to secondary structure elements within the 5 -terminus of the HAV genome (1997) RNA, 3, pp. 291-302
Leong, L. E. -C., Walker, P. A., Porter, A. G., Human rhinovirus-14 protease 3C (3Cpro) binds specifically to the 5 -noncoding region of the viral RNA (1993) J Biol Chem, 268, pp. 25735-25739
Lindberg, A. M., Crowell, R. L., Zell, R., Kandolf, R., Pettersson, U., Mutations in capsid polypeptide VP2 alter the tropism of the Nancy strain of Coxsackievirus B3 (1992) Virus Res, 24, pp. 187-196
Matthews, D. A., Dragovich, P. S., Webber, S. E., Fuhrman, S. A., Patick, A. K., Zalman, L. S., Hendrickson, T. F., Worland, S. T., Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes (1999) Proc Natl Acad Sci USA, 96, pp. 11000-11007
Mirmira, S. R., Tinoco Jr., I., A quadruple mutant T4 RNA hairpin with the same structure as the wild-type translational repressor (1996) Biochemistry, 35, pp. 7675-7683
Nicklin, M. J. H., Harris, K. S., Pallai, P. V., Wimmer, E., Poliovirus proteinase 3C: Large-scale expression, purification, and specific cleavage activity on natural and synthetic substrates in vitro (1988) J Virol, 62, pp. 4586-4593
Parsley, T. B., Towner, J. S., Blyn, L. B., Ehrenfeld, E., Semler, B. L., Poly (rC) binding protein 2 forms a ternary complex with the 5 -terminal sequences of poliovirus RNA and the viral 3CD proteinase (1997) RNA, 3, pp. 1124-1134
Rueckert, R. R., Picornaviridae: The viruses and their replication (1995) Virology, 3rd ed., pp. 609-654. , Fields BN, Knipe DM, Howley PM, eds. Philadelphia: Lippincott-Raven Publishers
Ryan, M. D., Flint, M., Virus-encoded proteinases of the picornavirus super-group (1997) J Gen Virol, 78, pp. 699-723
Sprecher, C. A., Johnson Jr., W. C., Circular dichroism of nucleic acids monomers (1977) Biopolymers, 16, pp. 2243-2264
Stoldt, M., W hnert, J., G rlach, M., Brown, L. R., The NMR structure of Escherichia coli ribosomal protein L25 shows homology to general stress proteins and glutaminyl-tRNA synthetases (1998) EMBO J, 17, pp. 6377-6384
Walker, P. A., Leong, L. E., Porter, A. G., Sequence and structural determinants of the interaction between the 5 -noncoding region of picornavirus RNA and rhinovirus protease 3C (1995) J Biol Chem, 270, pp. 14510-14516
Wang, Q. M., Johnson, R. B., Activation of human rhinovirus 14 3C protease (2001) Virology, 280, pp. 80-86
Determinants of the recognition of enteroviral cloverleaf RNA by coxsackievirus B3 proteinase 3C
The initiation of enteroviral positive-strand RNA synthesis requires the presence of a functional ribonucleoprotein complex containing a cloverleaf-like RNA secondary structure at the 5′ end of the viral genome. Other components of the ribonucleoprotein complex are the viral 3CD proteinase (the precursor protein of the 3C proteinase and the 3D polymerase), the viral 3AB protein and the cellular poly(rC)-binding protein 2. For a molecular characterization of the RNA-binding properties of the enteroviral proteinase, the 3C proteinase of coxsackievirus B3 (CVB3) was bacterially expressed and purified. The recombinant protein is proteolytically active and forms a stable complex with in vitro-transcribed cloverleaf RNA of CVB3. The formation of stable complexes is also demonstrated with cloverleaf RNA of poliovirus (PV) 1, the first cloverleaf of bovine enterovirus (BEV) 1, and human rhinovirus (HRV) 2 but not with cloverleaf RNA of HRV14 and the second cloverleaf of BEV1. The apparent dissociation constants of the protein: RNA complexes range from approx. 1.7 to 4.6 μM. An electrophoretic mobility shift assay with subdomain D of the CVB3 cloverleaf demonstrates that this RNA is sufficient to bind the CVB3 3C proteinase. Binding assays using mutated versions of CVB3 and HRV14 cloverleaf RNAs suggest that the presence of structural features rather than a defined sequence motif of loop D are important for 3C proteinase-RNA interaction.
Determinants of the recognition of enteroviral cloverleaf RNA by coxsackievirus B3 proteinase 3C
No results.
Determinants of the recognition of enteroviral cloverleaf RNA by coxsackievirus B3 proteinase 3C