Monitoring the correction of glycogen storage disease type 1a in a mouse model using [18F]FDG and a dedicated animal scanner(240 views) Zingone A, Seidel J, Aloj L, Caraco C, Vaquero JJ, Jagoda EM, Chou JY, Green MV, Eckelman WC
Life Sci (ISSN: 0024-3205), 2002; 71(11): 1293-1301.
National Institute of Child Health and Development, Bethesda, MD 20892, United States
Department of Nuclear Medicine, National Institutes of Health, Bethesda, MD 20892, United States
PET Department, National Institutes of Health, Bethesda, MD 20892, United States
PET Department, Warren Grant Magnuson Clinical Center, Bld. 10, 10 Center Drive, Bethesda, MD 20892, United States
References: Lei, K.J., Shelly, L.L., Pan, C.J., Sidbury, J.B., Chou, J.Y., Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a (1993) Science, 262, pp. 580-58
Chen, T.B., Brenner, N.J., Gibson, R.E., Burns, H.D., Chang, R.S.L., Characterization of the binding of [125I]L-735,286: A new nonpeptide angiotensin II AT1 receptor radioligand (1995) Life Sciences, 56, pp. 629-634
Arion, W.J., Lange, A.J., Walls, H.E., Ballas, L.M., Evidence for the participation of independent translocation for phosphate and glucose 6-phosphate in the microsomal glucose-6-phosphatase system. Interactions of the system with orthophosphate, inorganic pyrophosphate, and carbamyl phosphate (1980) J Biol Chem, 255, pp. 10396-10406
Chen, Y.-T., Burchell, A., (1995) Glycogen Storage Diseases 7th ed., pp. 935-966. , Cr. Scriver, Al. Beaudet, & Ws. et al. Sly. New York: McGraw-Hill
Shelly, L.L., Lei, K.J., Pan, C.J., Sakata, S.F., Ruppert, S., Schutz, G., Chou, J.Y., Isolation of the gene for murine glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1A (1993) J Biol Chem, 268, pp. 21482-21485
Gerin, I., Veiga-da-Cunha, M., Achouri, Y., Collet, J.F., Van Schaftingen, E., Sequence of a putative glucose 6-phosphate translocase, mutated in glycogen storage disease type Ib (1997) FEBS Lett, 419, pp. 235-238
Lin, B., Annabi, B., Hiraiwa, H., Pan, C.J., Chou, J.Y., Cloning and characterization of cDNAs encoding a candidate glycogen storage disease type 1b protein in rodents (1998) J Biol Chem, 273, pp. 31656-31670
Caraco, C., Aloj, L., Chen, L.Y., Chou, J.Y., Eckelman, W.C., Cellular release of [18F]2-fluoro-2-deoxyglucose as a function of the glucose-6-phosphatase enzyme system (2000) J Biol Chem, 275, pp. 18489-18494
Phelps, M.E., Huang, S.C., Hoffman, E.J., Selin, C., Sokoloff, L., Kuhl, D.E., Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: Validation of method (1979) Ann Neurol, 6, pp. 371-388
Conti, P.S., Lilien, D.L., Hawley, K., Keppler, J., Grafton, S.T., Bading, J.R., PET and [18F]-FDG in oncology: A clinical update (1996) Nucl Med Biol, 23, pp. 717-736
Gallagher, B.M., Fowler, J.S., Gutterson, N.I., MacGregor, R.R., Wan, C.N., Wolf, A.P., Metabolic trapping as a principle of radiopharmaceutical design: Some factors resposible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose (1978) J Nucl Med, 19, pp. 1154-1161
Gjedde, A., (1995) Glucose Metabolism 2nd ed., pp. 54-71. , H. Wagner, & Jw. Szabo ZBuchanan. W.B. Saunders
Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O., Shinohara, M., The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat (1977) J Neurochem, 28, pp. 897-916
Reivich, M., Kuhl, D., Wolf, A., Greenberg, J., Phelps, M., Ido, T., Casella, V., Sokoloff, L., The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man (1979) Circ Res, 44, pp. 127-137
Lei, K.J., Chen, H., Pan, C.J., Ward, J.M., Mosinger, B.J., Lee, E.J., Westphal, H., Chou, J.Y., Glucose-6-phosphatase dependent substrate transport in the glycogen storage disease type-1a mouse (1996) Nat Genet, 13, pp. 203-209
Zingone, A., Hiraiwa, H., Pan, C.-J., Lin, B., Chen, H., Ward, J., Chou, J.Y., Correction of glycogen stoage disease type 1a in a mouse model by gene therapy (2000) J Biol Chem, 275, pp. 828-832
Siegel, S., Vaquero, J.J., Aloj, L., Seidel, J., Jagoda, E., Gandler, W.R., Eckelman, W.C., Green, M.V., Initial results from a PET/Planar small animal imaging system (1999) IEEE Transactions on Nuclear Science, 46, pp. 571-575
Sadiq, H.F., DeMello, D.E., Devaskar, S.U., The effect of intrauterine growth restriction upon fetal and postnatal hepatic glucose transporter and glucokinase proteins (1998) Pediatr Res, 43, pp. 91-100
Goldsmith, P.K., Stetten, M.R., Different developmental changes in latency for two functions of a single membrane bound enzyme: Glucose-6-phosphatase activities as a function of age (1979) Biochim Biophys Acta, 583, pp. 133-147
Burchell, A., Leakey, J.E., Development of the rat hepatic microsomal glucose-6-phosphatase system and its glucocorticoid inducibility (1988) Biol Neonate, 54, pp. 107-115
Pan, C.J., Lei, K.J., Chen, H., Ward, J.M., Chou, J.Y., Ontogeny of the murine glucose-6-phosphatase system (1998) Arch Biochem Biophys, 358, pp. 17-24
Adams, H.R., Channing, M.A., Divel, J.E., Dunn, B.B., Kiesewetter, D.O., Plascjak, P., Regdos, S.L., Eckelman, W.C., (1995) Trend analysis of quality control data, pp. 175-188. , A. Emran. New York: Plenum Press
Blasberg, R., Patlak, C., Fenstermacher, J., Measurements of blood-brain transfer constants for nonmetabolized amino acids (1979) Int Soc Neurochem, 7, p. 238
Patlak, C.S., Blasberg, R.G., Fenstermacher, J.D., Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data (1983) J Cereb Blood Flow Metab, 3, pp. 1-7
Logan, J., Fowler, J.S., Volkow, N.D., Wang, G.-J., Ding, Y.-S., Alexoff, D.L., Distribution volume ratios without blood sampling from graphical analysis of PET Data (1996) Journal of Cerebral Blood Flow and Metabolism, 16, pp. 834-840
Green, L.A., Gamghir, S.S., Srinivasan, A., Banerjee, P.K., Koh, C.K., Cherry, S.R., Sharfstein, S., Phelps, M.E., Noninvasive methods for quantitating blood time-activity curves from mouse PET images obtained with fluorine-18-fluorodeoxyglucose (1998) J Nucl Med, 39, pp. 729-734
Kallinowski, F., Brownell, A.L., Vaupel, P., Brownell, G.L., Combined tissue oxygen tension measurement and positron emission tomography studies on glucose utilization in oncogene-transformed cell line tumour xenografts in nude mice (1991) Br J Radiol, 64, pp. 350-359
Hawkins, R.A., Choi, Y., Scates, S., Rege, S., Hoh, C.K., Glaspy, J., Phelps, M.E., An animal model for in vivo evaluation of tumor glycolytic rates with positron emission tomography (1993) J Surg Oncol, 53, pp. 104-109
Lapointe, D., Brasseur, N., Cadorette, J., La Madeleine, C., Rodrigue, S., Van Lier, J.E., Lecomte, R., High-resolution PET imaging for in vivo monitoring of tumor response after photodynamic therapy in mice (1999) J Nucl Med, 40, pp. 876-882
Choi, Y., Hawkins, R.A., Huang, S.C., Brunken, R.C., Hoh, C.K., Messa, C., Nitzsche, E.U., Schelbert, H.R., Evaluation of the effect of glucose ingestion and kinetic model configurations of FDG in the normal liver (1994) J Nucl Med, 35, pp. 818-823
Hays, M.T., Segall, G.M., A mathematical model for the distribution of fluorodeoxyglucose in humans (1999) J Nucl Med, 40, pp. 1358-1366
Lei, K. J., Shelly, L. L., Pan, C. J., Sidbury, J. B., Chou, J. Y., Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a (1993) Science, 262, pp. 580-58
Chen, T. B., Brenner, N. J., Gibson, R. E., Burns, H. D., Chang, R. S. L., Characterization of the binding of [125I] L-735, 286: A new nonpeptide angiotensin II AT1 receptor radioligand (1995) Life Sciences, 56, pp. 629-634
Arion, W. J., Lange, A. J., Walls, H. E., Ballas, L. M., Evidence for the participation of independent translocation for phosphate and glucose 6-phosphate in the microsomal glucose-6-phosphatase system. Interactions of the system with orthophosphate, inorganic pyrophosphate, and carbamyl phosphate (1980) J Biol Chem, 255, pp. 10396-10406
Chen, Y. -T., Burchell, A., (1995) Glycogen Storage Diseases 7th ed., pp. 935-966. , Cr. Scriver, Al. Beaudet, & Ws. et al. Sly. New York: McGraw-Hill
Shelly, L. L., Lei, K. J., Pan, C. J., Sakata, S. F., Ruppert, S., Schutz, G., Chou, J. Y., Isolation of the gene for murine glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1A (1993) J Biol Chem, 268, pp. 21482-21485
Phelps, M. E., Huang, S. C., Hoffman, E. J., Selin, C., Sokoloff, L., Kuhl, D. E., Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-D-glucose: Validation of method (1979) Ann Neurol, 6, pp. 371-388
Conti, P. S., Lilien, D. L., Hawley, K., Keppler, J., Grafton, S. T., Bading, J. R., PET and [18F] -FDG in oncology: A clinical update (1996) Nucl Med Biol, 23, pp. 717-736
Gallagher, B. M., Fowler, J. S., Gutterson, N. I., MacGregor, R. R., Wan, C. N., Wolf, A. P., Metabolic trapping as a principle of radiopharmaceutical design: Some factors resposible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose (1978) J Nucl Med, 19, pp. 1154-1161
Lei, K. J., Chen, H., Pan, C. J., Ward, J. M., Mosinger, B. J., Lee, E. J., Westphal, H., Chou, J. Y., Glucose-6-phosphatase dependent substrate transport in the glycogen storage disease type-1a mouse (1996) Nat Genet, 13, pp. 203-209
Sadiq, H. F., DeMello, D. E., Devaskar, S. U., The effect of intrauterine growth restriction upon fetal and postnatal hepatic glucose transporter and glucokinase proteins (1998) Pediatr Res, 43, pp. 91-100
Goldsmith, P. K., Stetten, M. R., Different developmental changes in latency for two functions of a single membrane bound enzyme: Glucose-6-phosphatase activities as a function of age (1979) Biochim Biophys Acta, 583, pp. 133-147
Pan, C. J., Lei, K. J., Chen, H., Ward, J. M., Chou, J. Y., Ontogeny of the murine glucose-6-phosphatase system (1998) Arch Biochem Biophys, 358, pp. 17-24
Adams, H. R., Channing, M. A., Divel, J. E., Dunn, B. B., Kiesewetter, D. O., Plascjak, P., Regdos, S. L., Eckelman, W. C., (1995) Trend analysis of quality control data, pp. 175-188. , A. Emran. New York: Plenum Press
Patlak, C. S., Blasberg, R. G., Fenstermacher, J. D., Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data (1983) J Cereb Blood Flow Metab, 3, pp. 1-7
Green, L. A., Gamghir, S. S., Srinivasan, A., Banerjee, P. K., Koh, C. K., Cherry, S. R., Sharfstein, S., Phelps, M. E., Noninvasive methods for quantitating blood time-activity curves from mouse PET images obtained with fluorine-18-fluorodeoxyglucose (1998) J Nucl Med, 39, pp. 729-734
Hawkins, R. A., Choi, Y., Scates, S., Rege, S., Hoh, C. K., Glaspy, J., Phelps, M. E., An animal model for in vivo evaluation of tumor glycolytic rates with positron emission tomography (1993) J Surg Oncol, 53, pp. 104-109
Hays, M. T., Segall, G. M., A mathematical model for the distribution of fluorodeoxyglucose in humans (1999) J Nucl Med, 40, pp. 1358-1366
Monitoring the correction of glycogen storage disease type 1a in a mouse model using [18F]FDG and a dedicated animal scanner
Monitoring gene therapy of glycogen storage disease type 1a in a mouse model was achieved using [18F]FDG and a dedicated animal scanner. The G6Pase knockout (KO) mice were compared to the same mice after infusion with a recombinant adenovirus containing the murine G6Pase gene (Ad-mG6Pase). Serial images of the same mouse before and after therapy were obtained and compared with wild-type (WT) mice of the same strain to determine the uptake and retention of [18F]FDG in the liver. Image data were acquired from heart, blood pool and liver for twenty minutes after injection of [18F]FDG. The retention of [18F]FDG was lower for the WT mice compared to the KO mice. The mice treated with adenovirus-mediated gene therapy had retention similar to that found in age-matched WT mice. These studies show that FDG can be used to monitor the G6Pase concentration in liver of WT mice as compared to G6Pase KO mice. In these mice, gene therapy returned the liver function to that found in age matched WT controls as measured by the FDG kinetics in the liver compared to that found in age matched wild type controls.
Monitoring the correction of glycogen storage disease type 1a in a mouse model using [18F]FDG and a dedicated animal scanner
No results.
Monitoring the correction of glycogen storage disease type 1a in a mouse model using [18F]FDG and a dedicated animal scanner