Sequence-simplification and chimeric assembly: New models of peptide antigen modification(385 views) Rossi M, Manfredi V, Ruvo M, Fassina G, Verdoliva A
TECNOGEN S.C.p.A., Parco Scientifico, 81015 Piana di Monte Verna (CE), Italy
TECNOGEN S. C. p. A., Parco Scientifico, 81015 Piana di Monte Verna (CE), Italy
References: Bartnes, K., Hannestad, K., Guichard, G., Briand, J.P., A retro-inverso analog mimics the cognate peptide epitope of a CD4+ T-cell clone (1997) Eur. J. Immunol., 27, pp. 1387-139
Benkirane, N., Friede, M., Guichard, G., Briand, J.P., Van Regenmortel, M.H.V., Muller, S., Antigenicity and immunogenicity of modified synthetic peptides containing D-amino acid residues. Antibodies to a D-enantiomer do recognize the parent L-hexapeptide and reciprocally (1993) J. Biol. Chem., 268, pp. 26279-26285
Benkirane, N., Guichard, G., Van Regenmortel, H.H.V., Briand, J.P., Muller, S., Cross-reactivity of antibodies to retro-inverso peptidomimetics with the parent protein histone H3 and chromatin core particle. Specificity and kinetic rate-constant measurements (1995) J. Biol. Chem., 270, pp. 11921-11926
Borek, F., Stupp, Y., Fuchs, S., Sela, M., Relation between optical configuration and immunogenicity of synthetic polypeptides (1965) Biochem. J., 96, pp. 577-582
Briand, J.P., Guichard, G., Dumortier, H., Muller, S., Retro-inverso peptidomimetics as new immunological probes. Validation and application to the detection of antibodies in rheumatic diseases (1995) J. Biol. Chem., 270, pp. 20686-20691
Briand, J.P., Benkirane, N., Guichard, G., Newman, J.F., Van Regenmortel, M.H., Brown, F., Muller, S., A retro-inverso peptide corresponding to the GH loop of foot-and-mouth disease virus elicits high levels of long-lasting protective neutralizing antibodies (1997) Proc. Natl. Acad. Sci. U.S.A., 94, pp. 12545-12550
Brown, J.H., Jardetzky, T.S., Gorga, J.C., Stern, L.J., Urban, R.G., Strominger, J.L., Wiley, D.C., Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1 (1993) Nature, 364, pp. 33-39
Collins, E.J., Garboczi, D.N., Wiley, D.C., Three-dimensional structure of a peptide extending from one end of a class I MHC binding site (1994) Nature, 371, pp. 626-629
Chorev, M., Goodman, M., Recent developments in retro peptides and proteins - An ongoing topochemical exploration (1995) Trends Biotechnol., 13, pp. 438-445
Dintzis, H.M., Symer, D.E., Dintzis, R.Z., Zawadzke, L.E., Berg, J.M., A comparison of the immunogenicity of a pair of enantiomeric proteins (1993) Proteins Struct. Funct. Genet., 16, pp. 306-308
Fassina, G., Cassani, G., Gnocchi, P., Fornasiero, M.C., Isetta, A.M., Inhibition of interleukin-2/p55 receptor subunit interaction by complementary peptides (1995) Arch. Biochem. Biophys., 318, pp. 37-54
Gill, T.J., Gould, J.H., Doty, P., Role of optical isomers in determining the antigenicity of synthetic polypeptides (1963) Nature, 197, pp. 746-747
Guichard, G., Benkirane, N., Graff, R., Muller, S., Briand, J.P., Synthesis and antigenic properties of reduced peptide bond pseudopeptide analogues of a histone H3 hexapeptide (1994) Pept. Res., 7, pp. 308-321
Higgins, K.A., Bicknell, W., Keach, H.H., Hearn, M.T., Comparison of the solution conformations of a human immunodeficiency virus peptidomimetic and its retro-inverso isomer using 1H NMR spectroscopy (1997) J. Pept. Res., 50, pp. 421-435
Jameson, B.A., McDonnell, J.M., Marini, J.C., Korngold, R., A rationally designed CD4 analogue inhibits experimental allergic encephalomyelitis (1994) Nature, 368, pp. 744-746
Madden, D.R., Gorga, J.C., Strominger, J.L., Wiley, D.C., The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation (1991) Nature, 353, pp. 321-323
Marino, M., Ippolito, A., Ruvo, M., Scarallo, A., Volpe, S., Fassina, G., Prevention of experimental autoimmune encephalomyelitis by encephalitogenic epitope sequence simplified derivatives (2000) Mol. Immunol., 37, pp. 951-960
Maurer, P., Antigenicity of polypeptides (poly alpha amino acids) (1965) J. Exp. Med., 121, pp. 339-349
Meziere, C., Viguier, M., Dumortier, H., Lo-Man, R., Leclerc, C., Guillet, J.G., Briand, J.P., Muller, S., In vivo T helper cell response to retro-inverso peptidomimetics (1997) J. Immunol., 159, pp. 3230-3237
Muller, S., Guichard, G., Benkirane, N., Brown, F., Van Regenmortel, M.H.V., Briand, J.P., Enhanced immunogenicity and cross-reactivity of retro-inverso peptidomimetics of the major antigenic site of foot-and-mouth disease virus (1995) Pept. Res., 8, pp. 138-144
Ostankovitch, M., Guichard, G., Connan, F., Muller, S., Chaboissier, A., Hoebeke, J., Choppin, J., Guillet, J.G., A partially modified retro-inverso pseudopeptide modulates the cytokine profile of CTL specific for an influenza virus epitope (1998) J. Immunol., 161, pp. 200-208
Petit, M.C., Benkirane, N., Guichard, G., Du, A.P., Marraud, M., Cung, M.T., Briand, J.P., Muller, S., Solution structure of a retro-inverso peptide analogue mimicking the foot-and-mouth disease virus major antigenic site. Structural basis for its antigenic cross-reactivity with the parent peptide (1999) J. Biol. Chem., 274, pp. 3686-3692
Phan-Chan-Du, A., Petit, M.C., Guichard, G., Briand, J.P., Muller, S., Cung, M.T., Structure of antibody-bound peptides and retro-inverso analogues. A transferred nuclear Overhauser effect spectroscopy and molecular dynamics approach (2001) Biochemistry, 40, pp. 5720-5727
Rini, J.M., Schulze-Gahmen, U., Wilson, I.A., Structural evidence for induced fit as a mechanism for antibody-antigen recognition (1992) Science, 255, pp. 959-965
Rini, J.M., Stanfield, R.L., Stura, E.A., Salinas, P.A., Profy, A.T., Wilson, I.A., Crystal structure of a human immunodeficiency virus type 1 neutralizing antibody, 50.1, in complex with its V3 loop peptide antigen (1993) Proc. Natl. Acad. Sci. U.S.A., 90, pp. 6325-6329
Shoham, M., Crystal structure of anticholera toxin peptide complex at 2.3 Å (1993) J. Mol. Biol., 232, pp. 1169-1175
Siligardi, G., Drake, A.F., The importance of extended conformations and, in particular, the PII conformation for the molecular recognition of peptides (1995) Biopolymers (Pep. Sci.), 37, pp. 281-292
Srinivasan, M., Wardrop, R.M., Gienapp, I.E., Stuckman, S.S., Whitacre, C.C., Kaumaya, P.T., A retro-inverso peptide mimic of CD28 encompassing the MYPPPY motif adopts a polyproline type II helix and inhibits encephalitogenic T cells in vitro (2001) J. Immunol., 167, pp. 578-585
Stebbins, C.E., Galan, J.E., Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion (2001) Nature, 414, pp. 77-81
Taylor, E.M., Otero, D.A., Banks, W.A., O'Brien, J.S., Retro-inverso prosaptide peptides retain bioactivity, are stable in vivo, are blood-brain barrier permeable (2000) J. Pharmacol. Exp. Ther., 295, pp. 190-194
Verdoliva, A., Cassani, G., Fassina, G., Affinity purification of polyclonal antibodies using immobilized multimeric peptides (1995) J. Chromatogr. Biomed. Appl., 664, pp. 175-183
Verdoliva, A., Ruvo, M., Cassani, G., Fassina, G., Antigenicity of topochemically related peptides (1995) Biochem. Biophys. Acta, 1253, pp. 57-62
Briand, J. P., Guichard, G., Dumortier, H., Muller, S., Retro-inverso peptidomimetics as new immunological probes. Validation and application to the detection of antibodies in rheumatic diseases (1995) J. Biol. Chem., 270, pp. 20686-20691
Briand, J. P., Benkirane, N., Guichard, G., Newman, J. F., Van Regenmortel, M. H., Brown, F., Muller, S., A retro-inverso peptide corresponding to the GH loop of foot-and-mouth disease virus elicits high levels of long-lasting protective neutralizing antibodies (1997) Proc. Natl. Acad. Sci. U. S. A., 94, pp. 12545-12550
Brown, J. H., Jardetzky, T. S., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L., Wiley, D. C., Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1 (1993) Nature, 364, pp. 33-39
Collins, E. J., Garboczi, D. N., Wiley, D. C., Three-dimensional structure of a peptide extending from one end of a class I MHC binding site (1994) Nature, 371, pp. 626-629
Dintzis, H. M., Symer, D. E., Dintzis, R. Z., Zawadzke, L. E., Berg, J. M., A comparison of the immunogenicity of a pair of enantiomeric proteins (1993) Proteins Struct. Funct. Genet., 16, pp. 306-308
Gill, T. J., Gould, J. H., Doty, P., Role of optical isomers in determining the antigenicity of synthetic polypeptides (1963) Nature, 197, pp. 746-747
Higgins, K. A., Bicknell, W., Keach, H. H., Hearn, M. T., Comparison of the solution conformations of a human immunodeficiency virus peptidomimetic and its retro-inverso isomer using 1H NMR spectroscopy (1997) J. Pept. Res., 50, pp. 421-435
Jameson, B. A., McDonnell, J. M., Marini, J. C., Korngold, R., A rationally designed CD4 analogue inhibits experimental allergic encephalomyelitis (1994) Nature, 368, pp. 744-746
Madden, D. R., Gorga, J. C., Strominger, J. L., Wiley, D. C., The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation (1991) Nature, 353, pp. 321-323
Petit, M. C., Benkirane, N., Guichard, G., Du, A. P., Marraud, M., Cung, M. T., Briand, J. P., Muller, S., Solution structure of a retro-inverso peptide analogue mimicking the foot-and-mouth disease virus major antigenic site. Structural basis for its antigenic cross-reactivity with the parent peptide (1999) J. Biol. Chem., 274, pp. 3686-3692
Rini, J. M., Schulze-Gahmen, U., Wilson, I. A., Structural evidence for induced fit as a mechanism for antibody-antigen recognition (1992) Science, 255, pp. 959-965
Rini, J. M., Stanfield, R. L., Stura, E. A., Salinas, P. A., Profy, A. T., Wilson, I. A., Crystal structure of a human immunodeficiency virus type 1 neutralizing antibody, 50. 1, in complex with its V3 loop peptide antigen (1993) Proc. Natl. Acad. Sci. U. S. A., 90, pp. 6325-6329
Stebbins, C. E., Galan, J. E., Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion (2001) Nature, 414, pp. 77-81
Taylor, E. M., Otero, D. A., Banks, W. A., O'Brien, J. S., Retro-inverso prosaptide peptides retain bioactivity, are stable in vivo, are blood-brain barrier permeable (2000) J. Pharmacol. Exp. Ther., 295, pp. 190-194
Sequence-simplification and chimeric assembly: New models of peptide antigen modification