Solvent polarity and pH effects on the magnetic properties of ionizable nitroxide radicals: A combined computational and experimental study of 2, 2, 5, 5-tetramethyl-3-carboxypyrrolidine and 2, 2, 6, 6-tetramethyl-4-carboxypiperidine nitroxides
Solvent polarity and pH effects on the magnetic properties of ionizable nitroxide radicals: A combined computational and experimental study of 2, 2, 5, 5-tetramethyl-3-carboxypyrrolidine and 2, 2, 6, 6-tetramethyl-4-carboxypiperidine nitroxides(283 views) Saracino GAA, Tedeschi A, D'Errico G, Improta R, Franco L, Ruzzi M, Corvaia C, Barone V
J Phys Chem A (ISSN: 1089-5639, 1520-5215electronic), 2002; 106(44): 10700-10706.
Dipartimento di Chimica, Università Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 6, 80134 Napoli, Italy
References: Berliner, L.J., (1976) Spin Labeling: Theory and Applications, , Academic Press: New Yor
Keana, J.F.W., (1978) Chem. Rev., 78, p. 37
Rassat, A., (1990) Pure Appl. Chem., 62, p. 223
Ricca, A., Tronchet, J.M., Weberand, J., Ellinger, Y., (1992) J. Phys. Chem., 96, p. 10779
Knauer, B.R., Napier, J.J., (1976) J. Am. Chem. Soc., 98, p. 4395
Schwartz, R.N., Peric, M., Smith, S.A., Bales, B.L., (1997) J. Phys. Chem., 101, p. 8735
Tedeschi, A.M., D'Errico, G., Busi, E., Basosi, R., Barone, V., (2002) Phys. Chem. Chem. Phys., 4, p. 2180
Haering, G., Luisi, P.L., Hauser, H., (1988) J. Phys. Chem., 92, p. 3574
Subezynski, W.K., Antholine, W.E., Hyde, J.S., Kusumi, A., (1990) Biochemistry, 29, p. 736
Marsh, D., Watts, A., Knowles, P.F., (1976) Biochemistry, 15, p. 3570
Keana, J.F.W., Acarregui, M.J., Boyle, L.M., (1982) J. Am. Chem. Soc., 104, p. 827
Kohn, W., Sham, L., (1965) J. Phys. Rev. A, p. 1133
Parr, R.G., Yang, W., (1970) Density Functional Theory of Atoms and Molecules, p. 230. , Oxford University Press: New York
Adamo, C., Barone, V., (1999) J. Chem. Phys., 110, p. 6158
Amovilli, C., Barone, V., Cammi, R., Cances, E., Cossi, M., Mennucci, B., Pomelli, C.S., Tomasi, J., (1999) Advances in Quantum Chemistry, 32. , Academic Press: New York
Barone, V., Cossi, M., Tomasi, J., (1997) J. Chem. Phys., 107, p. 3210
Cossi, M., Rega, N., Scalmani, G., Barone, V., (2001) J. Chem. Phys., 114, p. 5691
(2002) J. Chem. Phys., 117, p. 43
Foresman, J.B., Frisch, A.E., (1996) Exploring Chemistry with Electronic Structure Methods, 2nd ed., , Gaussian Inc., Pittsburgh PA
Chipman, D.M., (1989) Theor. Chim. Acta, 76, p. 73
Gaussian Inc.: Pittsburgh, PA, 2002Barone, V., Bencini, A., Cossi, M., Di Matteo, A., Mattesini, M., Totti, F., (1998) J. Am. Chem. Soc., 120, p. 7069
Barone, V., Di Matteo, A., Mele, F., De, P.R., Moreira, I., Illas, F., (1999) Chem. Phys. Lett., 302, p. 240
Barone, V., Grand, A., Minichino, C., Subra, R., (1993) J. Phys. Chem., 97, p. 6355
Improta, R., Scalmani, G., Barone, V., (2001) Chem. Phys. Lett., 336, p. 349
Dapprich, S., Komaroni, I., Byum, K.S., Morokuma, K., Frisch, M.J., (1999) THEOCHEM, 461, p. 1
Di Matteo, A., Barone, V., (1999) J. Phys. Chem. A, 103, p. 7676
Liptak, M.D., Shields, G.C., (2001) J. Am. Chem. Soc., 123, p. 7314
McQuerry, D.M., (1970) Statistical Mechanics, p. 86. , Harper and Row: New York
Topol, I.A., Tawa, G.J., Burt, S.K., Rashin, A.A., (1999) J. Chem. Phys., 111, p. 10998
Tissandier, M.D., Cowen, K.A., Feng, W.Y., Gundluach, E., Cohen, M.H., Earhart, A.D., Coe, J.V., Tuttle, T.R., (1998) J. Phys. Chem. A, 102, p. 7787
Owenius, R., Engström, M., Lindgren, M., (2001) J. Phys. Chem. A, 105, p. 10967
Boys, S., Bernardi, F., (1970) Mol. Phys., 19, p. 553
Simpson, M.C.R., Pena-Nuez, A., (1985) J. Chem. Soc., Faraday Trans. 1, 81, p. 2421
Berliner, L. J., (1976) Spin Labeling: Theory and Applications, , Academic Press: New Yor
Keana, J. F. W., (1978) Chem. Rev., 78, p. 37
Knauer, B. R., Napier, J. J., (1976) J. Am. Chem. Soc., 98, p. 4395
Schwartz, R. N., Peric, M., Smith, S. A., Bales, B. L., (1997) J. Phys. Chem., 101, p. 8735
Tedeschi, A. M., D'Errico, G., Busi, E., Basosi, R., Barone, V., (2002) Phys. Chem. Chem. Phys., 4, p. 2180
Subezynski, W. K., Antholine, W. E., Hyde, J. S., Kusumi, A., (1990) Biochemistry, 29, p. 736
Khramtsov, V. V., Weiner, L. M., Grigoriev, I. A., Volodarsky, L. B., (1982) Chem. Phys. Lett., 91, p. 69
Keana, J. F. W., Acarregui, M. J., Boyle, L. M., (1982) J. Am. Chem. Soc., 104, p. 827
Parr, R. G., Yang, W., (1970) Density Functional Theory of Atoms and Molecules, p. 230. , Oxford University Press: New York
(2002) J. Chem. Phys., 117, p. 43
Foresman, J. B., Frisch, A. E., (1996) Exploring Chemistry with Electronic Structure Methods, 2nd ed., , Gaussian Inc., Pittsburgh PA
Chipman, D. M., (1989) Theor. Chim. Acta, 76, p. 73
Liptak, M. D., Shields, G. C., (2001) J. Am. Chem. Soc., 123, p. 7314
McQuerry, D. M., (1970) Statistical Mechanics, p. 86. , Harper and Row: New York
Topol, I. A., Tawa, G. J., Burt, S. K., Rashin, A. A., (1999) J. Chem. Phys., 111, p. 10998
Tissandier, M. D., Cowen, K. A., Feng, W. Y., Gundluach, E., Cohen, M. H., Earhart, A. D., Coe, J. V., Tuttle, T. R., (1998) J. Phys. Chem. A, 102, p. 7787
Simpson, M. C. R., Pena-Nuez, A., (1985) J. Chem. Soc., Faraday Trans. 1, 81, p. 2421
Solvent polarity and pH effects on the magnetic properties of ionizable nitroxide radicals: A combined computational and experimental study of 2, 2, 5, 5-tetramethyl-3-carboxypyrrolidine and 2, 2, 6, 6-tetramethyl-4-carboxypiperidine nitroxides
The modulation induced by different solvents and by pH on the nitrogen isotropic hyperfine coupling constants (A N) of 2,2,5,5-tetramethyl-3-carboxypyrrolidine (3-carboxy-PROXYL,CP) and 2,2,6,6-tetramethyl-4-carboxypiperidine (4-carboxy-TEMPO,CT) nitroxides is studied through ab initio quantum mechanical computations and by EPR spectroscopy. The geometry of the neutral and deprotonated forms and the corresponding dissociation constants are computed by using the hybrid PBE0 functional. With these structures, accurate A N values are obtained by an integrated post-Hartree-Fock/PBE0 approach. Specific solvent effects are modeled by including a few solvent molecules (strongly bound to the solute), whereas bulk contributions are taken into account by the polarizable continuum model (PCM). Both EPR spectra and quantum mechanical computations point out that A N increases with increasing solvent polarity and, especially, H-bond ability. The A N values obtained by our computational model both for the neutral and deprotonated forms in aqueous solution are in good agreement with EPR values. On the other hand, the computed pK a values(4.97 and 5.25 for CP and CT, respectively) are significantly larger than the value reported in the literature for CP (3.4). New potentiometric and spectroscopic measurements lead to values (4 and 4.30 for CP and CT, respectively) in better agreement with quantum mechanical computations and chemical intuition. Also the calculated magnetic titration curves in aqueous solution are in quite good agreement with our new EPR curves.
Solvent polarity and pH effects on the magnetic properties of ionizable nitroxide radicals: A combined computational and experimental study of 2, 2, 5, 5-tetramethyl-3-carboxypyrrolidine and 2, 2, 6, 6-tetramethyl-4-carboxypiperidine nitroxides
Solvent polarity and pH effects on the magnetic properties of ionizable nitroxide radicals: A combined computational and experimental study of 2, 2, 5, 5-tetramethyl-3-carboxypyrrolidine and 2, 2, 6, 6-tetramethyl-4-carboxypiperidine nitroxides
Aloj L, Aurilio M, Rinaldi V, D'Ambrosio L, Tesauro D, Peitl PK, Maina T, Mansi R, Von Guggenberg E, Joosten L, Sosabowski JK, Breeman WA, De Blois E, Koelewijn S, Melis M, Waser B, Beetschen K, Reubi JC, De Jong M * The EEE project(449 views) Proc Int Cosm Ray Conf Icrc Universidad Nacional Autonoma De Mexico, 2007; 5(HEPART2): 977-980. Impact Factor:0 ViewExport to BibTeXExport to EndNote