Crystal structure of the wild-type and D30A mutant thioredoxin h of Chlamydomonas reinhardtii and implications for the catalytic mechanism(424 views) Menchise V, Corbier C, Didierjean C, Saviano M, Benedetti E, Jacquot JP, Aubry A
Lab. Cristal./Model. Mat. Min./Biol., Groupe Biocristallographie, Universite Henri Poincare-Nancy I, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
Lab. Cristal. /Model. Mat. Min. /Biol., Groupe Biocristallographie, Universite Henri Poincare-Nancy I, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
References: Holmgren, A., Thioredoxin (1985) Annu. Rev. Biochem., 54, pp. 237-27
Schürman, P., Jacquot, J.P., Plant thioredoxin systems revisited (2000) Annu. Plant Physiol. Plant Mol. Biol., 51, pp. 371-400
Buchanan, B.B., Schurmann, P., Decottignies, P., Lozano, R.M., Thioredoxin: A multifunctional regulatory protein with a bright future in technology and medicine (1994) Arch. Biochem. Biophys., 314, pp. 257-260
Krause, G., Lundstrom, J., Barea, J.L., Pueyo de la Cuesta, C., Holmgren, A., Mimicking the active site of protein disulfide-isomerase by substitution of proline 34 in Escherichia coli thioredoxin (1991) J. Biol. Chem., 266, pp. 9494-9500
Creighton, T.E., Protein folding coupled to disulphide bond formation (1997) J. Biol. Chem., 378, pp. 731-744
Aslund, F., Berndt, K.D., Holmgren, A., Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria (1997) J. Biol. Chem., 272, pp. 30780-30786
Weichsel, A., Gasdaska, J., Powis, G., Montfort, W.R., Crystal structures of reduced, oxidized, and mutated human thioredoxins: Evidence for a regulatory homodimer (1996) Structure, 4, pp. 735-751
Holmgren, A., Soderberg, B.O., Eklund, H., Branden, C.I., Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 Å resolution (1975) Proc. Natl. Acad. Sci. U.S.A., 6, pp. 2305-2309
Katti, S., LeMaster, D., Eklund, H., Crystal structure of thioredoxin from Escherichia coli at 1.68 Å resolution (1990) J. Mol. Biol., 212, pp. 167-184
Saarinen, M., Gleason, F., Eklund, H., Crystal structure of thioredoxin-2 from Anabaena (1995) Structure, 3, pp. 1097-1108
Capitani, G., Markovic-Housley, Z., Delval, G., Morris, M., Jansonius, J.N., Schürmann, P., Crystal structures of two functionally different thioredoxins in spinach chloroplasts (2000) J. Mol. Biol., 302, pp. 135-154
Qin, J., Clore, G., Gronenborn, A., The high-resolution three-dimensional solution structures of the oxidized and reduced states of human thioredoxin (1994) Structure, 2, pp. 503-522
Jeng, M., Campbell, A., Begley, T., Holmgren, A., Case, D., Wright, P., Dyson, H., High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin (1994) Structure, 2, pp. 853-868
Nicastro, G., De Chiara, C., Pedone, E., Tató, M., Rossi, M., Bartolucci, S., NMR structure of a novel thioredoxin from Bacillus acidocaldarius: Possible determinants of protein stability (1999) Eur. J. Biochem., 267, pp. 403-413
Mittard, V., Blackledge, M., Stein, M., Jacquot, J.P., Marion, D., Lancelin, J.M., NMR solution structure of an oxidised thioredoxin h from the eukaryotic green alga Chlamydomonas reinhardtii (1997) Eur. J. Biochem., 243, pp. 374-381
Lancelin, J.M., Guilhaudis, L., Krimm, I., Blackledge, M.J., Marion, D., Jacquot, J.P., NMR structures of thioredoxin m from the green alga Chlamydomonas reinhardtii (2000) Proteins Struct. Funct. Genet., 41, pp. 334-349
Kallis, G.B., Holmgren, A., Differential reactivity of the functional sulfhydryl groups of cysteine-32 and cysteine-35 present in the reduced form of thioredoxin from Escherichia coli (1980) J. Biol. Chem., 255, pp. 10261-10265
Krause, G., Holmgren, A., Substitution of the conserved tryptophan 31 in Escherichia coli thioredoxin by site-directed mutagenesis and structure-function analysis (1991) J. Biol. Chem., 266, pp. 4056-4066
Gleason, F.K., Mutation of conserved residues in Escherichia coli thioredoxin: Effects on stability and function (1992) Protein Sci., 5, pp. 609-616
Dyson, H.J., Jeng, M.F., Tennant, L.L., Slaby, I., Lindell, M., Cui, D.S., Kuprin, S., Holmgren, A., Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: Structural and functional characterization of mutants of Asp 26 and Lys 57 (1997) Biochemistry, 36, pp. 2622-2626
Krimm, I., Lemaire, S., Ruelland, E., Miginiac-Maslow, M., Jacquot, J.P., Hirasawa, M., Knaff, D., Lancelin, J.M., The single mutation Trp35 → Ala in the 35-40 redox site of Chlamydomonas reinhardtii thioredoxin h affects its biochemical activity and the pH dependence of C36-C39 1H-13C NMR (1998) Eur. J. Biochem., 255, pp. 185-195
Langsetmo, K., Fuchs, J., Woodward, C., The conserved, buried aspartic acid in oxidized Escherichia coli thioredoxin has a pKa of 7.5. Its titration produces a related shift in global stability (1991) Biochemistry, 30, pp. 7603-7609
Jeng, M., Dyson, H., Direct measurement of the aspartic acid 26 pKa for reduced Escherichia coli thioredoxin by 13C NMR (1996) Biochemistry, 35, pp. 1-6
Vohnik, S., Hanson, C., Tuma, R., Fuchs, J., Woodward, C., Thomas, G.J., Conformation, stability, and active-site cysteine titrations of Escherichia coli D26A thioredoxin probed by Raman spectroscopy (1998) Protein Sci., 7, pp. 193-200
Wilson, N., Barbar, E., Fuchs, J., Woodward, C., Aspartic acid 26 in reduced Escherichia coli thioredoxin has a pKa>
9 (1995) Biochemistry, 34, pp. 8931-8939
Jeng, M., Holmgren, A., Dyson, H., Proton sharing between cysteine thiols in Escherichia coli thioredoxin: Implications for the mechanism of protein disulphide reduction (1995) Biochemistry, 34, pp. 10101-10105
Ladbury, J., Wynn, R., Hellinga, H., Sturtevant, J., Stability of oxidized Escherichia coli thioredoxin and its dependence on protonation of the aspartic acid residue in the 26 position (1993) Biochemistry, 32, pp. 7526-7530
Chivers, P.T., Raines, R.T., General acid/base catalysis in the active site of Escherichia coli thioredoxin (1997) Biochemistry, 36, pp. 15810-15816
LeMaster, D., Springer, P.A., Unkefer, C.J., The role of the buried aspartate of Escherichia coli thioredoxin in the activation of the mixed disulphide intermediate (1997) J. Biol. Chem., 272, pp. 29998-30001
expression in Escherichia coli of the recombinant proteins, purification and biochemical properties (1995) Plant Mol. Biol., 3, pp. 487-503
Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., 276, pp. 307-326
Navaza, J., AMoRe: An automated package for molecular replacement (1994) Acta Crystallogr. A, 50, pp. 157-163
Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunsteleve, R.W., Jiang, J.S., Pannu, N.S., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr. D, 54, pp. 905-921
Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thorton, J.M., PROCHECK: A program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallogr., 26, pp. 283-291
Ramakrisknan, C., Ramachandran, G.N., Stereochemical criteria for polypeptide and protein chain conformations. II. Allowed conformations for a pair of peptide units (1965) Biophys. J., 5, pp. 909-933
Sali, A., Bundell, T.L., Comparative protein modelling by satisfaction of spatial restraints (1993) J. Mol. Biol., 234, pp. 779-815
Barton, G.J., ALSCRIPT: A tool to format multiple sequence alignments (1993) Protein Eng., 6, pp. 37-40
The CCP4 Suite: Pograms for protein crystallography (1994) Acta Crystallogr. D, 50, pp. 760-763
Koradi, R., Billeter, M., Wuthrich, K., MOLMOL: A program for display and analysis of macromolecular structures (1996) J. Mol. Graphics, 14, pp. 51-55
Weiner, S.J., Kollman, P.A., Nguyen, D.T., Case, D.A., An all atom force field for simulations of proteins and nucleic acids (1986) J. Comp. Chem., 7, pp. 230-252
Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Tasumi, M., The Protein Data Bank: A computer-based archival file for macromolecular structures (1977) J. Mol. Biol., 112, pp. 535-542
Saviano, M., Aida, M., Corongiu, G., Molecular dynamics simulation in vacuo and in solution of cyclolinopeptide A: A conformational study (1991) Biopolymers, 31, pp. 1017-1024
LeMaster, D., Structural determinants of the catalytic reactivity of the buried cysteine of Escherichia coli thioredoxin (1996) Biochemistry, 35, pp. 14876-14881
Qin, J., Clore, G.M., Kennedy, W.M., Huth, J.R., Gronenborn, A.M., Solution structure of human thioredoxin in a mixed disulfide intermediate complex with its target peptide from the transcription factor NF kappa B (1995) Structure, 3, pp. 289-297
Saviano, M., Rossi, F., Pavone, V., Di Blasio, B., Pedone, C., Molecular dynamics simulation in vacuo and in solution of [Aib5,6-D-Ala8]cyclolinopeptide A: A conformational and comparative study (1992) J. Biomot. Struct. Dyn., 9, pp. 1045-1060
Belasco, J.G., Bruice, T.W., Albery, W.J., Knowles, J.R., Energetics of proline racemase: Fractionation factors for the essential catalytic groups in the enzyme-substrate complex (1986) Biochemistry, 25, pp. 2558-2564
Marchal, S., Rahuel-Clermont, S., Branlant, G., Role of glutamate 268 in the catalytic mechanism of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans (2000) Biochemistry, 39, pp. 3327-3335
Sch rman, P., Jacquot, J. P., Plant thioredoxin systems revisited (2000) Annu. Plant Physiol. Plant Mol. Biol., 51, pp. 371-400
Buchanan, B. B., Schurmann, P., Decottignies, P., Lozano, R. M., Thioredoxin: A multifunctional regulatory protein with a bright future in technology and medicine (1994) Arch. Biochem. Biophys., 314, pp. 257-260
Creighton, T. E., Protein folding coupled to disulphide bond formation (1997) J. Biol. Chem., 378, pp. 731-744
Lancelin, J. M., Guilhaudis, L., Krimm, I., Blackledge, M. J., Marion, D., Jacquot, J. P., NMR structures of thioredoxin m from the green alga Chlamydomonas reinhardtii (2000) Proteins Struct. Funct. Genet., 41, pp. 334-349
Kallis, G. B., Holmgren, A., Differential reactivity of the functional sulfhydryl groups of cysteine-32 and cysteine-35 present in the reduced form of thioredoxin from Escherichia coli (1980) J. Biol. Chem., 255, pp. 10261-10265
Gleason, F. K., Mutation of conserved residues in Escherichia coli thioredoxin: Effects on stability and function (1992) Protein Sci., 5, pp. 609-616
Dyson, H. J., Jeng, M. F., Tennant, L. L., Slaby, I., Lindell, M., Cui, D. S., Kuprin, S., Holmgren, A., Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: Structural and functional characterization of mutants of Asp 26 and Lys 57 (1997) Biochemistry, 36, pp. 2622-2626
Chivers, P. T., Raines, R. T., General acid/base catalysis in the active site of Escherichia coli thioredoxin (1997) Biochemistry, 36, pp. 15810-15816
Br nger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunsteleve, R. W., Jiang, J. S., Pannu, N. S., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr. D, 54, pp. 905-921
Roussel, P. A., Cambillau, C., (1991) TURBO-FRODO, Silicon Graphics applications directory, , Silicon Graphics, Mountain View, CA
Laskowski, R. A., MacArthur, M. W., Moss, D. S., Thorton, J. M., PROCHECK: A program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallogr., 26, pp. 283-291
Barton, G. J., ALSCRIPT: A tool to format multiple sequence alignments (1993) Protein Eng., 6, pp. 37-40
Weiner, S. J., Kollman, P. A., Nguyen, D. T., Case, D. A., An all atom force field for simulations of proteins and nucleic acids (1986) J. Comp. Chem., 7, pp. 230-252
Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Tasumi, M., The Protein Data Bank: A computer-based archival file for macromolecular structures (1977) J. Mol. Biol., 112, pp. 535-542
Cook, P. F., (1994) Enzyme mechanism from isotope solvent effect, , CRC Press, Boca Raton, FL
Qin, J., Clore, G. M., Kennedy, W. M., Huth, J. R., Gronenborn, A. M., Solution structure of human thioredoxin in a mixed disulfide intermediate complex with its target peptide from the transcription factor NF kappa B (1995) Structure, 3, pp. 289-297
Belasco, J. G., Bruice, T. W., Albery, W. J., Knowles, J. R., Energetics of proline racemase: Fractionation factors for the essential catalytic groups in the enzyme-substrate complex (1986) Biochemistry, 25, pp. 2558-2564
Crystal structure of the wild-type and D30A mutant thioredoxin h of Chlamydomonas reinhardtii and implications for the catalytic mechanism
Thioredoxins are ubiquitous proteins which catalyse the reduction of disulphide bridges on target proteins. The catalytic mechanism proceeds via a mixed disulphide intermediate whose breakdown should be enhanced by the involvement of a conserved buried residue, Asp-30, as a base catalyst towards residue Cys-39. We report here the crystal structure of wild-type and D30A mutant thioredoxin h from Chlamydomonas reinhardtii, which constitutes the first crystal structure of a cytosolic thioredoxin isolated from a eukaryotic plant organism. The role of residue Asp-30 in catalysis has been revisited since the distance between the carboxylate OD1 of Asp-30 and the sulphur SG of Cys-39 is too great to support the hypothesis of direct proton transfer. A careful analysis of all available crystal structures reveals that the relative positioning of residues Asp-30 and Cys-39 as well as hydrophobic contacts in the vicinity of residue Asp-30 do not allow a conformational change sufficient to bring the two residues close enough for a direct proton transfer. This suggests that protonation/deprotonation of Cys-39 should be mediated by a water molecule. Molecular-dynamics simulations, carried out either in vacuo or in water, as well as proton-inventory experiments, support this hypothesis. The results are discussed with respect to biochemical and structural data.
Crystal structure of the wild-type and D30A mutant thioredoxin h of Chlamydomonas reinhardtii and implications for the catalytic mechanism