The crystal structure of Sulfolobus solfataricus elongation factor 1α in complex with GDP reveals novel features in nucleotide binding and exchange(452 views) Vitagliano L, Masullo M, Sica F, Zagari A, Bocchini V
Embo J (ISSN: 0261-4189, 0261-4189linking), 2001 Oct 1; 20(19): 5305-5311.
Centro di Biocristallografia, CNR, via Mezzocannone 6, I-80134 Napoli, Italy
Dipartimento di Biochimica e Biotecnologie Mediche, Via Pansini 5, I-80131 Napoli, Italy
Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro 'Magna Graecia', Catanzaro Napoli, Italy
Dipartimento di Chimica, Università degli Studi di Napoli'Federico II', Napoli, Italy
CEINGE, Biotecnologie Avanzate Scarl, Napoli, Italy
References: Abel, K., Jurnak, F., A complex profile of protein elongation: Translating chemical energy into molecular movement (1996) Structure, 4, pp. 229-23
Abel, K., Yoder, M.D., Hilgenfeld, R., Jurnak, F., An α to β conformational switch in EF-Tu (1996) Structure, 4, pp. 1153-1159
Al-Karadaghi, S., Kristensen, O., Liljas, A., A decade of progress in understanding the structural basis of protein synthesis (2000) Prog. Biophys. Mol. Biol., 73, pp. 167-193
Amils, R., Cammarano, P., Londei, P., Translation in archaea (1993) The Biochemistry of Archaea, pp. 393-438. , Kates,M., Kushner,D.J. and Matheson,A.T. (eds). Elsevier, Amsterdam, The Netherlands
Andersen, G.R., Pedersen, L., Valente, L., Chatterjee, I., Kinzy, T.G., Kjeldgaard, M., Nyborg, J., Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A:eEF1Bα (2000) Mol. Cell, 6, pp. 1261-1266
Andersen, G.R., Thirup, S., Spremulli, L.L., Nyborg, J., High resolution crystal structure of bovine mitochondrial EF-Tu in complex with GDP (2000) J. Mol. Biol., 297, pp. 421-436
Andersen, G.R., Valente, L., Pedersen, L., Kinzy, T.G., Nyborg, J., Crystal structures of nucleotide exchange intermediates in the eEF1A-eEF1Bα complex (2001) Nature Struct. Biol., 8, pp. 531-534
Arai, K., Kawakita, M., Kaziro, Y., Studies on the polypeptide elongation factors from E. coli. V. Properties of various complexes containing EF-Tu and EF-Ts (1974) J. Biochem., 76, pp. 293-306
Arcari, P., Masullo, M., Arcucci, A., Ianniciello, G., De Paola, B., Bocchini, V., A chimeric elongation factor containing the putative guanine nucleotide binding domain of archaeal EF-1α and the M and C domains of eubacterial EF-Tu (1999) Biochemistry, 38, pp. 12288-12295
Berchtold, H., Reshetnikova, L., Reiser, C.O., Schirmer, N.K., Sprinzl, M., Hilgenfeld, R., Crystal structure of active elongation factor Tu reveals major domain rearrangements (1993) Nature, 365, pp. 126-132
Brünger, A., (1992) X-PLOR v3.1. User's Guide. A System for X-ray Crystallography and NMR, , Yale University Press, New Haven, CT
Cherfils, J., Chardin, P., GEFs: Structural basis for their activation of small GTP-binding proteins (1999) Trends Biochem. Sci., 24, pp. 306-311
Czworkowski, J., Wang, J., Steitz, T.A., Moore, P.B., The crystal structure of elongation factor G complexed with GDP, at 2.7 Å resolution (1994) EMBO J., 13, pp. 3661-3668
Dever, T.E., Glynias, M.J., Merrick, W.C., GTP-binding domain: Three consensus sequence elements with distinct spacing (1987) Proc. Natl Acad. Sci. USA, 84, pp. 1814-1818
Esnouf, R.M., Further additions to MolScript version 1.4, including reading and conturing of electron-density maps (1999) Acta Crystallogr. D, 55, pp. 938-940
Hillig, R.C., Hanzal-Bayer, M., Linari, M., Becker, J., Wittinghofer, A., Renault, L., Structural and biochemical properties show ARL3-GDP as a distinct GTP binding protein (2000) Structure Fold. Des., 8, pp. 1239-1245
Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., Improved methods for binding protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47, pp. 110-119
Kawashima, T., Berthet-Colominas, C., Wulff, M., Cusack, S., Leberman, R., The structure of the Escherichia coli EF-Tu·EF-Ts complex at 2.5 Å resolution (1996) Nature, 379, pp. 511-518
Kjeldgaard, M., Nissen, P., Thirup, S., Nyborg, J., The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation (1993) Structure, 1, pp. 35-50
Klink, F., Elongation factors (1985) The Bacteria, pp. 379-410. , Woese,C.R. and Wolfe,R. (eds). Academic Press, London, UK
Kozlov, G., Ekiel, I., Beglova, N., Yee, A., Dharamsi, A., Engel, A., Siddiqui, N., Gehring, K., Rapid fold and structure determination of the archaeal translation elongation factor 1β from Methanobacterium thermoautotrophicum (2000) J. Biomol. NMR, 17, pp. 187-194
Krab, I.M., Parmeggiani, A., EF-Tu, a GTPase odyssey (1998) Biochim. Biophys. Acta, 1443, pp. 1-22
Kraulis, P.J., MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures (1991) J. Appl. Crystallogr., 24, pp. 946-950
Masullo, M., Raimo, G., Parente, A., Gambacorta, A., De Rosa, M., Bocchini, V., Properties of the elongation factor 1α in the thermoacidophilic archaebacterium Sulfolobus solfataricus (1991) Eur. J. Biochem., 199, pp. 529-537
Masullo, M., De Vendittis, E., Bocchini, V., Archaebacterial elongation factor 1α carries the catalytic site for GTP hydrolysis (1994) J. Biol. Chem., 269, pp. 20376-20379
Masullo, M., Ianniciello, G., Arcari, P., Bocchini, V., Properties of truncated forms of the elongation factor 1α from the archaeon Sulfolobus solfataricus (1997) Eur. J. Biochem., 243, pp. 468-473
Merrick, W.C., Nyborg, J., The protein biosynthesis elongation cycle (2000) Translational Control of Gene Expression, pp. 89-126. , Sonenberg,N., Hershey,J.W.B. and Mathews,M.B. (eds). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
Navaza, J., AMoRe an automated package for molecular replacement (1994) Acta Crystallogr. A, 50, pp. 157-163
Nissen, P., Kjeldgaard, M., Thirup, S., Polekhina, G., Reshetnikova, L., Clark, B.F., Nyborg, J., Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu and a GTP analog (1995) Science, 270, pp. 1464-1472
Nyborg, J., Liljas, A., Protein biosynthesis: Structural studies of the elongation cycle (1998) FEBS Lett., 430, pp. 95-99
Otwinowsld, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., 276, pp. 307-326
Perez, J.M., Siegal, G., Kriek, J., Dijk, J., Canters, G.W., Moller, W., The solution structure of the guanine nucleotide exchange domain of human elongation factor 1β reveals a striking resemblance to that of EF-Ts from Escherichia coli (1999) Structure Fold. Des., 7, pp. 217-226
Perrakis, A., Morris, R., Lamzin, V.S., Automated protein model building combined with iterative structure refinement (1999) Nature Struct. Biol., 6, pp. 458-463
Polekhina, G., Thirup, S., Kjeldgaard, M., Nissen, P., Lippmann, C., Nyborg, J., Helix unwinding in the effector region of elongation factor EF-Tu-GDP (1996) Structure, 4, pp. 1141-1151
Raimo, G., Masullo, M., Savino, G., Scarano, G., Ianniciello, G., Parente, A., Bocchini, V., Archaeal elongation factor 1β is a dimer. Primary structure, molecular and biochemical properties (1996) Biochim. Biophys. Acta, 1293, pp. 106-112
Ralmo, G., Masullo, M., Lombardo, B., Bocchini, V., The archaeal elongation factor 1α bound to GTP forms a ternary complex with eubacterial and eukaryal aminoacyl-tRNA (2000) Eur. J. Biochem., 267, pp. 6012-6018
Roll-Mecak, A., Cao, C., Dever, T.E., Burley, S.K., X-Ray structures of the universal translation initiation factor IF2/elF5B: Conformational changes on GDP and GTP binding (2000) Cell, 103, pp. 781-792
Rutthard, H., Banerjee, A., Makinen, M.W., Mg2+ is not catalytically required in the intrinsic and kirromycin-stimulated GTPase action of Thermus thermophilus EF-Tu (2001) J. Biol. Chem., 276, pp. 18728-18733
Song, H., Parsons, M.R., Rowsell, S., Leonard, G., Phillips, S.E., Crystal structure of intact elongation factor EF-Tu from Escherichia coli in GDP conformation at 2.05 Å resolution (1999) J. Mol. Biol., 285, pp. 1245-1256
Sprinzl, M., Elongation factor Tu: A regulatory GTPase with an integrated effector (1994) Trends Biochem. Sci., 19, pp. 245-250
Wang, Y., Jiang, Y., Meyering-Voss, M., Sprinzl, M., Sigler, P.B., Crystal structure of the EF-Tu·EF-Ts complex from Thermus thermophilus (1997) Nature Struct. Biol., 4, pp. 650-656
Zagari, A., Sica, F., Scarano, G., Vitagliano, L., Bocchini, V., Crystallization of a hyperthermophilic archaeal elongation factor 1α (1994) J. Mol. Biol., 242, pp. 175-177
Zeidler, W., Egle, C., Ribeiro, S., Wagner, A., Katunin, V., Kreutzer, R., Rodnina, M., Sprinzl, M., Site-directed mutagenesis of Thermus thermophilus elongation factor Tu. Replacement of His85, Asp81 and Arg300 (1995) Eur. J. Biochem., 229, pp. 596-604
Andersen, G. R., Pedersen, L., Valente, L., Chatterjee, I., Kinzy, T. G., Kjeldgaard, M., Nyborg, J., Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A: eEF1B (2000) Mol. Cell, 6, pp. 1261-1266
Andersen, G. R., Thirup, S., Spremulli, L. L., Nyborg, J., High resolution crystal structure of bovine mitochondrial EF-Tu in complex with GDP (2000) J. Mol. Biol., 297, pp. 421-436
Andersen, G. R., Valente, L., Pedersen, L., Kinzy, T. G., Nyborg, J., Crystal structures of nucleotide exchange intermediates in the eEF1A-eEF1B complex (2001) Nature Struct. Biol., 8, pp. 531-534
Br nger, A., (1992) X-PLOR v3. 1. User's Guide. A System for X-ray Crystallography and NMR, , Yale University Press, New Haven, CT
Dever, T. E., Glynias, M. J., Merrick, W. C., GTP-binding domain: Three consensus sequence elements with distinct spacing (1987) Proc. Natl Acad. Sci. USA, 84, pp. 1814-1818
Esnouf, R. M., Further additions to MolScript version 1. 4, including reading and conturing of electron-density maps (1999) Acta Crystallogr. D, 55, pp. 938-940
Hillig, R. C., Hanzal-Bayer, M., Linari, M., Becker, J., Wittinghofer, A., Renault, L., Structural and biochemical properties show ARL3-GDP as a distinct GTP binding protein (2000) Structure Fold. Des., 8, pp. 1239-1245
Jones, T. A., Zou, J. Y., Cowan, S. W., Kjeldgaard, M., Improved methods for binding protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47, pp. 110-119
Krab, I. M., Parmeggiani, A., EF-Tu, a GTPase odyssey (1998) Biochim. Biophys. Acta, 1443, pp. 1-22
Kraulis, P. J., MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures (1991) J. Appl. Crystallogr., 24, pp. 946-950
Merrick, W. C., Nyborg, J., The protein biosynthesis elongation cycle (2000) Translational Control of Gene Expression, pp. 89-126. , Sonenberg, N., Hershey, J. W. B. and Mathews, M. B. (eds). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
Perez, J. M., Siegal, G., Kriek, J., Dijk, J., Canters, G. W., Moller, W., The solution structure of the guanine nucleotide exchange domain of human elongation factor 1 reveals a striking resemblance to that of EF-Ts from Escherichia coli (1999) Structure Fold. Des., 7, pp. 217-226
The crystal structure of Sulfolobus solfataricus elongation factor 1α in complex with GDP reveals novel features in nucleotide binding and exchange
The crystal structure of elongation factor 1α from the archaeon Sulfolobus solfataricus in complex with GDP (SsEF-1α·GDP) at 1.8 Å resolution is reported. As already known for the eubacterial elongation factor Tu, the SsEF-1α·GDP structure consists of three different structural domains. Surprisingly, the analysis of the GDP-binding site reveals that the nucleotide-protein interactions are not mediated by Mg2+. Furthermore, the residues that usually co-ordinate Mg2+ through water molecules in the GTP-binding proteins, though conserved in SsEF-1α, are located quite far from the binding site. [3H]GDP binding experiments confirm that Mg2+ has only a marginal effect on the nucleotide exchange reaction of SsEF-1α, although essential to GTPase activity elicited by SsEF-1α. Finally, structural comparisons of SsEF-1α·GDP with yeast EF-1α in complex with the nucleotide exchange factor EF-1β shows that a dramatic rearrangement of the overall structure of EF-1α occurs during the nucleotide exchange.
The crystal structure of Sulfolobus solfataricus elongation factor 1α in complex with GDP reveals novel features in nucleotide binding and exchange