The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus(425 views) De Simone G, Menchise V, Manco G, Mandrich L, Sorrentino N, Lang D, Rossi M, Pedone C
Centro Di Studio Di Biocristallografia- CNR, University of Naples Federico II, via Mezzocannone 6/8, 80134 Naples, Italy
Istituto Di Biochimica Delle Proteine Ed Enzimologia-CNR, via Marconi 10, 80125, Naples, Italy
EMBL c/o DESY, Hamburg Outstation, Notkestr. 85, 22603 Hamburg, Germany
References: Oosterbaan, R.A., Jansz, H.S., Cholinesterases, esterases, and lipases (1965) Comprehensive Biochemistry, 16, pp. 1-54. , Florkin, M. & Stotz, E. H., eds. Elsevier, Amsterda
Jaeger, K.E., Dijkstra, B.W., Reetz, M.T., Bacterial biocatalysts: Molecular biology, three-dimensional structures, and biotechnological applications of lipases (1999) Annu. Rev. Microbiol., 53, pp. 315-351
Krejci, E., Duval, N., Chatonnet, A., Vincens, P., Maussoliè, J., Cholinesterase-like domains in enzymes and structural proteins: Functional and evolutionary relationships and identification of a catalytically essential aspartic acid (1991) Proc. Natl. Acad. Sci. USA, 88, pp. 6647-6651
Hemilä, H., Koivula, T.T., Palva, I., Hormone-sensitive lipase is closely related to several bacterial proteins, and distantly related to acetylcholinesterase and lipoprotein lipase: Identification of a superfamily of esterases and lipases (1994) Biochim. Biophys. Acta, 1210, pp. 249-253
Klenk, H.P., Clayton, R.A., Tomb, J.F., White, O., Nelson, K.E., Ketchum, K.A., The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus (1997) Nature, 390, pp. 364-370
Manco, G., Adinolfi, E., Pisani, F.M., Ottolina, G., Carrea, G., Rossi, M., Overexpression and properties of a new thermophilic and thermostable esterase from Bacillus acidocaldarius with sequence similarity to hormone-sensitive lipase subfamily (1998) Biochem. J., 332, pp. 203-212
Manco, G., Giosuè, E., D'Auria, S., Herman, P., Carrea, G., Rossi, M., Cloning, overexpression and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus (2000) Arch. Biochem. Biophys., 373, pp. 182-192
Langin, D., Laurell, H., Stenson-Holst, L., Belfrage, P., Holm, C., Gene organization and primary structure of human hormone-sensitive lipase: Possible significance of a sequence homology with a lipase of Moraxella TA144, an Antarctic bacterium (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 4897-4901
Cygler, M., Schrag, J.D., Sussman, J.L., Harel, M., Silman, I., Gentry, M.K., Doctor, B.P., Relationship between sequence conversation and three-dimensional structure in a large family of esterase, lipases, and related proteins (1993) Protein Sci, 2, pp. 366-382
Cousin, X., Hotelier, T., Gliles, K., Toutant, J.P., Chatonnet, A., ACHEdb: The database system for ESTHER, the alpha/beta fold family of proteins and the Cholinesterase gene server (1998) Nucl. Acids Res., 26, pp. 226-228
Holm, C., Kirchgessner, T.G., Svenson, K.L., Fredrikson, G., Nilsson, S., Miller, C.G., Hormone-sensitive lipase: Sequence, expression, and chromosomal localization to 19-cent-q13.3 (1988) Science, 241, pp. 1503-1506
De Simone, G., Galdiero, S., Manco, G., Lang, D., Rossi, M., Pedone, C., A snapshot of the transition state of a novel thermophilic esterase belonging to the subfamily of mammalian hormone-sensitive lipase (2000) J. Mol. Biol., 303, pp. 761-771
Wei, Y., Contreras, J.A., Sheffield, P., Osterlund, T., Derewenda, U., Kneusel, R.E., Crystal structure of Brefeldin A esterase, a bacterial homolog of the mammalian hormone-sensitive lipase (1999) Nature Struct. Biol., 6, pp. 340-345
Raibaud, A., Zalacain, M., Holt, T., Tizard, R., Thompson, C.J., Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus (1991) J. Bacteriol., 173, pp. 4454-4463
Wohlleben, W., Arnold, W., Broer, I., Hillemann, D., Strauch, E., Puhler, A., Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tu494 and its expression in Nicotiana tabacum (1988) Gene, 70, pp. 25-37
Feller, G., Thiry, M., Arpigny, J.L., Gerday, C., Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotrophic antartic strain Moraxella TA144 (1991) Gene, 102, pp. 111-115
Probst, M.R., Beer, M., Beer, D., Jeno, P., Meyer, V.A., Gasser, R., Human liver arylacetammide deacetylse. Molecular cloning of a novel esterase involved in the metabolic activation of arylamine carcinogens with high sequence similarity to hormone-sensitive lipase (1994) J. Biol. Chem., 269, pp. 21650-21656
She, Q., Singh, R.K., Confalonieri, F., Zivanovic, Y., Allard, G., Awayez, M.J., The complete genome of the crenarchaeon Sulfolobus solfataricus P2 (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 7835-7840
Ollis, D.L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S.M., The α/β-hydrolase fold (1992) Protein Eng., 5, pp. 197-211
Heikinheimo, P., Goldman, A., Jeffries, C., Ollis, D.L., Of barn owls and bankers: A lush variety of alpha/beta hydrolases (1999) Struct. Fold. Des., 7, pp. 141-146
Nardini, M., Dijkstra, B.W., α/β hydrolase fold enzymes: The family keeps growing (1999) Curr. Opin. Struct. Biol., 9, pp. 732-737
Brady, L., Brzozowski, A.M., Derewenda, Z.S., Dodson, E., Dodson, G., Tolley, S., A serine protease triad forms the catalytic centre of a triacylglycerol lipase (1990) Nature, 343, pp. 767-770
Derewenda, Z.S., Sharp, A.M., News from the interface: The molecular structures of triacylglyceride lipases (1993) Trends Biochem. Sci., 18, pp. 20-25
Manco, G., Camardella, L., Febbraio, F., Adamo, G., Carratore, V., Rossi, M., Homology modeling and identification of serine 160 as nucleophile of the active site in a thermostable carboxylesterase from the archaeon Archaeoglobus fulgidus (2000) Protein Eng., 13, pp. 197-200
Navaza, J., AMoRe: An automated package for molecular replacement (1994) Acta Crystallog. Sect. A, 50, pp. 157-163
Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., PROCHECK - A program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallog., 26, pp. 283-291
Thompson, M.J., Eisenberg, D., Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability (1999) J. Mol. Biol., 290, pp. 595-604
Gallivan, J.P., Dougherty, D.A., Cation-pi interactions in structural biology (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 9459-9464
Spassov, V.Z., Karshikoff, A.D., Ladenstein, R., The optimization of protein-solvent interactions: Thermostability and the role of hydrophobic and electrostatic interactions (1995) Protein Sci., 4, pp. 1516-1527
Haney, P.J., Badger, J.H., Buldak, G.L., Reich, C.I., Woese, C.R., Olsen, G.J., Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 3578-3583
Cambillau, C., Claverie, J.M., Structural and genomic correlates of hyperthermostability (2000) J. Biol. Chem., 275, pp. 32383-32386
Perutz, M.F., Raidt, H., Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2 (1975) Nature, 255, pp. 256-259
Kelly, C.A., Nishiyama, M., Ohnishi, Y., Beppu, T., Birktoft, J.J., Determinants of protein thermostability observed in the 1.9-Å crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus (1993) Biochemistry, 32, pp. 3913-3922
Chan, M.K., Mukund, S., Kletzin, A., Adams, M.W., Rees, D.C., Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase (1995) Science, 267, pp. 1463-1469
Korndorfer, I., Steipe, B., Huber, R., Tomschy, A., Jaenicke, R., The crystal structure of hologlyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima at 2.5 Å resolution (1995) J. Mol. Biol., 246, pp. 511-521
Rice, D.W., Yip, K.S., Stillman, T.J., Britton, K.L., Fuentes, A., Connerton, I., Insights into the molecular basis of thermal stability from the structure determination of Pyrococcus furiosus glutamate dehydrogenase (1996) FEMS Microbiol. Rev., 18, pp. 105-117
Aguilar, C.F., Sanderson, I., Moracci, M., Ciaramella, M., Nucci, R., Rossi, M., Pearl, L.H., Crystal structure of the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus: Resilience as a key factor in thermostability (1997) J. Mol. Biol., 271, pp. 789-802
Russell, R.J., Ferguson, J.M., Hough, D.W., Danson, M.J., Taylor, G.L., The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiosus at 1.9 Å resolution (1997) Biochemistry, 36, pp. 9983-9994
Vogt, G., Woell, S., Argos, P., Protein thermal stability, hydrogen bonds, and ion pairs (1997) J. Mol. Biol., 269, pp. 631-643
Britton, K.L., Yip, K.S., Sedelnikova, S.E., Stillman, T.J., Adams, M.W., Ma, K., Structure determination of the glutamate dehydrogenase from the hyperthermophile Thermococcus litoralis and its comparison with that from Pyrococcus furiosus (1999) J. Mol. Biol., 293, pp. 1121-1132
Elcock, A.H., The stability of salt bridges at high temperatures: Implications for hyperthermophilic proteins (1998) J. Mol. Biol., 284, pp. 489-502
Szilàgyi, A., Zàvodszky, P., Structural differences between mesophilic, moderately thermophilic and extremely thermophilic proteins subunits: Results of a comprensive survey (2000) Structure, 8, pp. 493-504
Usher, K.C., De la Cruz, A.F., Dahlquist, F.W., Swanson, R.V., Simon, M.I., Remington, S.J., Crystal structures of CheY from Thermotoga maritima do not support conventional explanations for the structural basis of enhanced thermostability (1998) Protein Sci., 7, pp. 403-412
Xiao, L., Honig, B., Electrostatic contributions to the stability of the hyperthermophilic proteins (1999) J. Mol. Biol., 289, pp. 1435-1444
Sali, D., Bycroft, M., Fersht, A.R., Surface electrostatic interactions contribute little of stability of barnase (1991) J. Mol. Biol., 220, pp. 779-788
Sun, D.P., Soderlind, E., Baase, W.A., Wozniak, J.A., Sauer, U., Matthews, B.W., Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactionscontribute little to protein stability (1991) J. Mol. Biol., 221, pp. 873-887
Hendsch, Z.S., Tidor, B., Do salt bridges stabilize proteins? A continuum electrostatic analysis (1994) Protein Sci., 3, pp. 211-226
Waldburger, C.D., Schildbach, J.F., Sauer, R.T., Are buried salt bridges important for protein stability and conformational specificity? (1995) Nature Struct. Biol., 2, pp. 122-128
Strop, P., Mayo, S.L., Contribution of surface salt bridges to protein stability (2000) Biochemistry, 39, pp. 1251-1255
Perl, D., Mueller, U., Heinemann, U., Schmid, F.X., Two exposed amino acid residues confer thermostability on a cold shock protein (2000) Nature Struct. Biol., 7, pp. 380-383
Pace, C.N., Single surface stabilizer (2000) Nature Struct. Biol., 7, pp. 345-346
Russell, R.J., Hough, D.W., Danson, M.J., Taylor, G.L., The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum (1994) Structure, 2, pp. 1157-1167
Macedo-Ribeiro, S., Darimont, B., Sterner, R., Huber, R., Small structural changes account for the high thermostability of 1[4Fe-4S] ferredoxin from the hyperthermophilic bacterium Thermotoga maritima (1996) Structure, 4, pp. 1291-1301
Tahirov, T.H., Oki, H., Tsukihara, T., Ogasahara, K., Yutani, K., Ogata, K., Crystal structure of methionine aminopeptidase from hyperthermophile Pyrococcus furiosus (1998) J. Mol. Biol., 284, pp. 101-124
Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., 276, pp. 307-326
Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallog. Sect. D, 54, pp. 905-921
Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallog. Sect. A, 47, pp. 110-119
Nicholls, A., Sharp, K., Honig, B., Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons (1991) Proteins: Struct. Funct. Genet., 11, pp. 281-296
The CCP4 suite: Programs for protein crystallography (1994) Acta Crystallog. Sect. D, 50, pp. 760-763
Guex, N., Peitsch, M.C., SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling (1997) Electrophoresis, 18, pp. 2714-2723
Oobatake, M., Ooi, T., Hydration and heat stability effects on protein unfolding (1993) Prog. Biophys. Mol. Biol., 59, pp. 237-284
Pontius, J., Richelle, J., Wodak, S.J., Quality assessment of protein 3D structures using standard atomic volumes (1996) J. Mol. Biol., 264, pp. 121-136
Vriend, G., WHAT IF: A molecular modeling and drug design program (1990) J. Mol. Graph., 8, pp. 52-56
McDonald, I.K., Thornton, J.M., Satisfying hydrogen bonding potential in proteins (1994) J. Mol. Biol., 238, pp. 777-793
Kraulis, P.J., MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures (1991) J. Appl. Crystallog., 24, pp. 946-950
Koradi, R., Billeter, M., Wuthrich, K., MOLMOL: A program for display and analysis of macromolecular structures (1996) J. Mol. Graph., 14, pp. 51-55
Oosterbaan, R. A., Jansz, H. S., Cholinesterases, esterases, and lipases (1965) Comprehensive Biochemistry, 16, pp. 1-54. , Florkin, M. & Stotz, E. H., eds. Elsevier, Amsterda
Jaeger, K. E., Dijkstra, B. W., Reetz, M. T., Bacterial biocatalysts: Molecular biology, three-dimensional structures, and biotechnological applications of lipases (1999) Annu. Rev. Microbiol., 53, pp. 315-351
Hemil, H., Koivula, T. T., Palva, I., Hormone-sensitive lipase is closely related to several bacterial proteins, and distantly related to acetylcholinesterase and lipoprotein lipase: Identification of a superfamily of esterases and lipases (1994) Biochim. Biophys. Acta, 1210, pp. 249-253
Klenk, H. P., Clayton, R. A., Tomb, J. F., White, O., Nelson, K. E., Ketchum, K. A., The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus (1997) Nature, 390, pp. 364-370
Manco, G., Giosu, E., D'Auria, S., Herman, P., Carrea, G., Rossi, M., Cloning, overexpression and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus (2000) Arch. Biochem. Biophys., 373, pp. 182-192
Holm, C., sterlund, T., Laurell, H., Contreras, J. A., Molecular mechanisms regulating hormone-sensitive lipase and lipopysis (2000) Annu. Rev. Nutr., 20, pp. 365-393
Probst, M. R., Beer, M., Beer, D., Jeno, P., Meyer, V. A., Gasser, R., Human liver arylacetammide deacetylse. Molecular cloning of a novel esterase involved in the metabolic activation of arylamine carcinogens with high sequence similarity to hormone-sensitive lipase (1994) J. Biol. Chem., 269, pp. 21650-21656
She, Q., Singh, R. K., Confalonieri, F., Zivanovic, Y., Allard, G., Awayez, M. J., The complete genome of the crenarchaeon Sulfolobus solfataricus P2 (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 7835-7840
Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., The / -hydrolase fold (1992) Protein Eng., 5, pp. 197-211
Derewenda, Z. S., Sharp, A. M., News from the interface: The molecular structures of triacylglyceride lipases (1993) Trends Biochem. Sci., 18, pp. 20-25
Laskowski, R. A., MacArthur, M. W., Moss, D. S., Thornton, J. M., PROCHECK - A program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallog., 26, pp. 283-291
Thompson, M. J., Eisenberg, D., Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability (1999) J. Mol. Biol., 290, pp. 595-604
Gallivan, J. P., Dougherty, D. A., Cation-pi interactions in structural biology (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 9459-9464
Spassov, V. Z., Karshikoff, A. D., Ladenstein, R., The optimization of protein-solvent interactions: Thermostability and the role of hydrophobic and electrostatic interactions (1995) Protein Sci., 4, pp. 1516-1527
Haney, P. J., Badger, J. H., Buldak, G. L., Reich, C. I., Woese, C. R., Olsen, G. J., Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 3578-3583
Perutz, M. F., Raidt, H., Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2 (1975) Nature, 255, pp. 256-259
Kelly, C. A., Nishiyama, M., Ohnishi, Y., Beppu, T., Birktoft, J. J., Determinants of protein thermostability observed in the 1. 9- crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus (1993) Biochemistry, 32, pp. 3913-3922
Chan, M. K., Mukund, S., Kletzin, A., Adams, M. W., Rees, D. C., Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase (1995) Science, 267, pp. 1463-1469
Rice, D. W., Yip, K. S., Stillman, T. J., Britton, K. L., Fuentes, A., Connerton, I., Insights into the molecular basis of thermal stability from the structure determination of Pyrococcus furiosus glutamate dehydrogenase (1996) FEMS Microbiol. Rev., 18, pp. 105-117
Aguilar, C. F., Sanderson, I., Moracci, M., Ciaramella, M., Nucci, R., Rossi, M., Pearl, L. H., Crystal structure of the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus: Resilience as a key factor in thermostability (1997) J. Mol. Biol., 271, pp. 789-802
Russell, R. J., Ferguson, J. M., Hough, D. W., Danson, M. J., Taylor, G. L., The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiosus at 1. 9 resolution (1997) Biochemistry, 36, pp. 9983-9994
Britton, K. L., Yip, K. S., Sedelnikova, S. E., Stillman, T. J., Adams, M. W., Ma, K., Structure determination of the glutamate dehydrogenase from the hyperthermophile Thermococcus litoralis and its comparison with that from Pyrococcus furiosus (1999) J. Mol. Biol., 293, pp. 1121-1132
Elcock, A. H., The stability of salt bridges at high temperatures: Implications for hyperthermophilic proteins (1998) J. Mol. Biol., 284, pp. 489-502
Szil gyi, A., Z vodszky, P., Structural differences between mesophilic, moderately thermophilic and extremely thermophilic proteins subunits: Results of a comprensive survey (2000) Structure, 8, pp. 493-504
Usher, K. C., De la Cruz, A. F., Dahlquist, F. W., Swanson, R. V., Simon, M. I., Remington, S. J., Crystal structures of CheY from Thermotoga maritima do not support conventional explanations for the structural basis of enhanced thermostability (1998) Protein Sci., 7, pp. 403-412
Sun, D. P., Soderlind, E., Baase, W. A., Wozniak, J. A., Sauer, U., Matthews, B. W., Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactionscontribute little to protein stability (1991) J. Mol. Biol., 221, pp. 873-887
Hendsch, Z. S., Tidor, B., Do salt bridges stabilize proteins? A continuum electrostatic analysis (1994) Protein Sci., 3, pp. 211-226
Waldburger, C. D., Schildbach, J. F., Sauer, R. T., Are buried salt bridges important for protein stability and conformational specificity? (1995) Nature Struct. Biol., 2, pp. 122-128
Pace, C. N., Single surface stabilizer (2000) Nature Struct. Biol., 7, pp. 345-346
Russell, R. J., Hough, D. W., Danson, M. J., Taylor, G. L., The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum (1994) Structure, 2, pp. 1157-1167
Tahirov, T. H., Oki, H., Tsukihara, T., Ogasahara, K., Yutani, K., Ogata, K., Crystal structure of methionine aminopeptidase from hyperthermophile Pyrococcus furiosus (1998) J. Mol. Biol., 284, pp. 101-124
Br nger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallog. Sect. D, 54, pp. 905-921
Jones, T. A., Zou, J. Y., Cowan, S. W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallog. Sect. A, 47, pp. 110-119
McDonald, I. K., Thornton, J. M., Satisfying hydrogen bonding potential in proteins (1994) J. Mol. Biol., 238, pp. 777-793
Kraulis, P. J., MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures (1991) J. Appl. Crystallog., 24, pp. 946-950
The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus
The crystal structure of AFEST, a novel hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus, complexed with a sulphonyl derivative, has been determined and refined to 2.2 Angstrom resolution. This enzyme, which has recently been classified as a member of the hormone-sensitive-lipase (H) group of the esterase/lipase superfamily, presents a canonical alpha/beta hydrolase core, shielded on the C-terminal side by a cap region composed of five alpha -helices. It contains the catalytic triad Ser160, His285 and Asp255, whereby the nucleophile is covalently modified and the oxyanion hole formed by Gly88, Gly89 and Ala16l. A structural comparison of AFEST with its mesophilic and thermophilic homologues, Brefeldin A esterase from Bacillus subtilis (BFAE) and EST2 from Alicyclobacillus acidocaldarius, reveals an increase in the number of intramolecular ion pairs and secondary structure content, as well as a significant reduction in loop extensions and ratio of hydrophobic to charged surface area. The variety of structural differences suggests possible strategies for thermostabilization of lipases and esterases with potential industrial applications. (C) 2001 Academic Press.
The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus