Naposomes: A new class of peptide-derivatized, target-selective multimodal nanoparticles for imaging and therapeutic applications(408 views) Accardo A, Morisco A, Tesauro D, Pedone C, Morelli G
Keywords: 7-14 Bombesin, Amphotericin B, Amphotericin B Lipid Complex, Chelating Agent, Cholecystokinin A Receptor, Cholecystokinin B Receptor, Cholecystokinin Octapeptide, Cyclophosphamide, Daunorubicin, Docetaxel, Doxorubicin, Gadolinium Diethylenetriamine Pentaacetic Acid, Gadolinium Pentetate, Gadoteridol, Liposome, Monomer, Nanoparticle, Naposome, Nuclear Magnetic Resonance Imaging Agent, Octroscan, Paclitaxel, Pentetreotide In 111, Peptide Derivative, Polysorbate 80, Unclassified Drug, Vincristine, Breast Cancer, Cardiotoxicity, Cell Proliferation, Drug Determination, Drug Dosage Form Comparison, Drug Efficacy, Drug Formulation, Drug Receptor Binding, Drug Safety, Encapsulation, Flow Cytometry, Gastrointestinal Symptom, Human, Hydrophobicity, Lung Metastasis, Lymphoma, Melanoma, Micelle, Molecular Weight, Nervous System Tumor, Neuroendocrine Tumor, Nonhuman, Particle Size, Priority Journal, Contrast Media, Drug Delivery Systems,
Affiliations: *** IBB - CNR ***
Department of Biological Sciences and CIRPeB, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
References: Gregoriadis, G., Ryman, B.E., Lysosomal localization of fructofuranoside-containing liposomes injected into rats (1972) Biochem. J., 129, pp. 123-13
Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hori, K., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review (2000) Journal of Controlled Release, 65 (1-2), pp. 271-284. , DOI 10.1016/S0168-3659(99)00248-5, PII S0168365999002485
Bajoria, R., Contractor, S.F., Effect of surface charge of small unilamellar liposomes on uptake and transfer of carboxyfluorescein across the perfused human term placenta (1997) Pediatric Research, 42 (4), pp. 520-527
Miller, C.R., Bondurant, B., McLean, S.D., McGovern, K.A., O'Brien, D.F., Liposome-cell interactions in vitro: Effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes (1998) Biochemistry, 37 (37), pp. 12875-12883. , DOI 10.1021/bi980096y
Nakanishi, T., Kunisawa, J., Hayashi, A., Tsutsumi, Y., Kubo, K., Nakagawa, S., Fujiwara, H., Mayumi, T., Positively charged liposome functions as an efficient immunoadjuvant in inducing immune responses to soluble proteins (1997) Biochemical and Biophysical Research Communications, 240 (3), pp. 793-797. , DOI 10.1006/bbrc.1997.7749
Scherphof, G.L., Kamps, J.A.A.M., Receptor versus non-receptor mediated clearance of liposomes (1998) Advanced Drug Delivery Reviews, 32 (1-2), pp. 81-97. , DOI 10.1016/S0169-409X(97)00133-6, PII S0169409X97001336
Papisov, M.I., Theoretical considerations of RES-avoiding liposomes: Molecular mechanics and chemistry of liposome interactions (1998) Advanced Drug Delivery Reviews, 32 (1-2), pp. 119-138. , DOI 10.1016/S0169-409X(97)00135-X, PII S0169409X9700135X
Bakker, J., Sanders, A., Van Rooijen, N., Effects of liposome-encapsulated drugs on macrophages: Comparative activity of the diamidine 4',6-diamidino-2-phenylindole and the phenanthridinium salts ethidium bromide and propidium iodide (1998) Biochimica et Biophysica Acta - Biomembranes, 1373 (1), pp. 93-100. , DOI 10.1016/S0005-2736(98)00089-3, PII S0005273698000893
Mayer, L.D., Future developments in the selectivity of anticancer agents: Drug delivery and molecular target strategies (1998) Cancer and Metastasis Reviews, 17 (2), pp. 211-218. , DOI 10.1023/A:1006070906949
Sharma, A., Sharma, U.S., Liposomes in drug delivery: Progress and limitations (1997) International Journal of Pharmaceutics, 154 (2), pp. 123-140. , DOI 10.1016/S0378-5173(97)00135-X, PII S037851739700135X
Boswell, G.W., Buell, D., Bekersky, I., Ambisome (liposomal amphotericin B): A comparative review (1998) Journal of Clinical Pharmacology, 38 (7), pp. 583-592
Allen, T.M., Liposomes: Opportunities in drug delivery (1997) Drugs, 54, pp. 8-14
Allen, T.M., Moase, E.H., Therapeutic opportunities for targeted liposomal drug delivery (1996) Advanced Drug Delivery Reviews, 21 (2), pp. 117-133. , DOI 10.1016/S0169-409X(96)00402-4, PII S0169409X96004024
Bally, M.B., Nayar, R., Masin, D., Hope, M.J., Cullis, P.R., Mayer, L.D., Liposomes with entrapped doxorubicin exhibit extended blood residence times (1990) Biochimica et Biophysica Acta - Biomembranes, 1023 (1), pp. 133-139. , DOI 10.1016/0005-2736(90)90018-J
Bandak, S., Ramu, A., Barenholz, Y., Gabizon, A., Reduced UV-induced degradation of doxorubicin encapsulated in polyethyleneglycol-coated liposomes (1999) Pharmaceutical Research, 16 (6), pp. 841-846. , DOI 10.1023/A:1018869818282
Coukell, A.J., Spencer, C.M., Polyethylene glycol-liposomal doxorubicin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in the management of AIDS-Related Kaposi's sarcoma (1997) Drugs, 53 (3), pp. 520-538
Gabizon, A., Goren, D., Cohen, R., Barenholz, Y., Development of liposomal anthracyclines: From basics to clinical applications (1998) Journal of Controlled Release, 53 (1-3), pp. 275-279. , DOI 10.1016/S0168-3659(97)00261-7, PII S0168365997002617
Batist, G., Ramakrishnan, G., Rao, C.S., Chandrasekharan, A., Gutheil, J., Guthrie, T., Shah, P., Lee, L.W., Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer (2001) Journal of Clinical Oncology, 19 (5), pp. 1444-1454
Shiraga, E., Barichello, J.M., Ishida, T., Kiwada, H., A metronomic schedule of cyclophosphamide combined with PEGylated liposomal doxorubicin has a highly antitumor effect in an experimental pulmonary metastatic mouse model (2008) Int. J. Pharm., 353, pp. 65-73
Soepenberga, O., Sparrebooma, A., De Jongea, J.A., Real-time pharmacokinetics guiding clinical decisions: Phase i study of a weekly schedule of liposome encapsulated paclitaxel in patients with solid tumors (2004) Eur. J. Cancer, 40, pp. 681-688
Mita, M., Mita, A., Sarantopoulos, J., Phase i study of paclitaxel poliglumex administered weekly for patients with advanced solid malignancies (2009) Cancer Chemother. Pharmacol., 64 (2), pp. 287-295
Johnson, E.M., Ojwang, J.O., Szekely, A., Wallace, T.L., Warnock, D.W., Comparison of in vitro antifungal activities of free and liposome- encapsulated nystatin with those of four amphotericin B formulations (1998) Antimicrobial Agents and Chemotherapy, 42 (6), pp. 1412-1416
Oakley, K.L., Moore, C.B., Denning, D.W., Comparison of in vitro activity of liposomal nystatin against Aspergillus species with those of nystatin, amphotericin B (AB) deoxycholate, AB colloidal dispersion, liposomal AB, AB lipid complex, and itraconazole (1999) Antimicrobial Agents and Chemotherapy, 43 (5), pp. 1264-1266
Jessup, C., Reyes, G., Fothergill, A., McCarthy, D., Rinaldi, M., Messer, S., Pfaller, M., Ghannoum, M., A head-on comparison of the in vitro antifungal activity of conventional and lipid-based amphotericin B: A multicenter study (2000) Journal of Chemotherapy, 12 (1), pp. 22-29
Gondal, J.A., Swartz, R.P., Rahman, A., Therapeutic evaluation of free and liposome-encapsulated amphotericin B in the treatment of systemic candidiasis in mice (1989) Antimicrobial Agents and Chemotherapy, 33 (9), pp. 1544-1548
Mayer, L.D., Harasym, T.O., Tardi, P.G., Harasym, N.L., Shew, C.R., Johnstone, S.A., Ramsay, E.C., Janoff, A.S., Ratiometric dosing of anticancer drug combinations: Controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice (2006) Molecular Cancer Therapeutics, 5 (7), pp. 1854-1863. , DOI 10.1158/1535-7163.MCT-06-0118
Wang, J., Goh, B., Lu, W., Zhang, Q., Chang, A., Liu, X.Y., Mc Tan, T., Lee, H., In vitro cytotoxicity of stealth liposomes co-encapsulating doxorubicin and verapamil on doxorubicin-resistant tumor cells (2005) Biological and Pharmaceutical Bulletin, 28 (5), pp. 822-828. , DOI 10.1248/bpb.28.822
Battistini, E., Gianolio, E., Gref, R., High-relaxivity magnetic resonance imaging (MRI) contrast agent based on supramolecular assembly between a gadolinium chelate, a modified dextran, and poly-b -cyclodextrin (2008) Chem. Eur. J., 14, pp. 4551-4561
Aime, S., Botta, M., Garino, E., Noncovalent conjugates between cationic polyamino acids and GdIII chelates: A route for seeking accumulation of MRI-contrast agents at tumor targeting sites (2000) Chem. Eur. J., 6 (14), pp. 2609-2617
Tilcock, C., Unger, E., Cullis, P., MacDougall, P., Liposomal Gd-DTPA: Preparation and characterization of relaxivity (1989) Radiology, 171 (1), pp. 77-80
Kabalka, G., Buonocore, E., Hubner, K., Gadolinium-labeled liposomes: Targeted MR contrast agents for the liver and spleen (1987) Radiology, 163 (1), pp. 255-258
Grant, C.W.M., Karlik, S., Florio, E., A liposomal MRI contrast agent: Phosphatidylethanolamine-DTPA (1989) Magnetic Resonance in Medicine, 11 (2), pp. 236-243
Unger, E., Fritz, T., Wu, G., Liposomal MR contrast agents (1994) J. Liposome Res., 4 (2), pp. 811-834
Unger, E., Shen, D.K., Wu, G.L., Fritz, T., Liposomes as MR contrast agents: Pros and cons (1991) Magn. Reson. Med., 22 (2), pp. 304-308
Koenig, S.H., Ahkong, Q.F., Brown Iii, R.D., Permeability of liposomal membranes to water: Results from the magnetic field dependence of T1 of solvent protons in suspensions of vesicles with entrapped paramagnetic ions (1992) Magn. Reson. Med., 23 (2), pp. 275-286
Kabalka, G.W., Davis, M.A., Buonocore, E., Hubner, K., Holmberg, E., Huang, L., Gd-labeled liposomes containing amphipathic agents for magnetic resonance imaging (1990) Investigative Radiology, 25 (SUPPL. 1), pp. S63-S64
Kabalka, G.W., Buonocore, E., Hubner, K., Davis, M., Huang, L., Gadolinium-labeled liposomes containing paramagnetic amphipathic agents: Targeted MRI contrast agents for the liver (1988) Magn. Reson. Med., 8 (1), pp. 89-95
Kim, S.K., Pohost, G.M., Elgavish, G.A., Fatty-acyl iminopolycarboxylates: Lipophilic bifunctional contrast agents for NMR imaging (1991) Magn. Reson. Med., 22 (1), pp. 57-67
Marcucci, F., Lefoulon, F., Active targeting with particulate drug carriers in tumor therapy: Fundamentals and recent progress (2004) Drug Discovery Today, 9 (5), pp. 219-228. , DOI 10.1016/S1359-6446(03)02988-X, PII S135964460302988X
Torchilin, V.P., Antibody-modified liposomes for cancer chemotherapy (2008) Expert Opin. Drug Deliv., 5 (9), pp. 1003-1025
Sofou, S., Sgouros, G., Antibody-targeted liposomes in cancer therapy and imaging (2008) Expert Opinion on Drug Delivery, 5 (2), pp. 189-204. , DOI 10.1517/17425247.5.2.189
Wu, H., Chang, D.K., Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy (2010) J. Oncol., , DOI: 10.1155/2010/723798 Epub ahead of print
Torchilin, V.P., Recent advances with liposomes as pharmaceutical carriers (2005) Nature Reviews Drug Discovery, 4 (2), pp. 145-160. , DOI 10.1038/nrd1632
Allen, T.M., Ligand-targeted therapeutics in anticancer therapy (2002) Nature Reviews Cancer, 2 (10), pp. 750-763. , DOI 10.1038/nrc903
Van Tilborg, G.A.F., Mulder, W.J.M., Deckers, N., Storm, G., Reutelingsperger, C.P.M., Strijkers, G.J., Nicolay, K., Annexin A5-functionalized bimodal lipid-based contrast agents for the detection of apoptosis (2006) Bioconjugate Chemistry, 17 (3), pp. 741-749. , DOI 10.1021/bc0600259
Mulder, W.J.M., Strijkers, G.J., Van Tilborg Gaf, Cormode, D.P., Fayad, Z.A., Nicolay, K., Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging (2009) Acc. Chem. Res., 42 (7), pp. 904-914
Bull, S.R., Guler, M.O., Bras, R.E., Meade, T.J., Stupp, S.I., Self-assembled peptide amphiphile nanofibers conjugated to MRI contrast agents (2005) Nano Letters, 5 (1), pp. 1-4. , DOI 10.1021/nl0484898
Lipinski, M.J., Amirbekian, V., Frias, J.C., Aguinaldo, J.G.S., Mani, V., Briley-Saebo, K.C., Fuster, V., Fayad, Z.A., MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor (2006) Magnetic Resonance in Medicine, 56 (3), pp. 601-610. , DOI 10.1002/mrm.20995
Amirbekian, V., Lipinski, M.J., Briley-Saebo, K.C., Amirbekian, S., Aguinaldo, J.G.S., Weinreb, D.B., Vucic, E., Fayad, Z.A., Detecting and assessing macrophages in vivo to evalute atherosclerosis noninvasively using molecular MRI (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (3), pp. 961-966. , DOI 10.1073/pnas.0606281104
Li, K.C.P., Bednarski, M.D., Vascular-targeted molecular imaging using functionalized polymerized vesicles (2002) Journal of Magnetic Resonance Imaging, 16 (4), pp. 388-393. , DOI 10.1002/jmri.10174
Storrs, R.W., Tropper, F.D., Li, H.Y., Paramagnetic polymerized liposomes: Synthesis, characterization, and applications for magnetic resonance imaging (1995) J. Am. Chem. Soc., 117 (28), pp. 7301-7306
Sipkins, D.A., Cheresh, D.A., Kazemi, M.R., Nevin, L.M., Bednarski, M.D., Li, K.C.P., Detection of tumor angiogenesis in vivo by α(v)β 3- targeted magnetic resonance imaging (1998) Nature Medicine, 4 (5), pp. 623-626. , DOI 10.1038/nm0598-623
Sipkins, D.A., Gijbels, K., Tropper, F.D., Bednarski, M., Li, K.C.P., Steinman, L., ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging (2000) Journal of Neuroimmunology, 104 (1), pp. 1-9. , DOI 10.1016/S0165-5728(99)00248-9, PII S0165572899002489
Wjm, M., Van Der Schaft Dwj, Pai, H., Early in vivo assessment of angiostatic therapy efficacy by molecular MRI (2007) FASEB J., 21 (2), pp. 378-383
Brandwijk, R.J.M.G.E., Mulder, W.J.M., Nicolay, K., Mayo, K.H., Thijssen, V.L.J.L., Griffioen, A.W., Anginex-conjugated liposomes for targeting of angiogenic endothelial cells (2007) Bioconjugate Chemistry, 18 (3), pp. 785-790. , DOI 10.1021/bc060316h
Kluza, E., Van Der Schaft, D.W., Hautvast, P.A., Synergistic targeting of avb3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis (2010) Nano Lett., 10 (1), pp. 52-58
Ferrari, M., Cancer nanotechnology: Opportunities and challenges (2005) Nature Reviews Cancer, 5 (3), pp. 161-171. , DOI 10.1038/nrc1566
Vaccaro, M., Mangiapia, G., Radulescu, A., Colloidal particles composed of amphiphilic molecules binding gadolinium complexes and peptides as tumor-specific contrast agents in MRI: Physico-chemical characterization (2009) Soft Matter, 5 (13), pp. 2504-2512
Accardo, A., Tesauro, D., Roscigno, P., Gianolio, E., Paduano, L., D'Errico, G., Pedone, C., Morelli, G., Physicochemical Properties of Mixed Micellar Aggregates Containing CCK Peptides and Gd Complexes Designed as Tumor Specific Contrast Agents in MRI (2004) Journal of the American Chemical Society, 126 (10), pp. 3097-3107. , DOI 10.1021/ja039195b
Mangiapia, G., Accardo, A., Lo Celso, F., Mixed micelles composed of peptides and gadolinium complexes as tumor-specific contrast agents in MRI: A SANS study (2004) J. Phys. Chem. B, 108, pp. 17611-17617
Vaccaro, M., Accardo, A., Tesauro, D., Mangiapia, G., Lof, D., Schillen, K., Soderman, O., Paduano, L., Supramolecular aggregates of amphiphilic gadolinium complexes as blood pool MRI/MRA contrast agents: Physicochemical characterization (2006) Langmuir, 22 (15), pp. 6635-6643. , DOI 10.1021/la053500k
Tesauro, D., Accardo, A., Gianolio, E., Paduano, L., Teixeira, J., Schillen, K., Aime, S., Morelli, G., Peptide derivatized lamellar aggregates as target-specific MRI contrast agents (2007) ChemBioChem, 8 (8), pp. 950-955. , DOI 10.1002/cbic.200700077
Morisco, A., Accardo, A., Tesauro, D., Palumbo, R., Benedetti, E., Morelli, G., Peptide labeled supramolecular aggregates as selective doxorubicin carriers for delivery to tumor cells (2010) Biopolymers, , DOI: 10.1002/bip.21491 Epub ahead of print
Accardo, A., Mansi, R., Morisco, A., Peptide modified nanocarriers for selective targeting of bombesin receptors (2010) Mol. Biosyst., 6, pp. 878-887
Accardo, A., Morisco, A., Gianolio, E., Octreotide as target-selective delivery tool of nanoparticles for MRI application (2010) J. Pept. Sci., , DOI: 10.1002/psc.1308 Epub ahead of print
Silvente-Poirot, S., Dufresne, M., Vaysse, N., Fourmy, D., The peripheral cholecystokinin receptors (1993) European Journal of Biochemistry, 215 (3), pp. 513-529
Wank, S.A., Cholecystokinin receptors (1995) The American journal of physiology, 269 (51), pp. G628-G646
Reubi, J.C., Schaer, J.-C., Waser, B., Cholecystokinin (CCK)-A and CCK-B/gastrin receptors in human tumors (1997) Cancer Research, 57 (7), pp. 1377-1386
Dufresne, M., Seva, C., Fourmy, D., Cholecystokinin and gastrin receptors (2006) Physiological Reviews, 86 (3), pp. 805-847. , http://physrev.physiology.org/cgi/reprint/86/3/805, DOI 10.1152/physrev.00014.2005
Pellegrini, M., Mierke, D.F., Molecular complex of cholecystokinin-8 and N-terminus of the cholecystokinin A receptor by NMR spectroscopy (1999) Biochemistry, 38, pp. 14775-14783
Aloj, L., Caraco, C., Panico, M., Zannetti, A., Del Vecchio, S., Tesauro, D., De Luca, S., Salvatore, M., In vitro and in vivo evaluation of 111In-DTPAGlu-G-CCK8 for cholecystokinin-b receptor imaging (2004) Journal of Nuclear Medicine, 45 (3), pp. 485-494. , http://jnm.snmjournals.org/cgi/reprint/45/3/485
Battey, J.F., Way, J.M., Corjay, M.H., Shapira, H., Kusano, K., Harkins, R., Wu, J.M., Feldman, R.I., Molecular cloning of the bombesin/gastrin-releasing peptide receptor from Swiss 3T3 cells (1991) Proceedings of the National Academy of Sciences of the United States of America, 88 (2), pp. 395-399
Fathi, Z., Corjay, M.H., Shapira, H., Wada, E., Benya, R., Jensen, R., Viallet, J., Battey, J.F., BRS-3: A novel bombesin receptor subtype selectively expressed in testis and lung carcinoma cells (1993) Journal of Biological Chemistry, 268 (8), pp. 5979-5984
Nagalla, S.R., Barry, B.J., Creswick, K.C., Eden, P., Taylor, J.T., Cloning of a receptor for amphibian [Phe-13]bombesin distinct from the receptor for gastrin-releasing peptide: Identification of a fourth bombesin receptor subtype (BB4) (1995) Proc. Natl Acad. Sci. USA, 92 (13), pp. 6205-6209
Wada, E., Way, J., Shapira, H., CDNA cloning, characterization, and brain region-specific expression of a neuromedin-B-preferring bombesin receptor (1991) Neuron, 6 (3), pp. 421-430
Markwalder, R., Reubi, J.C., Gastrin-releasing peptide receptors in the human prostate: Relation to neoplastic transformation (1999) Cancer Research, 59 (5), pp. 1152-1159
Gugger, M., Reubi, J.C., Gastrin-releasing peptide receptors in non-neoplastic and neoplastic human breast (1999) Am. J. Pathol., 155 (6), pp. 2067-2076
Fleischmann, A., Waser, B., Reubi, J.C., Overexpression of gastrin-releasing peptide receptors in tumor-associated blood vessels of human ovarian neoplasms (2007) Cellular Oncology, 29 (5), pp. 421-433
Smith, C.J., Volkert, W.A., Hoffman, T.J., Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes (2005) Nuclear Medicine and Biology, 32 (7), pp. 733-740. , DOI 10.1016/j.nucmedbio.2005.05.005, PII S0969805105001423
Lamberts, S.W.J., Somatostatin analogues from one decade to the second (1999) Octreotide: The Next Decade, , Lamberts SWJ (Ed.) Bristol Bioscientifica, UK 3-65
Bauer, W., Briner, U., Doepfner, W., SMS 201-995: A very potent and selective octapeptide analogue of somatostatin with prolonged action (1982) Life Sciences, 31 (11), pp. 1133-1140. , DOI 10.1016/0024-3205(82)90087-X
Veber, D.F., Freidinger, R.M., Perlow, D.S., A potent cyclic hexapeptide analogue of somatostatin (1981) Nature, 292 (5818), pp. 55-58. , DOI 10.1038/292055a0
Kowalski, J., Henze, M., Schuhmacher, J., Macke, H.R., Hofmann, M., Haberkorn, U., Evaluation of positron emission tomography imaging using [ 68 Ga]-DOTA-D Phe 1-Tyr 3- octreotidein comparison to [ 111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors (2003) Molecular Imaging and Biology, 5 (1), pp. 42-48. , DOI 10.1016/S1536-1632(03)00038-6, PII S1536163203000386
Reubi, J.C., Waser, B., Schaer, J.C., Laissue, J.A., Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands Eur. J. Nucl. Med., 28, pp. 836-846. , Erratum in: Eur. J. Nucl. Med. 28, 1433 (2001)
Bell, G., Reisine, T., Molecular biology of somatostatin receptors (1993) Trends Neurosci., 16, pp. 34-38
Reubi, J.C., Horisberger, U., Laissue, J., High density of somatostatin receptors in veins surrounding human cancer tissue: Role in tumor-host interaction? (1994) International Journal of Cancer, 56 (5), pp. 681-688
Reubi, J.C., Peptide receptors as molecular targets for cancer diagnosis and therapy (2003) Endocrine Reviews, 24 (4), pp. 389-427. , DOI 10.1210/er.2002-0007
Anelli, P.L., Lattuada, L., Lorusso, V., Schneider, M., Tournier, H., Uggeri, F., Mixed micelles containing lipophilic gadolinium complexes as MRA contrast agents (2001) Magnetic Resonance Materials in Physics, Biology and Medicine, 12 (2-3), pp. 114-120. , DOI 10.1016/S1352-8661(01)00107-7, PII S1352866101001077
Delli Castelli, D., Gianolio, E., Geninatti Crich, S., Terreno, E., Aime, S., Metal containing nanosized systems for MR-molecular imaging applications (2008) Coord. Chem. Rev., 252 (21-22), pp. 2424-2443
Menger, F.M., Littau, C.A., Gemini-surfactants: Synthesis and properties (1991) J. Am. Chem. Soc., 113, pp. 1451-1452
Zana, R., Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: A review (2002) Advances in Colloid and Interface Science, 97 (1-3), pp. 205-253. , PII S0001868601000690
Miller, C. R., Bondurant, B., McLean, S. D., McGovern, K. A., O'Brien, D. F., Liposome-cell interactions in vitro: Effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes (1998) Biochemistry, 37 (37), pp. 12875-12883. , DOI 10. 1021/bi980096y
Scherphof, G. L., Kamps, J. A. A. M., Receptor versus non-receptor mediated clearance of liposomes (1998) Advanced Drug Delivery Reviews, 32 (1-2), pp. 81-97. , DOI 10. 1016/S0169-409X (97) 00133-6, PII S0169409X97001336
Papisov, M. I., Theoretical considerations of RES-avoiding liposomes: Molecular mechanics and chemistry of liposome interactions (1998) Advanced Drug Delivery Reviews, 32 (1-2), pp. 119-138. , DOI 10. 1016/S0169-409X (97) 00135-X, PII S0169409X9700135X
Mayer, L. D., Future developments in the selectivity of anticancer agents: Drug delivery and molecular target strategies (1998) Cancer and Metastasis Reviews, 17 (2), pp. 211-218. , DOI 10. 1023/A: 1006070906949
Boswell, G. W., Buell, D., Bekersky, I., Ambisome (liposomal amphotericin B): A comparative review (1998) Journal of Clinical Pharmacology, 38 (7), pp. 583-592
Allen, T. M., Liposomes: Opportunities in drug delivery (1997) Drugs, 54, pp. 8-14
Allen, T. M., Moase, E. H., Therapeutic opportunities for targeted liposomal drug delivery (1996) Advanced Drug Delivery Reviews, 21 (2), pp. 117-133. , DOI 10. 1016/S0169-409X (96) 00402-4, PII S0169409X96004024
Bally, M. B., Nayar, R., Masin, D., Hope, M. J., Cullis, P. R., Mayer, L. D., Liposomes with entrapped doxorubicin exhibit extended blood residence times (1990) Biochimica et Biophysica Acta - Biomembranes, 1023 (1), pp. 133-139. , DOI 10. 1016/0005-2736 (90) 90018-J
Coukell, A. J., Spencer, C. M., Polyethylene glycol-liposomal doxorubicin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in the management of AIDS-Related Kaposi's sarcoma (1997) Drugs, 53 (3), pp. 520-538
Johnson, E. M., Ojwang, J. O., Szekely, A., Wallace, T. L., Warnock, D. W., Comparison of in vitro antifungal activities of free and liposome- encapsulated nystatin with those of four amphotericin B formulations (1998) Antimicrobial Agents and Chemotherapy, 42 (6), pp. 1412-1416
Oakley, K. L., Moore, C. B., Denning, D. W., Comparison of in vitro activity of liposomal nystatin against Aspergillus species with those of nystatin, amphotericin B (AB) deoxycholate, AB colloidal dispersion, liposomal AB, AB lipid complex, and itraconazole (1999) Antimicrobial Agents and Chemotherapy, 43 (5), pp. 1264-1266
Gondal, J. A., Swartz, R. P., Rahman, A., Therapeutic evaluation of free and liposome-encapsulated amphotericin B in the treatment of systemic candidiasis in mice (1989) Antimicrobial Agents and Chemotherapy, 33 (9), pp. 1544-1548
Mayer, L. D., Harasym, T. O., Tardi, P. G., Harasym, N. L., Shew, C. R., Johnstone, S. A., Ramsay, E. C., Janoff, A. S., Ratiometric dosing of anticancer drug combinations: Controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice (2006) Molecular Cancer Therapeutics, 5 (7), pp. 1854-1863. , DOI 10. 1158/1535-7163. MCT-06-0118
Grant, C. W. M., Karlik, S., Florio, E., A liposomal MRI contrast agent: Phosphatidylethanolamine-DTPA (1989) Magnetic Resonance in Medicine, 11 (2), pp. 236-243
Koenig, S. H., Ahkong, Q. F., Brown Iii, R. D., Permeability of liposomal membranes to water: Results from the magnetic field dependence of T1 of solvent protons in suspensions of vesicles with entrapped paramagnetic ions (1992) Magn. Reson. Med., 23 (2), pp. 275-286
Kabalka, G. W., Davis, M. A., Buonocore, E., Hubner, K., Holmberg, E., Huang, L., Gd-labeled liposomes containing amphipathic agents for magnetic resonance imaging (1990) Investigative Radiology, 25 (SUPPL. 1), pp. S63-S64
Kabalka, G. W., Buonocore, E., Hubner, K., Davis, M., Huang, L., Gadolinium-labeled liposomes containing paramagnetic amphipathic agents: Targeted MRI contrast agents for the liver (1988) Magn. Reson. Med., 8 (1), pp. 89-95
Kim, S. K., Pohost, G. M., Elgavish, G. A., Fatty-acyl iminopolycarboxylates: Lipophilic bifunctional contrast agents for NMR imaging (1991) Magn. Reson. Med., 22 (1), pp. 57-67
Torchilin, V. P., Antibody-modified liposomes for cancer chemotherapy (2008) Expert Opin. Drug Deliv., 5 (9), pp. 1003-1025
Wu, H., Chang, D. K., Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy (2010) J. Oncol., , DOI: 10. 1155/2010/723798 Epub ahead of print
Torchilin, V. P., Recent advances with liposomes as pharmaceutical carriers (2005) Nature Reviews Drug Discovery, 4 (2), pp. 145-160. , DOI 10. 1038/nrd1632
Allen, T. M., Ligand-targeted therapeutics in anticancer therapy (2002) Nature Reviews Cancer, 2 (10), pp. 750-763. , DOI 10. 1038/nrc903
Van Tilborg, G. A. F., Mulder, W. J. M., Deckers, N., Storm, G., Reutelingsperger, C. P. M., Strijkers, G. J., Nicolay, K., Annexin A5-functionalized bimodal lipid-based contrast agents for the detection of apoptosis (2006) Bioconjugate Chemistry, 17 (3), pp. 741-749. , DOI 10. 1021/bc0600259
Mulder, W. J. M., Strijkers, G. J., Van Tilborg Gaf, Cormode, D. P., Fayad, Z. A., Nicolay, K., Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging (2009) Acc. Chem. Res., 42 (7), pp. 904-914
Bull, S. R., Guler, M. O., Bras, R. E., Meade, T. J., Stupp, S. I., Self-assembled peptide amphiphile nanofibers conjugated to MRI contrast agents (2005) Nano Letters, 5 (1), pp. 1-4. , DOI 10. 1021/nl0484898
Lipinski, M. J., Amirbekian, V., Frias, J. C., Aguinaldo, J. G. S., Mani, V., Briley-Saebo, K. C., Fuster, V., Fayad, Z. A., MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor (2006) Magnetic Resonance in Medicine, 56 (3), pp. 601-610. , DOI 10. 1002/mrm. 20995
Li, K. C. P., Bednarski, M. D., Vascular-targeted molecular imaging using functionalized polymerized vesicles (2002) Journal of Magnetic Resonance Imaging, 16 (4), pp. 388-393. , DOI 10. 1002/jmri. 10174
Storrs, R. W., Tropper, F. D., Li, H. Y., Paramagnetic polymerized liposomes: Synthesis, characterization, and applications for magnetic resonance imaging (1995) J. Am. Chem. Soc., 117 (28), pp. 7301-7306
Sipkins, D. A., Cheresh, D. A., Kazemi, M. R., Nevin, L. M., Bednarski, M. D., Li, K. C. P., Detection of tumor angiogenesis in vivo by (v) 3- targeted magnetic resonance imaging (1998) Nature Medicine, 4 (5), pp. 623-626. , DOI 10. 1038/nm0598-623
Sipkins, D. A., Gijbels, K., Tropper, F. D., Bednarski, M., Li, K. C. P., Steinman, L., ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging (2000) Journal of Neuroimmunology, 104 (1), pp. 1-9. , DOI 10. 1016/S0165-5728 (99) 00248-9, PII S0165572899002489
Brandwijk, R. J. M. G. E., Mulder, W. J. M., Nicolay, K., Mayo, K. H., Thijssen, V. L. J. L., Griffioen, A. W., Anginex-conjugated liposomes for targeting of angiogenic endothelial cells (2007) Bioconjugate Chemistry, 18 (3), pp. 785-790. , DOI 10. 1021/bc060316h
Wank, S. A., Cholecystokinin receptors (1995) The American journal of physiology, 269 (51), pp. G628-G646
Reubi, J. C., Schaer, J. -C., Waser, B., Cholecystokinin (CCK) -A and CCK-B/gastrin receptors in human tumors (1997) Cancer Research, 57 (7), pp. 1377-1386
Battey, J. F., Way, J. M., Corjay, M. H., Shapira, H., Kusano, K., Harkins, R., Wu, J. M., Feldman, R. I., Molecular cloning of the bombesin/gastrin-releasing peptide receptor from Swiss 3T3 cells (1991) Proceedings of the National Academy of Sciences of the United States of America, 88 (2), pp. 395-399
Nagalla, S. R., Barry, B. J., Creswick, K. C., Eden, P., Taylor, J. T., Cloning of a receptor for amphibian [Phe-13] bombesin distinct from the receptor for gastrin-releasing peptide: Identification of a fourth bombesin receptor subtype (BB4) (1995) Proc. Natl Acad. Sci. USA, 92 (13), pp. 6205-6209
Smith, C. J., Volkert, W. A., Hoffman, T. J., Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes (2005) Nuclear Medicine and Biology, 32 (7), pp. 733-740. , DOI 10. 1016/j. nucmedbio. 2005. 05. 005, PII S0969805105001423
Lamberts, S. W. J., Somatostatin analogues from one decade to the second (1999) Octreotide: The Next Decade, , Lamberts SWJ (Ed.) Bristol Bioscientifica, UK 3-65
Veber, D. F., Freidinger, R. M., Perlow, D. S., A potent cyclic hexapeptide analogue of somatostatin (1981) Nature, 292 (5818), pp. 55-58. , DOI 10. 1038/292055a0
Reubi, J. C., Waser, B., Schaer, J. C., Laissue, J. A., Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands Eur. J. Nucl. Med., 28, pp. 836-846. , Erratum in: Eur. J. Nucl. Med. 28, 1433 (2001)
Reubi, J. C., Horisberger, U., Laissue, J., High density of somatostatin receptors in veins surrounding human cancer tissue: Role in tumor-host interaction? (1994) International Journal of Cancer, 56 (5), pp. 681-688
Reubi, J. C., Peptide receptors as molecular targets for cancer diagnosis and therapy (2003) Endocrine Reviews, 24 (4), pp. 389-427. , DOI 10. 1210/er. 2002-0007
Anelli, P. L., Lattuada, L., Lorusso, V., Schneider, M., Tournier, H., Uggeri, F., Mixed micelles containing lipophilic gadolinium complexes as MRA contrast agents (2001) Magnetic Resonance Materials in Physics, Biology and Medicine, 12 (2-3), pp. 114-120. , DOI 10. 1016/S1352-8661 (01) 00107-7, PII S1352866101001077
Menger, F. M., Littau, C. A., Gemini-surfactants: Synthesis and properties (1991) J. Am. Chem. Soc., 113, pp. 1451-1452
Naposomes: A new class of peptide-derivatized, target-selective multimodal nanoparticles for imaging and therapeutic applications