Design and NMR Studies of Cyclic Peptides Targeting the N-Terminal Domain of the Protein Tyrosine Phosphatase YopH(2193 views) Barile E, Leone M, Barile E, Dahl R, Pellecchia M
Chem Biol Drug Des (ISSN: 1747-0277, 1747-0285), 2011 Jan; 77(1): 12-19.
Keywords: Cyclic Peptides, Nmr, Protein Tyrosine Phosphatase, Yersinia, Yersinia Outer Protein H, Aspartic Acid, Cyclopeptide, Lysine, Phosphotyrosine, Protein Yop H, Unclassified Drug, Amino Terminal Sequence, Binding Affinity, Controlled Study, Cyclization, Drug Design, Nonhuman, Nuclear Magnetic Resonance, Priority Journal, Protein Motif, Protein Protein Interaction, Yersinia Infection, Bacterial Outer Membrane Proteins, Escherichia Coli, Kinetics, Magnetic Resonance Spectroscopy, Models, Molecular, Protein Binding, Protein Interaction Domains And Motifs, Recombinant Fusion Proteins,
Affiliations: *** IBB - CNR ***
Infectious and Inflammatory Disease Center and Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, United States
Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
References: Ivanov, M.I., Stuckey, J.A., Schubert, H.L., Saper, M.A., Bliska, J.B., Two substrate-targeting sites in the Yersinia protein tyrosine phosphatase co-operate to promote bacterial virulence (2005) Mol Microbiol, 55, pp. 1346-135
Montagna, L.G., Ivanov, M.I., Bliska, J.B., Identification of residues in the N-terminal domain of the Yersinia tyrosine phosphatase that are critical for substrate recognition (2001) J Biol Chem, 276, pp. 5005-5011
Cornelis, G.R., Molecular and cell biology aspects of plague (2000) Proc Natl Acad Sci U S A, 97, pp. 8778-8783
Persson, C., Nordfelth, R., Holmstrom, A., Hakansson, S., Rosqvist, R., Wolf-Watz, H., Cell-surface-bound Yersinia translocate the protein tyrosine phosphatase YopH by a polarized mechanism into the target cell (1995) Mol Microbiol, 18, pp. 135-150
Cheng, L.W., Schneewind, O., Yersinia enterocolitica TyeA, an intracellular regulator of the type III machinery, is required for specific targeting of YopE, YopH, YopM, and YopN into the cytosol of eukaryotic cells (2000) J Bacteriol, 182, pp. 3183-3190
Black, D.S., Montagna, L.G., Zitsmann, S., Bliska, J.B., Identification of an amino-terminal substrate-binding domain in the Yersinia tyrosine phosphatase that is required for efficient recognition of focal adhesion targets (1998) Mol Microbiol, 29, pp. 1263-1274
Black, D.S., Bliska, J.B., Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions (1997) EMBO J, 16, pp. 2730-2744
Persson, C., Carballeira, N., Wolf-Watz, H., Fallman, M., The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions (1997) EMBO J, 16, pp. 2307-2318
Black, D.S., Marie-Cardine, A., Schraven, B., Bliska, J.B., The Yersinia tyrosine phosphatase YopH targets a novel adhesion-regulated signalling complex in macrophages (2000) Cell Microbiol, 2, pp. 401-414
Smith, C.L., Khandelwal, P., Keliikuli, K., Zuiderweg, E.R., Saper, M.A., Structure of the type III secretion and substrate-binding domain of Yersinia YopH phosphatase (2001) Mol Microbiol, 42, pp. 967-979
Evdokimov, A.G., Tropea, J.E., Routzahn, K.M., Copeland, T.D., Waugh, D.S., Structure of the N-terminal domain of Yersinia pestis YopH at 2.0 A resolution (2001) Acta Crystallogr D Biol Crystallogr, 57, pp. 793-799
Wattiau, P., Woestyn, S., Cornelis, G.R., Customized secretion chaperones in pathogenic bacteria (1996) Mol Microbiol, 20, pp. 255-262
Phan, J., Lee, K., Cherry, S., Tropea, J.E., Burke Jr, T.R., Waugh, D.S., High-resolution structure of the Yersinia pestis protein tyrosine phosphatase YopH in complex with a phosphotyrosyl mimetic-containing hexapeptide (2003) Biochemistry, 42, pp. 13113-13121
Zhang, Z.Y., Wang, Y., Wu, L., Fauman, E.B., Stuckey, J.A., Schubert, H.L., Saper, M.A., Dixon, J.E., The Cys(X)5Arg catalytic motif in phosphoester hydrolysis (1994) Biochemistry, 33, pp. 15266-15270
Tautz, L., Mustelin, T., Strategies for developing protein tyrosine phosphatase inhibitors (2007) Methods, 42, pp. 250-260
Alonso, A., Bottini, N., Bruckner, S., Rahmouni, S., Williams, S., Schoenberger, S.P., Lck dephosphorylation at Tyr-394 and inhibition of T cell antigen receptor signaling by Yersinia phosphatase YopH (2004) J Biol Chem, 279, pp. 4922-4928
Vazquez, J., Tautz, L., Ryan, J.J., Vuori, K., Mustelin, T., Pellecchia, M., Development of molecular probes for second-site screening and design of protein tyrosine phosphatase inhibitors (2007) J Med Chem, 50, pp. 2137-2143
Bartels, C., Xia, T.H., Billeter, M., Güntert, P., Wüthrich, K., The program XEASY for computer-supported NMR spectral analysis of biological macromolecules (1995) J Biomol NMR, 5, p. 11
Fielding, L., NMR methods for the determination of protein-ligand dissociation constants (2003) Curr Top Med Chem, 3, pp. 39-53
Kumar, A., Ernst, R.R., Wuthrich, K., A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules (1980) Biochem Biophys Res Commun, 95, pp. 1-6
Griesinger, C., Otting, G., Wüthrich, K., Ernst, R.R., Clean Tocsy for H-1 spin system-identification in macromolecules (1988) J Am Chem Soc, 110, p. 3
Wuthrich, K., NMR of Proteins and Nucleic Acids (1986), New York, USA: John Wiley & SonsHerrmann, T., Guntert, P., Wuthrich, K., Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA (2002) J Mol Biol, 319, pp. 209-227
Koradi, R., Billeter, M., Wuthrich, K., MOLMOL: a program for display and analysis of macromolecular structures (1996) J Mol Graph, 14, pp. 51-55. , 29-32
Tautz, L., Bruckner, S., Sareth, S., Alonso, A., Bogetz, J., Bottini, N., Inhibition of Yersinia tyrosine phosphatase by furanyl salicylate compounds (2005) J Biol Chem, 280, pp. 9400-9408
Leone, M., Barile, E., Vazquez, J., Mei, A., Guiney, D., Pellecchia, M., NMR-based design and evaluation of novel bidentate inhibitors of the protein tyrosine phosphatase YopH (2010) Chem Biol Drug Des, 76, pp. 10-16
Wu, B., Rega, M.F., Wei, J., Yuan, H., Dahl, R., Zhang, Z., Discovery and binding studies on a series of novel Pin1 ligands (2009) Chem Biol Drug Des, 73, pp. 369-379
Horswill, A.R., Benkovic, S.J., Cyclic peptides, a chemical genetics tool for biologists (2005) Cell Cycle, 4, pp. 552-555
Combs, A.P., Yue, E.W., Bower, M., Ala, P.J., Wayland, B., Douty, B., Structure-based design and discovery of protein tyrosine phosphatase inhibitors incorporating novel isothiazolidinone heterocyclic phosphotyrosine mimetics (2005) J Med Chem, 48, pp. 6544-6548
Akamatsu, M., Roller, P.P., Chen, L., Zhang, Z.Y., Ye, B., Burke Jr, T.R., Potent inhibition of protein-tyrosine phosphatase by phosphotyrosine-mimic containing cyclic peptides (1997) Bioorg Med Chem, 5, pp. 157-163
Lee, K., Gao, Y., Yao, Z.J., Phan, J., Wu, L., Liang, J., Tripeptide inhibitors of Yersinia protein-tyrosine phosphatase (2003) Bioorg Med Chem Lett, 13, pp. 2577-2581
Yamaguchi, H., Durell, S.R., Feng, H., Bai, Y., Anderson, C.W., Appella, E., Development of a substrate-based cyclic phosphopeptide inhibitor of protein phosphatase 2Cdelta, Wip1 (2006) Biochemistry, 45, pp. 13193-13202
Combs, A.P., Structure-based drug design of new leads for phosphatase research (2007) IDrugs, 10, pp. 112-115
Pellecchia, M., Sem, D.S., Wuthrich, K., NMR in drug discovery (2002) Nat Rev Drug Discov, 1, pp. 211-219
Pellecchia, M., Bertini, I., Cowburn, D., Dalvit, C., Giralt, E., Jahnke, W., Perspectives on NMR in drug discovery: a technique comes of age (2008) Nat Rev Drug Discov, 7, pp. 738-745
Wu, S., Vossius, S., Rahmouni, S., Miletic, A.V., Vang, T., Vazquez-Rodriguez, J., Multidentate small-molecule inhibitors of vaccinia H1-related (VHR) phosphatase decrease proliferation of cervix cancer cells (2009) J Med Chem, 52, pp. 6716-6723
Ivanov, M. I., Stuckey, J. A., Schubert, H. L., Saper, M. A., Bliska, J. B., Two substrate-targeting sites in the Yersinia protein tyrosine phosphatase co-operate to promote bacterial virulence (2005) Mol Microbiol, 55, pp. 1346-135
Montagna, L. G., Ivanov, M. I., Bliska, J. B., Identification of residues in the N-terminal domain of the Yersinia tyrosine phosphatase that are critical for substrate recognition (2001) J Biol Chem, 276, pp. 5005-5011
Cornelis, G. R., Molecular and cell biology aspects of plague (2000) Proc Natl Acad Sci U S A, 97, pp. 8778-8783
Cheng, L. W., Schneewind, O., Yersinia enterocolitica TyeA, an intracellular regulator of the type III machinery, is required for specific targeting of YopE, YopH, YopM, and YopN into the cytosol of eukaryotic cells (2000) J Bacteriol, 182, pp. 3183-3190
Black, D. S., Montagna, L. G., Zitsmann, S., Bliska, J. B., Identification of an amino-terminal substrate-binding domain in the Yersinia tyrosine phosphatase that is required for efficient recognition of focal adhesion targets (1998) Mol Microbiol, 29, pp. 1263-1274
Black, D. S., Bliska, J. B., Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions (1997) EMBO J, 16, pp. 2730-2744
Black, D. S., Marie-Cardine, A., Schraven, B., Bliska, J. B., The Yersinia tyrosine phosphatase YopH targets a novel adhesion-regulated signalling complex in macrophages (2000) Cell Microbiol, 2, pp. 401-414
Smith, C. L., Khandelwal, P., Keliikuli, K., Zuiderweg, E. R., Saper, M. A., Structure of the type III secretion and substrate-binding domain of Yersinia YopH phosphatase (2001) Mol Microbiol, 42, pp. 967-979
Evdokimov, A. G., Tropea, J. E., Routzahn, K. M., Copeland, T. D., Waugh, D. S., Structure of the N-terminal domain of Yersinia pestis YopH at 2. 0 A resolution (2001) Acta Crystallogr D Biol Crystallogr, 57, pp. 793-799
Zhang, Z. Y., Wang, Y., Wu, L., Fauman, E. B., Stuckey, J. A., Schubert, H. L., Saper, M. A., Dixon, J. E., The Cys (X) 5Arg catalytic motif in phosphoester hydrolysis (1994) Biochemistry, 33, pp. 15266-15270
Wu, B., Rega, M. F., Wei, J., Yuan, H., Dahl, R., Zhang, Z., Discovery and binding studies on a series of novel Pin1 ligands (2009) Chem Biol Drug Des, 73, pp. 369-379
Boddy, C. N., Sweetening cyclic peptide libraries (2004) Chem Biol, 11, pp. 1599-1600
Horswill, A. R., Benkovic, S. J., Cyclic peptides, a chemical genetics tool for biologists (2005) Cell Cycle, 4, pp. 552-555
Combs, A. P., Yue, E. W., Bower, M., Ala, P. J., Wayland, B., Douty, B., Structure-based design and discovery of protein tyrosine phosphatase inhibitors incorporating novel isothiazolidinone heterocyclic phosphotyrosine mimetics (2005) J Med Chem, 48, pp. 6544-6548
Combs, A. P., Structure-based drug design of new leads for phosphatase research (2007) IDrugs, 10, pp. 112-115
Design and NMR Studies of Cyclic Peptides Targeting the N-Terminal Domain of the Protein Tyrosine Phosphatase YopH