Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138, Naples, Italy
Department of Biological Sciences, Division of Biostructures, Via Mezzocannone 16, 80134, Naples, Italy
CIRPeB, Department of Biological Sciences, Via Mezzocannone 16, 80134, Naples, Italy
IBB CNR, CNR, Via Mezzocannone 16, 80134, Naples, Italy
References: Henderson, D.A., Principles and lessons from the smallpox eradication programme (1987) Bulletin of the World Health Organization, 65 (4), pp. 535-54
Hull, H.F., Ward, N.A., Hull, B.P., Milstien, J.B., De Quadros, C., Paralytic poliomyelitis: Seasoned strategies, disappearing disease (1994) Lancet, 343 (8909), pp. 1331-1337. , DOI 10.1016/S0140-6736(94)92472-4
Esteban, D., Mechanisms of viral emergence (2010) Vet. Res., 41, p. 38
Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, J.T., Yacaman, M.J., The bactericidal effect of silver nanoparticles (2005) Nanotechnology, 16 (10), pp. 2346-2353. , DOI 10.1088/0957-4484/16/10/059, PII S0957448405021963
Kim, J.S., Kuk, E., Yu, K.N., Kim, J.-H., Park, S.J., Lee, H.J., Kim, S.H., Cho, M.-H., Antimicrobial effects of silver nanoparticles (2007) Nanomedicine: Nanotechnology, Biology, and Medicine, 3 (1), pp. 95-101. , DOI 10.1016/j.nano.2006.12.001, PII S1549963406003467
Falanga, A., Vitiello, M.T., Cantisani, M., Tarallo, R., Guarnieri, D., Mignogna, E., Netti, P., Galdiero, S., A peptide derived from herpes simplex virus type 1 glycoprotein H: Membrane translocation and applications to the delivery of quantum dots (2011) Nanomedicine., , doi:10.1016/j.n. nano. 2011.04.009
Hallaj-Nezhadi, S., Lotfipour, F., Dass, C.R., Delivery of nanoparticulate drug delivery systems via the intravenous route for cancer gene therapy (2010) Pharmazie, 65, pp. 855-859
Cao, C., Gontard, L.C., Thuy, T.L.L., Wolff, A., Bang, D.D., Dual enlargement of gold nanoparticles: From mechanism to scanometric detection of pathogenic bacteria (2011) Small, 7, pp. 1701-1708
Daaboul, G.G., Yurt, A., Zhang, X., Hwang, G.M., Goldberg, B.B., Ünlü, M.S., High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification (2010) Nano Lett., 10, pp. 4727-4731
Miranda, O.R., Creran, B., Rotello, V.M., Array-based sensing with nanoparticles: Chemical noses' for sensing biomolecules and cell surfaces (2010) Curr. Opin. Chem. Biol., 14, pp. 728-736
Kennedy, L.C., Bickford, L.R., Lewinski, N.A., Coughlin, A.J., Hu, Y., Day, E.S., West, J.L., Drezek, R.A., A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies (2011) Small, 7, pp. 169-183
Portney, N.G., Ozkan, M., Nano-oncology: Drug delivery, imaging, and sensing (2006) Analytical and Bioanalytical Chemistry, 384 (3), pp. 620-630. , DOI 10.1007/s00216-005-0247-7
Helenius, A., (2007) Fields "Virology" Fifth Edition: Virus Entry and Uncoating, pp. 99-118. , LWW: London, UK
Dimitrov, D.S., Virus entry: Molecular mechanisms and biomedical applications (2004) Nat. Rev., 2, pp. 109-120
Vitiello, M., Galdiero, M., Galdiero, M., Inhibition of viral-induced membrane fusion by peptides (2009) Protein Pept. Lett., 16, pp. 786-793
Melby, T., Westby, M., Inhibitors of viral entry (2009) Handb. Exp. Pharmacol., 189, pp. 177-202
Hoyme, U.B., Clinical significance of Credé's prophylaxis in germany at present (1993) Infect. Dis. Obstet. Gynecol., 1, pp. 32-36
Li, Y., Leung, P., Yao, L., Song, Q.W., Newton, E., Antimicrobial effect of surgical masks coated with nanoparticles (2006) Journal of Hospital Infection, 62 (1), pp. 58-63. , DOI 10.1016/j.jhin.2005.04.015, PII S0195670105002069
Tang, B., Wang, J., Xu, S., Afrin, T., Xu, W., Sun, L., Wang, X., Application of anisotropic silver nanoparticles: Multifunctionalization of wool fabric (2011) J. Colloid Interface Sci., 356, pp. 513-518
Chaloupka, K., Malam, Y., Seifalian, A.M., Nanosilver as a new generation of nanoproduct in biomedical applications (2010) Trends Biotechnol., 28, pp. 580-588
Sondi, I., Salopek-Sondi, B., Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria (2004) Journal of Colloid and Interface Science, 275 (1), pp. 177-182. , DOI 10.1016/j.jcis.2004.02.012, PII S0021979704001638
Wei, D., Sun, W., Qian, W., Ye, Y., Ma, X., The synthesis of chitosan-based silver nanoparticles and their antibacterial activity (2009) Carbohydr. Res., 344, pp. 2375-2382
Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N., Sharma, V.K., Zboril, R., Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity (2006) Journal of Physical Chemistry B, 110 (33), pp. 16248-16253. , DOI 10.1021/jp063826h
Pal, S., Tak, Y.K., Song, J.M., Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli (2007) Applied and Environmental Microbiology, 73 (6), pp. 1712-1720. , DOI 10.1128/AEM.02218-06
Yoon, K.-Y., Hoon Byeon, J., Park, J.-H., Hwang, J., Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles (2007) Science of the Total Environment, 373 (2-3), pp. 572-575. , DOI 10.1016/j.scitotenv.2006.11.007, PII S0048969706008837
Shahverdi, A.R., Fakhimi, A., Shahverdi, H.R., Minaian, S., Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli (2007) Nanomedicine: Nanotechnology, Biology, and Medicine, 3 (2), pp. 168-171. , DOI 10.1016/j.nano.2007.02.001, PII S1549963407000469
Banoee, M., Seif, S., Nazari, Z.E., Jafari-Fesharaki, P., Shahverdi, H.R., Moballegh, A., Moghaddam, K.M., Shahverdi, A.R., ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli (2010) J. Biomed. Mater. Res. B Appl. Biomater., 93, pp. 557-561
Fayaz, A.M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P.T., Venketesan, R., Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria (2010) Nanomed. Nanotechnol. Biol. Med., 6, pp. 103-109
Pissuwan, D., Valenzuela, S.M., Miller, C.M., Killingsworth, M.C., Cortie, M.B., Destruction and control of Toxoplasma gondii tachyzoites using gold nanosphere/antibody conjugates (2009) Small, 5, pp. 1030-1034
Zhang, Y., Peng, H., Huang, W., Zhou, Y., Yan, D., Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles (2008) J. Colloid Interface Sci., 325, pp. 371-376
Kim, K.J., Sung, W.S., Moon, S.K., Choi, J.S., Kim, J.G., Lee, D.G., Antifungal effect of silver nanoparticles on dermatophytes (2008) J. Microbiol. Biotechnol., 18, pp. 1482-1484
Schabes-Retchkiman, P.S., Canizal, G., Herrera-Becerra, R., Zorrilla, C., Liu, H.B., Ascencio, J.A., Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles (2006) Optical Materials, 29 (1), pp. 95-99. , DOI 10.1016/j.optmat.2006.03.014, PII S0925346706001182, Selected Papers fron the Second Tropical Meeting on the Nanostructured Materials and Nonotechnology NANOTECH-2005
Zhao, Y., Tian, Y., Cui, Y., Liu, W., Ma, W., Jiang, X., Small molecule-capped gold nanoparticles as potent antibacterial agents that target Gram-negative bacteria (2010) J. Am. Chem. Soc., 132, pp. 12349-12356
Zahoor, A., Sharma, S., Khuller, G.K., Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis (2005) International Journal of Antimicrobial Agents, 26 (4), pp. 298-303. , DOI 10.1016/j.ijantimicag.2005.07.012, PII S0924857905002050
Rai, M., Yadav, A., Gade, A., Silver nanoparticles as a new generation of antimicrobials (2009) Biotechnol. Adv., 27, pp. 76-83
Sun, R.W.-Y., Chen, R., Chung, N.P.-Y., Ho, C.-M., Lin, C.-L.S., Che, C.-M., Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells (2005) Chemical Communications, (40), pp. 5059-5061. , DOI 10.1039/b510984a
Lara, H.H., Ayala-Nuñez, N.V., Ixtepan-Turrent, L., Rodriguez-Padilla, C., Mode of antiviral action of silver nanoparticles against HIV-1 (2010) J. Nanobiotechnol., 8, pp. 1-10
Lara, H.H., Ixtepan-Turrent, L., Garza-Treviño, E.N., Rodriguez-Padilla, C., PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture (2010) J. Nanobiotechnol., 8, pp. 15-25
Lu, L., Sun, R.W., Chen, R., Hui, C.K., Ho, C.M., Luk, J.M., Lau, G.K., Che, C.M., Silver nanoparticles inhibit hepatitis B virus replication (2008) Antivir. Ther., 13, pp. 253-262
Sun, L., Singh, A.K., Vig, K., Pillai, S., Shreekumar, R., Singh, S.R., Silver nanoparticles inhibit replication of respiratory sincitial virus (2008) J. Biomed. Biotechnol., 4, pp. 149-158
Baram-Pinto, D., Shukla, S., Perkas, N., Gedanken, A., Sarid, R., Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate (2009) Bioconjug. Chem., 20, pp. 1497-1502
Rogers, J.V., Parkinson, C.V., Choi, Y.W., Speshock, J.L., Hussain, S.M., A preliminary assessment of silver nanoparticles inhibition of monkeypox virus plaque formation (2008) Nanoscale Res. Lett., 3, pp. 129-133
Papp, I., Sieben, C., Ludwig, K., Roskamp, M., Böttcher, C., Schlecht, S., Herrmann, A., Haag, R., Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles (2010) Small, 6, pp. 2900-2906
Speshock, J.L., Murdock, R.C., Braydich-Stolle, L.K., Schrand, A.M., Hussain, S.M., Interaction of silver nanoparticles with Tacaribe virus (2010) J. Nanobiotechnol., 8, pp. 19-27
Sukasem, C., Churdboonchart, V., Sukeepaisarncharoen, W., Piroj, W., Inwisai, T., Tiensuwan, M., Chantratita, W., Genotypic resistance profiles in antiretroviral-naive HIV-1 infections before and after initiation of first-line HAART: Impact of polymorphism on resistance to therapy (2008) Int. J. Antimicrob. Agents, 31, pp. 277-281
Doms, R.W., Moore, J.P., HIV-1 membrane fusion: Targets of opportunity (2000) J. Cell Biol., 151, pp. 9-14
Roux, K.H., Taylor, K.A., AIDS virus envelope spike structure (2007) Current Opinion in Structural Biology, 17 (2), pp. 244-252. , DOI 10.1016/j.sbi.2007.03.008, PII S0959440X07000383, Theory and Simulation / Mecromolecular Assemblages
Goff, P., Retroviridae: The retroviruses and their replication (2007) Virology., pp. 2000-2069. , 5th Ed.
Bonet, F., Guery, C., Guyomard, D., Urbina, R.H., Tekaia-Elhsissen, K., Tarascon, J.M., Electrochemical reduction of noble metal compounds in ethylene glycol (1999) Int. J. Inorg. Mater., 1, pp. 47-51
Collins, K.B., Patterson, B.K., Naus, G.J., Landers, D.V., Gupta, P., Development of an in vitro organ culture model to study transmission of HIV-1 in the female genital tract (2000) Nature Medicine, 6 (4), pp. 475-479. , DOI 10.1038/74743
Zussman, A., Lara, L., Lara, H.H., Bentwich, Z., Borkow, G., Blocking of cell-free and cell-associated HIV-1 transmission through human cervix organ culture with UC781 (2003) AIDS, 17 (5), pp. 653-661. , DOI 10.1097/00002030-200303280-00002
Pellet, P.E., Roizman, B., The Family HERPESVIRIDAE: A brief introduction (2007) Virology., pp. 2479-2499. , 5th Ed.
Connolly, S., Jackson, J., Jardetzky, T.S., Longnecker, R., Fusing structure and function: A structural view of the herpesvirus entry machinery (2011) Nat. Rev. Microbiol., 9, pp. 369-381
Spear, P.G., Herpes simplex virus: Receptors and ligands for cell entry (2004) Cellular Microbiology, 6 (5), pp. 401-410. , DOI 10.1111/j.1462-5822.2004.00389.x
Shukla, D., Spear, P.G., Herpesviruses and heparan sulfate: An intimate relationship in aid of viral entry (2001) Journal of Clinical Investigation, 108 (4), pp. 503-510. , DOI 10.1172/JCI200113799
Turner, A., Bruun, B., Minson, T., Browne, H., Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system (1998) Journal of Virology, 72 (1), pp. 873-875
Heldwein, E.E., Krummenacher, C., Entry of herpesviruses into mammalian cells (2008) Cell. Mol. Life Sci., 65, pp. 1653-1668
Heldwein, E.E., Lou, H., Bender, F.C., Cohen, G.H., Eisenberg, R.J., Harrison, S.C., Crystal structure of glycoprotein B from herpes simplex virus 1 (2006) Science, 313 (5784), pp. 217-220. , DOI 10.1126/science.1126548
Hannah, B.P., Heldwein, E.E., Bender, F.C., Cohen, G.H., Eisenberg, R.J., Mutational evidence of internal fusion loops in herpes simplex virus glycoprotein B (2007) Journal of Virology, 81 (9), pp. 4858-4865. , DOI 10.1128/JVI.02755-06
Stampfer, S.D., Lou, H., Cohen, G.H., Eisenberg, R.J., Heldwein, E.E., Structural basis of local, pH-dependent conformational changes in glycoprotein B from herpes simplex virus type 1 (2010) J. Virol., 84, pp. 12924-12933
Galdiero, S., Falanga, A., Vitiello, M., Browne, H., Pedone, C., Galdiero, M., Fusogenic domains in herpes simplex virus type 1 glycoprotein H (2005) Journal of Biological Chemistry, 280 (31), pp. 28632-28643. , DOI 10.1074/jbc.M505196200
Galdiero, S., Vitiello, M., D'Isanto, M., Falanga, A., Collins, C., Raieta, K., Pedone, C., Galdiero, M., Analysis of synthetic peptides from heptad-repeat domains of herpes simplex virus type 1 glycoproteins H and B (2006) J. Gen. Virol., 87, pp. 1085-1097
Johnson, D.C., Baines, J.D., Herpesviruses remodel host membranes for virus egress (2011) Nat. Rev. Microbiol., 9, pp. 382-394
Collins, P.L., Crowe Jr., J.E., Respiratory syncytial virus and metapneumovirus (2007) Virology., pp. 1601-1646. , 5th ed.
Palese, P., Shaw, M.L., Orthomyxoviridae: The viruses and their replication (2007) Virology., pp. 1647-1689. , 5th ed.
Parker, S., Nuara, A., Buller, R.M.L., Schultz, D.A., Human monkeypox: An emerging zoonotic disease (2007) Future Microbiology, 2 (1), pp. 17-34. , http://www.futuremedicine.com/doi/full/10.2217/17460913.2.1.17, DOI 10.2217/17460913.2.1.17
Buchimier, M.J., De La Torre, J.-C., Peters, C.J., The viruses and their replication (2007) Virology., pp. 1791-1827. , 5th Ed.
Howard, C.R., Lewicki, H., Allison, L., Salter, M., Buchmeier, M.J., Properties and characterization of monoclonal antibodies to tacaribe virus (1985) J. Gen. Virol., 66, pp. 2344-2348
Iapalucci, S., López, N., Franze-Fernández, M.T., The 3' end termini of the Tacaribe arenavirus subgenomic RNAs (1991) Virology, 182, pp. 269-278
Kim, J., Kwonand, S., Ostler, E., Antimicrobial effect of silver-impregnated cellulose: Potential for antimicrobial therapy (2009) J. Biol. Eng., 3, p. 20
Abbaszadegan, M., Lechevallier, M., Gerba, C., Occurrence of viruses in US groundwaters (2003) J. AWWA, 95, p. 107
Hamza, I.A., Jurzik, L., Wilhelm, M., Uberla, K., Detection and quantification of human bocavirus in river water (2009) J. Gen. Virol., 90, pp. 2634-2637
Wong, M., Kumar, L., Jenkins, T.M., Xagoraraki, I., Phanikumar, M.S., Rose, J.B., Evaluation of public health risks at recreational beaches in Lake Michigan via detection of enteric viruses and a human-specific bacteriological marker (2009) Water Res., 43, pp. 1137-1149
Wei, C., Lin, W.-Y., Zalnal, Z., Williams, N.E., Zhu, K., Kruzic, A.P., Smith, R.L., Rajeshwar, K., Bactericidal activity of TiO 2 photocatalyst in aqueous media: Toward a solar-assisted water disinfection system (1994) Environmental Science and Technology, 28 (5), pp. 934-938. , DOI 10.1021/es00054a027
Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K., Fujishima, A., Photocatalytic bactericidal effect of TiO 2 thin films: Dynamic view of the active oxygen species responsible for the effect (1997) Journal of Photochemistry and Photobiology A: Chemistry, 106 (1-3), pp. 51-56. , PII S1010603097000385
Cho, M., Chung, H., Choi, W., Yoon, J., Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO 2 photocatalytic disinfection (2005) Applied and Environmental Microbiology, 71 (1), pp. 270-275. , DOI 10.1128/AEM.71.1.270-275.2005
Benabbou, A.K., Derriche, Z., Felix, C., Lejeune, P., Guillard, C., Photocatalytic inactivation of Escherischia coli. Effect of concentration of TiO 2 and microorganism, nature, and intensity of UV irradiation (2007) Applied Catalysis B: Environmental, 76 (3-4), pp. 257-263. , DOI 10.1016/j.apcatb.2007.05.026, PII S092633730700166X
Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., Environmental applications of semiconductor photocatalysis (1995) Chem. Rev., 95, pp. 69-96
Belhacova, L., Krysa, J., Geryk, J., Jirkovsky, J., Inactivation of microorganisms in a flow-through photoreactor with an immobilized TiO 2 layer (1999) Journal of Chemical Technology and Biotechnology, 74 (2), pp. 149-154. , DOI 10.1002/(SICI)1097-4660(199902)74:2<149::AID-JCTB2>
3.0.CO
Koizumi, Y., Taya, M., Kinetic evaluation of biocidal activity of titanium dioxide against phage MS2 considering interaction between the phage and photocatalyst particles (2002) Biochemical Engineering Journal, 12 (2), pp. 107-116. , DOI 10.1016/S1369-703X(02)00046-3, PII S1369703X02000463
Liga, M.V., Bryant, E.L., Colvin, V.L., Li, Q., Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment (2011) Water Res., 45, pp. 535-544
Braydich-Stolle, L., Hussain, S., Schlager, J.J., Hofmann, M.-C., In vitro cytotoxicity of nanoparticles in mammalian germline stem cells (2005) Toxicological Sciences, 88 (2), pp. 412-419. , DOI 10.1093/toxsci/kfi256
AshaRani, P.V., Low Kah Mun, G., Hande, M.P., Valiyaveettil, S., Cytotoxicity and genotoxicity of silver nanoparticles in human cells (2009) ACS Nano, 3, pp. 279-290
Kawata, K., Osawa, M., Okabe, S., In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells (2009) Environ. Sci. Technol., 43, pp. 6046-6051
Hussain, S.M., Hess, K.L., Gearhart, J.M., Geiss, K.T., Schlager, J.J., In vitro toxicity of nanoparticles in BRL 3A rat liver cells (2005) Toxicology in Vitro, 19 (7), pp. 975-983. , DOI 10.1016/j.tiv.2005.06.034, PII S0887233305001268
Rahman, I., Regulation of nuclear factor-KB, activator protein-1, and glutathione levels by tumor necrosis factor-α and dexamethasone in alveolar epithelial cells (2000) Biochem. Pharmacol., 60, pp. 1041-1049
Rahman, I., Biswas, S.K., Jimenez, L.A., Torres, M., Forman, H.J., Glutathione, stress responses, and redox signaling in lung inflammation (2005) Antioxidants and Redox Signaling, 7 (1-2), pp. 42-59. , DOI 10.1089/ars.2005.7.42
Lanone, S., Boczkowski, J., Biomedical applications and potential health risks of nanomaterials: Molecular mechanisms (2006) Current Molecular Medicine, 6 (6), pp. 651-663. , http://www.ingentaconnect.com/content/ben/cmm/2006/00000006/00000006/ art00004, DOI 10.2174/156652406778195026
Aillon, K.L., Xie, Y., El-Gendy, N., Berkland, C.J., Forrest, M.L., Effects of nanomaterial physicochemical properties on in vivo toxicity (2009) Adv. Drug Deliv. Rev., 61, pp. 457-466
Kim, Y.S., Kim, J.S., Cho, H.S., Rha, D.S., Kim, J.M., Park, J.D., Choi, B.S., Yu, I.J., Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats (2008) Inhalation Toxicology, 20 (6), pp. 575-583. , DOI 10.1080/08958370701874663, PII 792702941
Stebounova, L.V., Adamcakova-Dodd, A., Kim, J.S., Park, H., O'Shaughnessy, P.T., Grassian, V.H., Thorne, P.S., Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model (2011) Part. Fibre Toxicol., 8, pp. 5-17
Panyala, N.R., Peña-Méndez, E.M., Havel, J., Silver or silver nanoparticles: A hazardous threat to the environment and human health? (2008) J. Appl. Biomed., 6, pp. 117-129
Chen, X., Schluesener, H.J., Nanosilver: A nanoproduct in medical application (2008) Toxicology Letters, 176 (1), pp. 1-12. , DOI 10.1016/j.toxlet.2007.10.004, PII S0378427407009769
Marambio-Jones, C., Hoek, E.M.V., A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment (2010) J. Nanopart. Res., 12, pp. 1531-1551
Schrand, A.M., Rahman, M.F., Hussain, S.M., Schlager, J.J., Smith, D.A., Syed, A.F., Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip (2010) Rev. Nanomed. Nanobiotechnol., 2, pp. 544-568
Lee, P.C., Meisel, D., Adsorption and surface-enhanced Raman of dyes on silver and gold sols (1982) J. Phys. Chem., 86, pp. 3391-3395
Creighton, J.A., Blatchford, C.G., Albrecht, M.G., Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength (1979) J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys., 75, pp. 790-798
Ayyappan, S., Srinivasa Gopalan, R., Subbanna, G.N., Rao, C.N.R., Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts (1997) Journal of Materials Research, 12 (2), pp. 398-401
Longenberger, L., Mills, G., Formation of metal particles in aqueous solutions by reactions of metal complexes with polymers (1995) J. Phys. Chem., 99, pp. 475-480
Scott, R.W.J., Ye, H., Henriquez, R.R., Crooks, R.M., Synthesis, characterization, and stability of dendrimer-encapsulated palladium nanoparticles (2003) Chem. Mater., 15, pp. 3873-3878
Shirtcliffe, N., Nickel, U., Schneider, S., Reproducible preparation of silver sols with small particle size using borohydride reduction: For use as nuclei for preparation of larger particles (1999) Journal of Colloid and Interface Science, 211 (1), pp. 122-129. , DOI 10.1006/jcis.1998.5980
Panigrahi, S., Kundu, S., Kumar Ghosh, S., Nath, S., Pal, T., General method of synthesis for metal nanoparticles (2004) J. Nanopart. Res., 6, pp. 411-414
Raveendran, P., Fu, J., Wallen, S.L., Completely 'Green' Synthesis and Stabilization of Metal Nanoparticles (2003) Journal of the American Chemical Society, 125 (46), pp. 13940-13941. , DOI 10.1021/ja029267j
Kalimuthu, K., Babu, S.R., Venkataraman, D., Bilal, M., Gurunathan, S., Biosynthesis of silver nanocrystals by Bacillus licheniformis (2008) Colloids Surf. B Biointerfaces, 65, pp. 150-153
Kalishwaralal, K., Deepak, V., Ram Kumar Pandian, S., Kottaisamy, M., BarathmaniKanth, S., Kartikeyan, B., Gurunathan, S., Biosynthesis of silver and gold nanoparticles using Brevibacterium casei (2010) Colloids Surf. B Biointerfaces, 77, pp. 257-262
Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., Rai, M., Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole (2009) Nanomedicine, 5, pp. 382-386
Nanda, A., Saravanan, M., Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE (2009) Nanomedicine, 5, pp. 452-456
Saravanan, M., Nanda, A., Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE (2010) Colloids Surf. B Biointerfaces, 77, pp. 214-218
Narayanan, K.B., Sakthivel, N., Biological synthesis of metal nanoparticles by microbes (2010) Adv. Colloid Interface Sci., 156, pp. 1-13
Henderson, D. A., Principles and lessons from the smallpox eradication programme (1987) Bulletin of the World Health Organization, 65 (4), pp. 535-54
Hull, H. F., Ward, N. A., Hull, B. P., Milstien, J. B., De Quadros, C., Paralytic poliomyelitis: Seasoned strategies, disappearing disease (1994) Lancet, 343 (8909), pp. 1331-1337. , DOI 10. 1016/S0140-6736 (94) 92472-4
Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., Yacaman, M. J., The bactericidal effect of silver nanoparticles (2005) Nanotechnology, 16 (10), pp. 2346-2353. , DOI 10. 1088/0957-4484/16/10/059, PII S0957448405021963
Kim, J. S., Kuk, E., Yu, K. N., Kim, J. -H., Park, S. J., Lee, H. J., Kim, S. H., Cho, M. -H., Antimicrobial effects of silver nanoparticles (2007) Nanomedicine: Nanotechnology, Biology, and Medicine, 3 (1), pp. 95-101. , DOI 10. 1016/j. nano. 2006. 12. 001, PII S1549963406003467
Daaboul, G. G., Yurt, A., Zhang, X., Hwang, G. M., Goldberg, B. B., nl, M. S., High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification (2010) Nano Lett., 10, pp. 4727-4731
Miranda, O. R., Creran, B., Rotello, V. M., Array-based sensing with nanoparticles: Chemical noses' for sensing biomolecules and cell surfaces (2010) Curr. Opin. Chem. Biol., 14, pp. 728-736
Kennedy, L. C., Bickford, L. R., Lewinski, N. A., Coughlin, A. J., Hu, Y., Day, E. S., West, J. L., Drezek, R. A., A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies (2011) Small, 7, pp. 169-183
Portney, N. G., Ozkan, M., Nano-oncology: Drug delivery, imaging, and sensing (2006) Analytical and Bioanalytical Chemistry, 384 (3), pp. 620-630. , DOI 10. 1007/s00216-005-0247-7
Dimitrov, D. S., Virus entry: Molecular mechanisms and biomedical applications (2004) Nat. Rev., 2, pp. 109-120
Hoyme, U. B., Clinical significance of Cred 's prophylaxis in germany at present (1993) Infect. Dis. Obstet. Gynecol., 1, pp. 32-36
Pal, S., Tak, Y. K., Song, J. M., Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli (2007) Applied and Environmental Microbiology, 73 (6), pp. 1712-1720. , DOI 10. 1128/AEM. 02218-06
Yoon, K. -Y., Hoon Byeon, J., Park, J. -H., Hwang, J., Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles (2007) Science of the Total Environment, 373 (2-3), pp. 572-575. , DOI 10. 1016/j. scitotenv. 2006. 11. 007, PII S0048969706008837
Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., Minaian, S., Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli (2007) Nanomedicine: Nanotechnology, Biology, and Medicine, 3 (2), pp. 168-171. , DOI 10. 1016/j. nano. 2007. 02. 001, PII S1549963407000469
Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., Venketesan, R., Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria (2010) Nanomed. Nanotechnol. Biol. Med., 6, pp. 103-109
Kim, K. J., Sung, W. S., Moon, S. K., Choi, J. S., Kim, J. G., Lee, D. G., Antifungal effect of silver nanoparticles on dermatophytes (2008) J. Microbiol. Biotechnol., 18, pp. 1482-1484
Sun, R. W. -Y., Chen, R., Chung, N. P. -Y., Ho, C. -M., Lin, C. -L. S., Che, C. -M., Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells (2005) Chemical Communications, (40), pp. 5059-5061. , DOI 10. 1039/b510984a
Lara, H. H., Ayala-Nu ez, N. V., Ixtepan-Turrent, L., Rodriguez-Padilla, C., Mode of antiviral action of silver nanoparticles against HIV-1 (2010) J. Nanobiotechnol., 8, pp. 1-10
Lara, H. H., Ixtepan-Turrent, L., Garza-Trevi o, E. N., Rodriguez-Padilla, C., PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture (2010) J. Nanobiotechnol., 8, pp. 15-25
Lu, L., Sun, R. W., Chen, R., Hui, C. K., Ho, C. M., Luk, J. M., Lau, G. K., Che, C. M., Silver nanoparticles inhibit hepatitis B virus replication (2008) Antivir. Ther., 13, pp. 253-262
Sun, L., Singh, A. K., Vig, K., Pillai, S., Shreekumar, R., Singh, S. R., Silver nanoparticles inhibit replication of respiratory sincitial virus (2008) J. Biomed. Biotechnol., 4, pp. 149-158
Rogers, J. V., Parkinson, C. V., Choi, Y. W., Speshock, J. L., Hussain, S. M., A preliminary assessment of silver nanoparticles inhibition of monkeypox virus plaque formation (2008) Nanoscale Res. Lett., 3, pp. 129-133
Speshock, J. L., Murdock, R. C., Braydich-Stolle, L. K., Schrand, A. M., Hussain, S. M., Interaction of silver nanoparticles with Tacaribe virus (2010) J. Nanobiotechnol., 8, pp. 19-27
Doms, R. W., Moore, J. P., HIV-1 membrane fusion: Targets of opportunity (2000) J. Cell Biol., 151, pp. 9-14
Roux, K. H., Taylor, K. A., AIDS virus envelope spike structure (2007) Current Opinion in Structural Biology, 17 (2), pp. 244-252. , DOI 10. 1016/j. sbi. 2007. 03. 008, PII S0959440X07000383, Theory and Simulation / Mecromolecular Assemblages
Collins, K. B., Patterson, B. K., Naus, G. J., Landers, D. V., Gupta, P., Development of an in vitro organ culture model to study transmission of HIV-1 in the female genital tract (2000) Nature Medicine, 6 (4), pp. 475-479. , DOI 10. 1038/74743
Pellet, P. E., Roizman, B., The Family HERPESVIRIDAE: A brief introduction (2007) Virology., pp. 2479-2499. , 5th Ed.
Spear, P. G., Herpes simplex virus: Receptors and ligands for cell entry (2004) Cellular Microbiology, 6 (5), pp. 401-410. , DOI 10. 1111/j. 1462-5822. 2004. 00389. x
Heldwein, E. E., Krummenacher, C., Entry of herpesviruses into mammalian cells (2008) Cell. Mol. Life Sci., 65, pp. 1653-1668
Heldwein, E. E., Lou, H., Bender, F. C., Cohen, G. H., Eisenberg, R. J., Harrison, S. C., Crystal structure of glycoprotein B from herpes simplex virus 1 (2006) Science, 313 (5784), pp. 217-220. , DOI 10. 1126/science. 1126548
Hannah, B. P., Heldwein, E. E., Bender, F. C., Cohen, G. H., Eisenberg, R. J., Mutational evidence of internal fusion loops in herpes simplex virus glycoprotein B (2007) Journal of Virology, 81 (9), pp. 4858-4865. , DOI 10. 1128/JVI. 02755-06
Stampfer, S. D., Lou, H., Cohen, G. H., Eisenberg, R. J., Heldwein, E. E., Structural basis of local, pH-dependent conformational changes in glycoprotein B from herpes simplex virus type 1 (2010) J. Virol., 84, pp. 12924-12933
Johnson, D. C., Baines, J. D., Herpesviruses remodel host membranes for virus egress (2011) Nat. Rev. Microbiol., 9, pp. 382-394
Collins, P. L., Crowe Jr., J. E., Respiratory syncytial virus and metapneumovirus (2007) Virology., pp. 1601-1646. , 5th ed.
Buchimier, M. J., De La Torre, J. -C., Peters, C. J., The viruses and their replication (2007) Virology., pp. 1791-1827. , 5th Ed.
Howard, C. R., Lewicki, H., Allison, L., Salter, M., Buchmeier, M. J., Properties and characterization of monoclonal antibodies to tacaribe virus (1985) J. Gen. Virol., 66, pp. 2344-2348
Iapalucci, S., L pez, N., Franze-Fern ndez, M. T., The 3' end termini of the Tacaribe arenavirus subgenomic RNAs (1991) Virology, 182, pp. 269-278
Hamza, I. A., Jurzik, L., Wilhelm, M., Uberla, K., Detection and quantification of human bocavirus in river water (2009) J. Gen. Virol., 90, pp. 2634-2637
Wei, C., Lin, W. -Y., Zalnal, Z., Williams, N. E., Zhu, K., Kruzic, A. P., Smith, R. L., Rajeshwar, K., Bactericidal activity of TiO 2 photocatalyst in aqueous media: Toward a solar-assisted water disinfection system (1994) Environmental Science and Technology, 28 (5), pp. 934-938. , DOI 10. 1021/es00054a027
Benabbou, A. K., Derriche, Z., Felix, C., Lejeune, P., Guillard, C., Photocatalytic inactivation of Escherischia coli. Effect of concentration of TiO 2 and microorganism, nature, and intensity of UV irradiation (2007) Applied Catalysis B: Environmental, 76 (3-4), pp. 257-263. , DOI 10. 1016/j. apcatb. 2007. 05. 026, PII S092633730700166X
Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemann, D. W., Environmental applications of semiconductor photocatalysis (1995) Chem. Rev., 95, pp. 69-96
Liga, M. V., Bryant, E. L., Colvin, V. L., Li, Q., Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment (2011) Water Res., 45, pp. 535-544
AshaRani, P. V., Low Kah Mun, G., Hande, M. P., Valiyaveettil, S., Cytotoxicity and genotoxicity of silver nanoparticles in human cells (2009) ACS Nano, 3, pp. 279-290
Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T., Schlager, J. J., In vitro toxicity of nanoparticles in BRL 3A rat liver cells (2005) Toxicology in Vitro, 19 (7), pp. 975-983. , DOI 10. 1016/j. tiv. 2005. 06. 034, PII S0887233305001268
Aillon, K. L., Xie, Y., El-Gendy, N., Berkland, C. J., Forrest, M. L., Effects of nanomaterial physicochemical properties on in vivo toxicity (2009) Adv. Drug Deliv. Rev., 61, pp. 457-466
Kim, Y. S., Kim, J. S., Cho, H. S., Rha, D. S., Kim, J. M., Park, J. D., Choi, B. S., Yu, I. J., Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats (2008) Inhalation Toxicology, 20 (6), pp. 575-583. , DOI 10. 1080/08958370701874663, PII 792702941
Stebounova, L. V., Adamcakova-Dodd, A., Kim, J. S., Park, H., O'Shaughnessy, P. T., Grassian, V. H., Thorne, P. S., Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model (2011) Part. Fibre Toxicol., 8, pp. 5-17
Panyala, N. R., Pe a-M ndez, E. M., Havel, J., Silver or silver nanoparticles: A hazardous threat to the environment and human health? (2008) J. Appl. Biomed., 6, pp. 117-129
Schrand, A. M., Rahman, M. F., Hussain, S. M., Schlager, J. J., Smith, D. A., Syed, A. F., Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip (2010) Rev. Nanomed. Nanobiotechnol., 2, pp. 544-568
Lee, P. C., Meisel, D., Adsorption and surface-enhanced Raman of dyes on silver and gold sols (1982) J. Phys. Chem., 86, pp. 3391-3395
Creighton, J. A., Blatchford, C. G., Albrecht, M. G., Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength (1979) J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys., 75, pp. 790-798
Scott, R. W. J., Ye, H., Henriquez, R. R., Crooks, R. M., Synthesis, characterization, and stability of dendrimer-encapsulated palladium nanoparticles (2003) Chem. Mater., 15, pp. 3873-3878
Narayanan, K. B., Sakthivel, N., Biological synthesis of metal nanoparticles by microbes (2010) Adv. Colloid Interface Sci., 156, pp. 1-13
Silver Nanoparticles as Potential Antiviral Agents
Virus infections pose significant global health challenges, especially in view of the fact that the emergence of resistant viral strains and the adverse side effects associated with prolonged use continue to slow down the application of effective antiviral therapies. This makes imperative the need for the development of safe and potent alternatives to conventional antiviral drugs. In the present scenario, nanoscale materials have emerged as novel antiviral agents for the possibilities offered by their unique chemical and physical properties. Silver nanoparticles have mainly been studied for their antimicrobial potential against bacteria, but have also proven to be active against several types of viruses including human imunodeficiency virus, hepatitis B virus, herpes simplex virus, respiratory syncytial virus, and monkey pox virus. The use of metal nanoparticles provides an interesting opportunity for novel antiviral therapies. Since metals may attack a broad range of targets in the virus there is a lower possibility to develop resistance as compared to conventional antivirals. The present review focuses on the development of methods for the production of silver nanoparticles and on their use as antiviral therapeutics against pathogenic viruses.
Silver Nanoparticles as Potential Antiviral Agents
No results.
Silver Nanoparticles as Potential Antiviral Agents