Nanoparticles containing octreotide peptides and gadolinium complexes for MRI applications(504 views) Accardo A, Morisco A, Gianolio E, Tesauro D, Mangiapia G, Radulescu A, Brandt A, Morelli G
Department of Biological Sciences, CIRPeB, University of Naples Federico II, IBB CNR, Via Mezzocannone 16, 80134 Naples, Italy
Department of Chemistry I.F.M., Molecular Imaging Centre, University of Turin, Via Nizza, 52, 10125 Turin, Italy
Juelich Centre for Neutron Science, Lichtenbergstrasse 1, D 85747 Garching, Germany
Helmholtz Zentrum Berlin, Glienicker Strasse 100, D-14109 Berlin, Germany
References: Berthold, M., Bartfai, T., Modes of peptide binding in G Protein-Coupled Receptors (1997) Neurochem. Res., 22, pp. 1023-103
Reubi, J.C., Peptide receptors as molecular targets for cancer diagnosis and therapy (2003) Endocr. Rev., 24, pp. 389-427
Lamberts, S.W.J., Octreotide: The Next Decade (1999), Bioscientifica: UK, Bristol, UKBauer, W., Briner, U., Doepfner, W., SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action (1982) Life Sci, 31, pp. 1133-1140
Veber, D.F., Freidinger, R.M., Schwenk-Perlow, D., Paleveda Jr, W.J., Holly, F.W., Strachan, R.G., Nurr, R.F., Hirschmann, R., A potent cyclic hexapeptide analogue of somatostatin (1981) Nature, 292, pp. 55-58
Patel, C.Y., Somatostatin and its receptor family (1999) Front. Neuroendocrinol., 20, pp. 157-198
Hofland, L.J., Internalization of [DOTA,125I-Tyr3]octreotide by somatostatin receptor-positive cells in vitro and in vivo: implications for somatostatin receptor-targeted radio-guided surgery (1999) Proc. Assoc. Am. Physicians, 111, pp. 63-69
Huang, C.M., Wu, Y.T., Chen, S.T., Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis (2000) Chem. Biol., 7, pp. 453-461
Mier, W., Eritja, R., Ashour, M., Haberkorn, U., Eisenhut, M., Peptide-PNA conjugates targeted transport of antisense therapeutics into tumours (2003) Angew. Chem. Int. Ed., 42, pp. 1968-1971
Lamberts, S.W.J., Krenning, E.P., Reubi, J.C., The role of somatostatin and its analogs in the diagnosis and treatment of tumors (1991) Endocr. Rev., 12, pp. 450-482
Krenning, E.P., Kwekkeboom, D.J., Pauwels, S., Kvols, L.K., Reubi, J.C., Nuclear Medicine Annual (1995) Somatostatin receptor scintigraphy, pp. 1-50. , Freeman LM (ed.). Lippincott-Raven: New York
Reubi, J.C., Waser, B., Schaer, J.C., Laissue, J.A., Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands (2001) Eur. J. Nucl. Med., 28, pp. 836-846. , Erratum in: Eur. J. Nucl. Med. 2001
Froidevaux, S., Eberle, A.N., Somatostatin analogues and radiopeptides in cancer therapy (2002) Biopolymers (Pept. Sci.), 66, pp. 161-183
Allen, T.M., Ligand-targeted therapeutics in anticancer therapy (2002) Nat. Rev. Cancer, 2, pp. 750-763
Wu, H., Chang, D., Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy (2010) J. Oncol., , ASAP DOI 10.1155/2010/723798
van Tilborg, G.A.F., Mulder, W.J.M., Deckers, N., Storm, G., Reutelingsperger, C.P.M., Strijkers, G.J., Nicolay, K., Annexin A5-functionalized bimodal lipid-based contrast agents for the detection of apoptosis (2006) Bioconjug. Chem., 17, pp. 741-749
Mulder, W.J.M., Strijkers, G.J., van Tilborg, G.A.F., Cormode, D.P., Fayad, Z.A., Nicolay, K., Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging (2009) Acc. Chem. Res., 42, pp. 904-914
Bull, S.R., Guler, M.O., Bras, R.E., Maede, T.J., Stupp, S.I., Self-assembled peptide amphiphile nanofibers conjugated to MRI contrast agents (2005) Nano Lett, 5, pp. 1-4
Kluza, E., van der Schaft, D.W.J., Hautvast, P.A.I., Mulder, W.J.M., Mayo, K.H., Griffioen, A.W., Strijkers, G.J., Nicolay, K., Synergistic targeting of αvβ3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis (2010) Nano Lett, 10, pp. 52-58
Ferrari, M., Cancer nanotechnology: opportunities and challenges (2005) Nat. Rev. Cancer, 5, pp. 161-171
Accardo, A., Tesauro, D., Roscigno, P., Gianolio, E., Paduano, L., D'Errico, G., Pedone, C., Morelli, G., Physicochemical properties of mixed micellar aggregates containing CCK peptides and Gd complexes designed as tumor specific contrast agents in MRI (2004) J. Am. Chem. Soc., 126, pp. 3097-3107
Vaccaro, M., Mangiapia, G., Paduano, L., Gianolio, E., Accardo, A., Tesauro, D., Morelli, G., Structural and relaxometric characterization peptide aggregates containing gadolinium complexes as potential selective contrast agents in MRI (2007) ChemPhysChem, 8, pp. 2526-2538
Tesauro, D., Accardo, A., Gianolio, E., Paduano, L., Teixeira, J., Schillen, K., Aime, S., Morelli, G., Peptide derivatized lamellar aggregates as target-specific MRI contrast agents (2007) ChemBioChem, 8, pp. 950-955
Accardo, A., Mansi, R., Morisco, A., Mangiapia, G., Paduano, L., Tesauro, D., Radulescu, A., Morelli, G., Peptide modified nanocarriers for selective targeting of bombesin receptors (2010) Mol. Biosyst., 6, pp. 878-887
Morisco, A., Accardo, A., Gianolio, E., Tesauro, D., Benedetti, E., Morelli, G., Micelles derivatized with octreotide as potential target-selective contrast agents in MRI (2009) J. Pept. Sci., 15, pp. 242-250
Anelli, P.L., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., L-glutamic acid and L-lysine as useful building blocks for the preparation of bifunctional DTPA-like ligands (1999) Bioconjug. Chem., 10, pp. 137-140
Schmitt, L., Dietrich, C., Synthesis and characterization of chelator-lipids for reversible immobilization of engineered proteins at self-assembled lipid interfaces (1994) J. Am. Chem. Soc., 116, pp. 8485-8491
Ellmann, G.L., Tissue sulfhydryl groups (1959) Arch. Biochem. Biophys., 82, pp. 70-77
Brunisholz, G., Randin, M., The separation of the rare earths by ethylenediamine-tetraacetic acid (EDTA). IX. A cycle for the separation of the rare earths by fractionation (1959) Helv. Chim. Acta, 42, pp. 1927-1938
Edelhoch, H., Spectroscopic determination of tryptophan and tyrosine in proteins (1967) Biochemistry, 6, pp. 1948-1954
Pace, C.N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., How to measure and predict the molar absorption coefficient of a protein (1995) Protein Sci, 4, pp. 2411-2423
Vaccaro, M., Accardo, A., Tesauro, D., Mangiapia, G., Löf, D., Schillen, K., Soederman, O., Paduano, L., Supramolecular aggregates of amphiphilic gadolinium complexes as blood pool MRI/MRA contrast agents: physicochemical characterization (2006) Langmuir, 22, pp. 6635-6643
Wignall, G.D., Bates, F.S., Absolute calibration of small-angle neutron scattering data (1987) J. Appl. Crystallogr., 20, pp. 28-40
Torchilin, V.P., Omelyanenko, V.G., Papisov, M.I., Bogdanov, A.J., Trubetskoy, V.S., Herron, J.N., Gentry, C.A., Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity (1994) Biochim. Biophys. Acta, 119, pp. 11-20
Wang, Q., Graham, K., Schauer, T., Fietz, T., Mohammed, A., Liu, X., Hoffend, J., Mier, W., Pharmacological properties of hydrophilic and lipophilic derivatives of octreotate (2004) Nucl. Med. Biol., 31, pp. 21-30
Chan, W.C., White, P.D., Fmoc Solid Phase Peptide Synthesis (2000), Oxford University Press: New YorkLackowicz, J.R., Principles of Fluorescence Spectroscopy (1983), Plenum Press: New YorkCaravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B., Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications (1999) Chem. Rev., 99, pp. 2293-2352
Bloembergen, N., Morgan, L.O., Proton relaxation times in paramagnetic solutions. Effects of electron spin relaxation (1961) J. Chem. Phys., 34, pp. 842-850
Lipari, G., Szabo, A., Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity (1982) J. Am. Chem. Soc., 104, pp. 4546-4559
Aime, S., Botta, M., Fasano, M., Paoletti, S., Terreno, E., Relaxometric determination of the exchange rate of the coordinated water protons in a neutral Gd-III chelate (1997) Chem. Eur. J., 3, pp. 1499-1504
Powell, D.H., Favre, M., Graeppi, N., Dhubhghaill, O.M.N., Pubanz, D., Merbach, A.E., Solution kinetic behaviour of lanthanide (III) polyamino carboxylates from O-17 NMR-studies (1995) J. Alloys Compd., 225, pp. 246-252
Delli Castelli, D., Gianolio, E., Geninatti Crich, S., Terreno, E., Aime, S., Metal containing nanosized systems for MR-molecular imaging applications (2008) Coord. Chem. Rev., 252, pp. 2424-2443
Reubi, J. C., Peptide receptors as molecular targets for cancer diagnosis and therapy (2003) Endocr. Rev., 24, pp. 389-427
Lamberts, S. W. J., Octreotide: The Next Decade (1999), Bioscientifica: UK, Bristol, UKBauer, W., Briner, U., Doepfner, W., SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action (1982) Life Sci, 31, pp. 1133-1140
Veber, D. F., Freidinger, R. M., Schwenk-Perlow, D., Paleveda Jr, W. J., Holly, F. W., Strachan, R. G., Nurr, R. F., Hirschmann, R., A potent cyclic hexapeptide analogue of somatostatin (1981) Nature, 292, pp. 55-58
Patel, C. Y., Somatostatin and its receptor family (1999) Front. Neuroendocrinol., 20, pp. 157-198
Hofland, L. J., Internalization of [DOTA, 125I-Tyr3] octreotide by somatostatin receptor-positive cells in vitro and in vivo: implications for somatostatin receptor-targeted radio-guided surgery (1999) Proc. Assoc. Am. Physicians, 111, pp. 63-69
Huang, C. M., Wu, Y. T., Chen, S. T., Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis (2000) Chem. Biol., 7, pp. 453-461
Krenning, E. P., Kwekkeboom, D. J., Pauwels, S., Kvols, L. K., Reubi, J. C., Nuclear Medicine Annual (1995) Somatostatin receptor scintigraphy, pp. 1-50. , Freeman LM (ed.). Lippincott-Raven: New York
Reubi, J. C., Waser, B., Schaer, J. C., Laissue, J. A., Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands (2001) Eur. J. Nucl. Med., 28, pp. 836-846. , Erratum in: Eur. J. Nucl. Med. 2001
Allen, T. M., Ligand-targeted therapeutics in anticancer therapy (2002) Nat. Rev. Cancer, 2, pp. 750-763
van Tilborg, G. A. F., Mulder, W. J. M., Deckers, N., Storm, G., Reutelingsperger, C. P. M., Strijkers, G. J., Nicolay, K., Annexin A5-functionalized bimodal lipid-based contrast agents for the detection of apoptosis (2006) Bioconjug. Chem., 17, pp. 741-749
Mulder, W. J. M., Strijkers, G. J., van Tilborg, G. A. F., Cormode, D. P., Fayad, Z. A., Nicolay, K., Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging (2009) Acc. Chem. Res., 42, pp. 904-914
Bull, S. R., Guler, M. O., Bras, R. E., Maede, T. J., Stupp, S. I., Self-assembled peptide amphiphile nanofibers conjugated to MRI contrast agents (2005) Nano Lett, 5, pp. 1-4
Anelli, P. L., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., L-glutamic acid and L-lysine as useful building blocks for the preparation of bifunctional DTPA-like ligands (1999) Bioconjug. Chem., 10, pp. 137-140
Ellmann, G. L., Tissue sulfhydryl groups (1959) Arch. Biochem. Biophys., 82, pp. 70-77
Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., How to measure and predict the molar absorption coefficient of a protein (1995) Protein Sci, 4, pp. 2411-2423
Wignall, G. D., Bates, F. S., Absolute calibration of small-angle neutron scattering data (1987) J. Appl. Crystallogr., 20, pp. 28-40
Torchilin, V. P., Omelyanenko, V. G., Papisov, M. I., Bogdanov, A. J., Trubetskoy, V. S., Herron, J. N., Gentry, C. A., Poly (ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity (1994) Biochim. Biophys. Acta, 119, pp. 11-20
Anelli, P. L., Lattuada, L., Lorusso, V., Schneider, M., Tournier, H., Uggeri, F., Mixed micelles containing lipophilic gadolinium complexes as MRA contrast agents (2001) Magn. Res. Mater. Phys. Biol. Med., 12, pp. 114-120
Chan, W. C., White, P. D., Fmoc Solid Phase Peptide Synthesis (2000), Oxford University Press: New YorkLackowicz, J. R., Principles of Fluorescence Spectroscopy (1983), Plenum Press: New YorkCaravan, P., Ellison, J. J., McMurry, T. J., Lauffer, R. B., Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications (1999) Chem. Rev., 99, pp. 2293-2352
Powell, D. H., Favre, M., Graeppi, N., Dhubhghaill, O. M. N., Pubanz, D., Merbach, A. E., Solution kinetic behaviour of lanthanide (III) polyamino carboxylates from O-17 NMR-studies (1995) J. Alloys Compd., 225, pp. 246-252
Nanoparticles containing octreotide peptides and gadolinium complexes for MRI applications
New mixed nanoparticles were obtained by self-aggregation of two amphiplic monomers. The first monomer (C18) 2L5-Oct contains two C18 hydrophobic moieties bound to the N-terminus of the cyclic peptide octreotide, and spaced from the bioactive peptide by five units of dioxoethylene linkers. The second monomer, (C18) 2DTPAGlu, (C18) 2DTPA or (C18) 2DOTA, and the corresponding Gd (III) complexes, contains two C18 hydrophobic moieties bound through a lysine residue to different polyamino-polycarboxy ligands: DTPAGlu, DTPA or DOTA. Mixed aggregates have been obtained and structurally characterized by small angle neutron scattering (SANS) techniques and for their relaxometric behavior. According to a decrease of negative charges in the surfactant head-group, a total or a partial micelle-to-vesicle transition is observed by passing from (C18) 2DTPAGlu to (C18) 2DOTA. The thicknesses of the bilayers are substantially constant, around 50, in the analyzed systems. Moreover, the mixed aggregates, in which a small amount of amphiphilic octreotide monomer (C18) 2L5-Oct (10% mol/mol) was inserted, do not differ significantly from the respective self-assembled systems. Fluorescence emission of tryptophan residue at 340 nm indicates low mobility of water molecules at the peptide surface. The proton relaxivity of mixed aggregates based on (C18) 2DTPAGlu (Gd), (C18) 2DTPA (Gd) and (C18) 2DOTA (Gd) resulted to be 17. 6, 15. 2 and 10. 0 mM-1 s-1 (at 20 MHz and 298K), respectively. The decrease in the relaxivity values can be ascribed to the increase in M (81, 205 and 750 ns). The presence of amphiphilic octreotide monomer exposed on mixed aggregate surface gives the entire nanoparticles a potential binding selectivity toward somatostatin sstr2 receptor subtype, and these systems could act as MRI target-specific contrast agent. Mixed nanoparticles (micelles and liposomes) are obtained by co-aggregation of lipophilic octreotide with gadolinium complex containing amphiphilic monomers for MRI applications. Copyright 2010 European Peptide Society and John Wiley & Sons, Ltd
Nanoparticles containing octreotide peptides and gadolinium complexes for MRI applications