Solution Structure of the First Sam Domain of Odin and Binding Studies with the EphA2 Receptor(469 views) Mercurio FA, Marasco D, Pirone L, Pedone E, Pellecchia M, Leone M
Biochemistry (ISSN: 0006-2960, 1520-4995, 1520-4995electronic), 2012 Mar 13; 51(10): 2136-2145.
Keywords: Ankyrin, Binding Modes, Binding Studies, Cancer Cells, Isothermal Titration Calorimetry, Micromolar Range, Molecular Modeling Studies, Nmr Chemical Shift Perturbations, Receptor Endocytosis, Solution Structures, Structural Elements, Therapeutic Compounds, Topology Characteristics, Binding Energy, Molecular Biology, Ephrin Receptor A2, Phosphatase, Protein Odin, Protein Ship2, Unclassified Drug, Amino Acid Sequence, Article, Binding Kinetics, Carbon Nuclear Magnetic Resonance, Heteronuclear Single Quantum Coherence, Molecular Docking, Molecular Interaction, Nitrogen Nuclear Magnetic Resonance, Nuclear Overhauser Effect, Priority Journal, Protein Domain, Protein Structure, Receptor Binding, Sterile Alpha Motif Domain, Surface Plasmon Resonance, Adaptor Proteins, Signal Transducing, Humans, Multiprotein Complexes, Biomolecular, Protein Interaction Domains And Motifs, Recombinant Proteins, Thermodynamics,
Affiliations: *** IBB - CNR ***
Department of Biological Sciences, University of Naples Federico II, Naples, Italy
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPEB), Naples, Italy
Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
Sanford-Burnham Medical Research Institute, San Diego, CA 92037, United States
References: Pasquale, E.B., Eph receptors and ephrins in cancer: Bidirectional signalling and beyond (2010) Nat. Rev. Cancer, 10, pp. 165-18
Surawska, H., Ma, P.C., Salgia, R., The role of ephrins and Eph receptors in cancer (2004) Cytokine and Growth Factor Reviews, 15 (6), pp. 419-433. , DOI 10.1016/j.cytogfr.2004.09.002, PII S1359610104000760
Koolpe, M., Dail, M., Pasquale, E.B., An ephrin mimetic peptide that selectively targets the EphA2 receptor (2002) Journal of Biological Chemistry, 277 (49), pp. 46974-46979. , DOI 10.1074/jbc.M208495200
Cooper, M.A., Son, A.I., Komlos, D., Sun, Y., Kleiman, N.J., Zhou, R., Loss of ephrin-A5 function disrupts lens fiber cell packing and leads to cataract (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 16620-16625
Jun, G., Guo, H., Klein, B.E., Klein, R., Wang, J.J., Mitchell, P., Miao, H., Wang, B., EPHA2 is associated with age-related cortical cataract in mice and humans (2009) PLoS Genet., 5, p. 1000584
Zhang, T., Hua, R., Xiao, W., Burdon, K.P., Bhattacharya, S.S., Craig, J.E., Shang, D., Zhang, X., Mutations of the EPHA2 receptor tyrosine kinase gene cause autosomal dominant congenital cataract (2009) Hum. Mutat., 30, pp. 603-E611
Lupberger, J., Zeisel, M.B., Xiao, F., Thumann, C., Fofana, I., Zona, L., Davis, C., Baumert, T.F., EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy (2011) Nat. Med., 17, pp. 589-595
Zhuang, G., Hunter, S., Hwang, Y., Chen, J., Regulation of EphA2 receptor endocytosis by SHIP2 lipid phosphatase via phosphatidylinositol 3-kinase-dependent Rac1 activation (2007) Journal of Biological Chemistry, 282 (4), pp. 2683-2694. , http://www.jbc.org/cgi/reprint/282/4/2683, DOI 10.1074/jbc.M608509200
Kim, J., Lee, H., Kim, Y., Yoo, S., Park, E., Park, S., The SAM domains of Anks family proteins are critically involved in modulating the degradation of EphA receptors (2010) Mol. Cell. Biol., 30, pp. 1582-1592
Kim, C.A., Bowie, J.U., SAM domains: Uniform structure, diversity of function (2003) Trends in Biochemical Sciences, 28 (12), pp. 625-628. , DOI 10.1016/j.tibs.2003.11.001
Meruelo, A.D., Bowie, J.U., Identifying polymer-forming SAM domains (2009) Proteins, 74, pp. 1-5
Leone, M., Cellitti, J., Pellecchia, M., NMR studies of a heterotypic Sam-Sam domain association: The interaction between the lipid phosphatase Ship2 and the EphA2 receptor (2008) Biochemistry, 47, pp. 12721-12728
Rajakulendran, T., Sahmi, M., Kurinov, I., Tyers, M., Therrien, M., Sicheri, F., CNK and HYP form a discrete dimer by their SAM domains to mediate RAF kinase signaling (2008) Proceedings of the National Academy of Sciences of the United States of America, 105 (8), pp. 2836-2841. , http://www.pnas.org/cgi/reprint/105/8/2836, DOI 10.1073/pnas.0709705105
Ramachander, R., Bowie, J.U., SAM domains can utilize similar surfaces for the formation of polymers and closed oligomers (2004) Journal of Molecular Biology, 342 (5), pp. 1353-1358. , DOI 10.1016/j.jmb.2004.08.011, PII S0022283604009787
Wei, Z., Zheng, S., Spangler, S.A., Yu, C., Hoogenraad, C.C., Zhang, M., Liprin-mediated large signaling complex organization revealed by the liprin-α/CASK and liprin-α/liprin-β complex structures (2011) Mol. Cell, 43, pp. 586-598
Emaduddin, M., Edelmann, M.J., Kessler, B.M., Feller, S.M., Odin (ANKS1A) is a Src family kinase target in colorectal cancer cells (2008) Cell Commun. Signaling, 6, p. 7
Ghersi, E., Vito, P., Lopez, P., Abdallah, M., D'Adamio, L., The intracellular localization of amyloid β protein precursor (AβPP) intracellular domain associated protein-1 (AIDA-1) is regulated by AβPP and alternative splicing (2004) Journal of Alzheimer's Disease, 6 (1), pp. 67-78
Neri, D., Szyperski, T., Otting, G., Senn, H., Wuthrich, K., Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling (1989) Biochemistry, 28 (19), pp. 7510-7516
Grzesiek, S., Bax, A., Amino acid type determination in the sequential assignment procedure of uniformly 13C/ 15N-enriched proteins (1993) J. Biomol. NMR, 3, pp. 185-204
Bartels, C., Xia, T., Billeter, M., Güntert, P., Wüthrich, K., The program XEASY for computer-supported NMR spectral analysis of biological macromolecules (1995) J. Biomol. NMR, 6, pp. 1-10
Kay, L.E., Torchia, D.A., Bax, A., Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: Application to staphylococcal nuclease (1989) Biochemistry, 28 (23), pp. 8972-8979
Morris, K., Johnson, C.S., Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy (1992) J. Am. Chem. Soc., 114, pp. 3139-3141
Price, W.S., Pulsed-Field Gradient Nuclear Magnetic Resonance as a Tool for Studying Translational Diffusion: Part I. Basic Theory (1997) Concepts in Magnetic Resonance, 9 (5), pp. 299-336. , DOI 10.1002/(SICI)1099-0534(1997)9:5<299::AID-CMR2>
3.0.CO
Talluri, S., Wagner, G., An optimized 3D NOESY-HSQC (1996) Journal of Magnetic Resonance - Series B, 112 (2), pp. 200-205
Kumar, A., Ernst, R.R., Wuthrich, K., A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules (1980) Biochem. Biophys. Res. Commun., 95, pp. 1-6
Herrmann, T., Guntert, P., Wuthrich, K., Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA (2002) Journal of Molecular Biology, 319 (1), pp. 209-227. , DOI 10.1016/S0022-2836(02)00241-3
Koradi, R., Billeter, M., Wuthrich, K., MOLMOL: A program for display and analysis of macromolecular structures (1996) J. Mol. Graphics, 14, pp. 29-32. , 51-55
Sanner, M.F., Olson, A.J., Spehner, J.C., Reduced surface: An efficient way to compute molecular surfaces (1996) Biopolymers, 38, pp. 305-320
Johnsson, B., Lofas, S., Lindquist, G., Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors (1991) Anal. Biochem., 198, pp. 268-277
Rich, R.L., Myszka, D.G., BIACORE J: A new platform for routine biomolecular interaction analysis (2001) Journal of Molecular Recognition, 14 (4), pp. 223-228. , DOI 10.1002/jmr.535
De Vries, S.J., Van Dijk, M., Bonvin, A.M., The HADDOCK web server for data-driven biomolecular docking (2010) Nat. Protoc., 5, pp. 883-897
Van Dijk, A.D.J., Bonvin, A.M.J.J., Solvated docking: Introducing water into the modelling of biomolecular complexes (2006) Bioinformatics, 22 (19), pp. 2340-2347. , DOI 10.1093/bioinformatics/btl395
Kurabi, A., Brener, S., Mobli, M., Kwan, J.J., Donaldson, L.W., A nuclear localization signal at the SAM-SAM domain interface of AIDA-1 suggests a requirement for domain uncoupling prior to nuclear import (2009) J. Mol. Biol., 392, pp. 1168-1177
Pellecchia, M., Solution nuclear magnetic resonance spectroscopy techniques for probing intermolecular interactions (2005) Chemistry and Biology, 12 (9), pp. 961-971. , DOI 10.1016/j.chembiol.2005.08.013, PII S1074552105002693
Farmer II, B.T., Constantine, K.L., Goldfarb, V., Friedrichs, M.S., Wittekind, M., Yanchunas Jr., J., Robertson, J.G., Mueller, L., Localizing the NADP + binding site on the murb enzyme by NMR (1996) Nature Structural Biology, 3 (12), pp. 995-997. , DOI 10.1038/nsb1296-995
Stafford, R.L., Hinde, E., Knight, M.J., Pennella, M.A., Ear, J., Digman, M.A., Gratton, E., Bowie, J.U., Tandem SAM Domain Structure of Human Caskin1: A Presynaptic, Self-Assembling Scaffold for CASK (2011) Structure, 19, pp. 1826-1836
Dominguez, C., Boelens, R., Bonvin, A.M.J.J., HADDOCK: A protein-protein docking approach based on biochemical or biophysical information (2003) Journal of the American Chemical Society, 125 (7), pp. 1731-1737. , DOI 10.1021/ja026939x
Zhuang, G., Brantley-Sieders, D.M., Vaught, D., Yu, J., Xie, L., Wells, S., Jackson, D., Chen, J., Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy (2010) Cancer Res., 70, pp. 299-308
Thanos, C.D., Faham, S., Goodwill, K.E., Cascio, D., Phillips, M., Bowie, J.U., Monomeric structure of the human EphB2 sterile α motif domain (1999) J. Biol. Chem., 274, pp. 37301-37306
Wilkins, D.K., Grimshaw, S.B., Receveur, V., Dobson, C.M., Jones, J.A., Smith, L.J., Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques (1999) Biochemistry, 38, pp. 16424-16431
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs (1997) Nucleic Acids Research, 25 (17), pp. 3389-3402. , DOI 10.1093/nar/25.17.3389
Kim, C.A., Gingery, M., Pilpa, R.M., Bowie, J.U., The SAM domain of polyhomeotic forms a helical polymer (2002) Nature Structural Biology, 9 (6), pp. 453-457. , DOI 10.1038/nsb802
Lee, H.J., Hota, P.K., Chugha, P., Guo, H., Miao, H., Zhang, L., Kim, S.J., Buck, M., NMR Structure of a Heterodimeric SAM:SAM Complex: Characterization and Manipulation of EphA2 Binding Reveal New Cellular Functions of SHIP2 (2012) Structure, 20, pp. 41-55
Shiels, A., Bennett, T.M., Knopf, H.L., Maraini, G., Li, A., Jiao, X., Hejtmancik, J.F., The EPHA2 gene is associated with cataracts linked to chromosome 1p (2008) Mol. Vision, 14, pp. 2042-2055
Laskowski, R.A., Rullmann, J.A.C., MacArthur, M.W., Kaptein, R., Thornton, J.M., AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR (1996) Journal of Biomolecular NMR, 8 (4), pp. 477-486
Pasquale, E. B., Eph receptors and ephrins in cancer: Bidirectional signalling and beyond (2010) Nat. Rev. Cancer, 10, pp. 165-18
Cooper, M. A., Son, A. I., Komlos, D., Sun, Y., Kleiman, N. J., Zhou, R., Loss of ephrin-A5 function disrupts lens fiber cell packing and leads to cataract (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 16620-16625
Kim, C. A., Bowie, J. U., SAM domains: Uniform structure, diversity of function (2003) Trends in Biochemical Sciences, 28 (12), pp. 625-628. , DOI 10. 1016/j. tibs. 2003. 11. 001
Meruelo, A. D., Bowie, J. U., Identifying polymer-forming SAM domains (2009) Proteins, 74, pp. 1-5
Kay, L. E., Torchia, D. A., Bax, A., Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: Application to staphylococcal nuclease (1989) Biochemistry, 28 (23), pp. 8972-8979
Price, W. S., Pulsed-Field Gradient Nuclear Magnetic Resonance as a Tool for Studying Translational Diffusion: Part I. Basic Theory (1997) Concepts in Magnetic Resonance, 9 (5), pp. 299-336. , DOI 10. 1002/ (SICI) 1099-0534 (1997) 9: 5<299:: AID-CMR2>
3. 0. CO
Sanner, M. F., Olson, A. J., Spehner, J. C., Reduced surface: An efficient way to compute molecular surfaces (1996) Biopolymers, 38, pp. 305-320
Rich, R. L., Myszka, D. G., BIACORE J: A new platform for routine biomolecular interaction analysis (2001) Journal of Molecular Recognition, 14 (4), pp. 223-228. , DOI 10. 1002/jmr. 535
De Vries, S. J., Van Dijk, M., Bonvin, A. M., The HADDOCK web server for data-driven biomolecular docking (2010) Nat. Protoc., 5, pp. 883-897
Van Dijk, A. D. J., Bonvin, A. M. J. J., Solvated docking: Introducing water into the modelling of biomolecular complexes (2006) Bioinformatics, 22 (19), pp. 2340-2347. , DOI 10. 1093/bioinformatics/btl395
Farmer II, B. T., Constantine, K. L., Goldfarb, V., Friedrichs, M. S., Wittekind, M., Yanchunas Jr., J., Robertson, J. G., Mueller, L., Localizing the NADP + binding site on the murb enzyme by NMR (1996) Nature Structural Biology, 3 (12), pp. 995-997. , DOI 10. 1038/nsb1296-995
Stafford, R. L., Hinde, E., Knight, M. J., Pennella, M. A., Ear, J., Digman, M. A., Gratton, E., Bowie, J. U., Tandem SAM Domain Structure of Human Caskin1: A Presynaptic, Self-Assembling Scaffold for CASK (2011) Structure, 19, pp. 1826-1836
Thanos, C. D., Faham, S., Goodwill, K. E., Cascio, D., Phillips, M., Bowie, J. U., Monomeric structure of the human EphB2 sterile motif domain (1999) J. Biol. Chem., 274, pp. 37301-37306
Wilkins, D. K., Grimshaw, S. B., Receveur, V., Dobson, C. M., Jones, J. A., Smith, L. J., Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques (1999) Biochemistry, 38, pp. 16424-16431
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs (1997) Nucleic Acids Research, 25 (17), pp. 3389-3402. , DOI 10. 1093/nar/25. 17. 3389
Kim, C. A., Gingery, M., Pilpa, R. M., Bowie, J. U., The SAM domain of polyhomeotic forms a helical polymer (2002) Nature Structural Biology, 9 (6), pp. 453-457. , DOI 10. 1038/nsb802
Lee, H. J., Hota, P. K., Chugha, P., Guo, H., Miao, H., Zhang, L., Kim, S. J., Buck, M., NMR Structure of a Heterodimeric SAM: SAM Complex: Characterization and Manipulation of EphA2 Binding Reveal New Cellular Functions of SHIP2 (2012) Structure, 20, pp. 41-55
Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R., Thornton, J. M., AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR (1996) Journal of Biomolecular NMR, 8 (4), pp. 477-486
Solution Structure of the First Sam Domain of Odin and Binding Studies with the EphA2 Receptor
The EphA2 receptor plays key roles in many physiological and pathological events, including cancer. The process of receptor endocytosis and the consequent degradation have attracted attention as possible means of overcoming the negative outcomes of EphA2 in cancer cells and decreasing tumor malignancy. A recent study indicates that Sam (sterile alpha motif) domains of Odin, a member of the ANKS (ankyrin repeat and sterile alpha motif domain-containing) family of proteins, are important for the regulation of EphA2 endocytosis. Odin contains two tandem Sam domains (Odin-Sam1 and -Sam2). Herein, we report on the nuclear magnetic resonance (NMR) solution structure of Odin-Sam1; through a variety of assays (employing NMR, surface plasmon resonance, and isothermal titration calorimetry techniques), we clearly demonstrate that Odin-Sam1 binds to the Sam domain of EphA2 in the low micromolar range. NMR chemical shift perturbation experiments and molecular modeling studies point out that the two Sam domains interact with a head-to-tail topology characteristic of several Sam-Sam complexes. This binding mode is similar to that we have previously proposed for the association between the Sam domains of the lipid phosphatase Ship2 and EphA2. This work further validates structural elements relevant for the heterotypic Sam-Sam interactions of EphA2 and provides novel insights for the design of potential therapeutic compounds that can modulate receptor endocytosis.
Solution Structure of the First Sam Domain of Odin and Binding Studies with the EphA2 Receptor