Descent algorithms on oblique manifold for source-adaptive ICA contrast(530 views)(PDF restricted215 views) Selvan SE, Amato U, Gallivan KA, Qi C, Carfora MF, Larobina M, Alfano B
Department of Mathematical Engineering, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
Istituto per le Applicazioni Del Calcolo Mauro Picone-Sede di Napoli, Consiglio Nazionale Delle Ricerche, Naples 80131, Italy
Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale Delle Ricerche, Naples 80131, Italy
References: Cardoso, J.-F., Blind signal separation: Statistical principles (1998) Proc IEEE, 86 (10), pp. 2009-2025. , Oc
Plumbley, M.D., Geometrical methods for non-negative ICA: Manifolds, Lie groups and toral subalgebras (2005) Neurocomputing, 67, pp. 161-197. , Aug
Douglas, S.C., Self-stabilized gradient algorithms for blind source separation with orthogonality constraints (2000) IEEE Trans. Neural Netw, 11 (6), pp. 1490-1497. , Nov
Plumbley, M.D., (2004) Lie Group Methods for Optimization with Orthogonality Constraints (Lecture Notes in Computer Science), 3195, pp. 1245-1252. , Berlin, Germany: Springer-Verlag
Fiori, S., Extended Hamiltonian learning on Riemannian manifolds: Numerical aspects (2012) IEEE Trans. Neural Netw. Learn. Syst, 23 (1), pp. 7-21. , Jan
Eriksson, J., Karvanen, J., Koivunen, V., Source distribution adaptive maximum likelihood estimation of ICA model (2000) Proc. 2nd Int. Workshop Independ. Compon. Anal. Blind Signal Separat., pp. 227-232. , Helsinki, Finland Jun
Choi, S., Cichocki, A., Amari, S., Flexible independent component analysis (2000) J. VLSI Signal Process, 26 (1-2), pp. 25-38. , Aug
Karvanen, J., Eriksson, J., Koivunen, V., Pearson system based method for blind separation (2000) Proc. 2nd Int. Workshop Independ. Compon. Anal. Blind Signal Separat., Helsinki, Finland, pp. 585-590. , Jun
Hild, K.E., Erdogmus, D., Príncipe, J., Blind source separation using Renyi's mutual information (2001) IEEE Signal Process. Lett, 8 (6), pp. 174-176. , Jun
Sengupta, K., Burman, P., Sharma, R., A non-parametric approach for independent component analysis using kernel density estimation (2004) Proc IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit, 2, pp. 667-672. , Washington DC, Jun-Jul
Boscolo, R., Pan, H., Roychowdhury, V.P., Independent component analysis based on nonparametric density estimation (2004) IEEE Trans. Neural Netw, 15 (1), pp. 55-65. , Jan
Shwartz, S., Zibulevsky, M., Schechner, Y.Y., (2004) ICA Using Kernel Entropy Estimation with NlogN Complexity (Lecture Notes in Computer Science), 3195, pp. 422-429. , Berlin, Germany: Springer-Verlag
Pham, D.-T., Fast algorithms for mutual information based independent component analysis (2004) IEEE Trans. Signal Process, 52 (10), pp. 2690-2700. , Oct
Tsai, D.-M., Lai, S.-C., Independent component analysis-based background subtraction for indoor surveillance (2009) IEEE Trans. Image Process, 18 (1), pp. 158-167. , Jan
Chen, A., (2006) Fast Kernel Density Independent Component Analysis (Lecture Notes in Computer Science), 3889, pp. 24-31. , Berlin, Germany: Springer-Verlag
Xue, Y., Wang, Y., Yang, J., Independent component analysis based on gradient equation and kernel density estimation (2009) Neurocomputing, 72 (7-9), pp. 1597-1604. , Mar
Edelman, A., Arias, T.A., Smith, S.T., The geometry of algorithms with orthogonality constraints (1999) SIAM J. Matrix Anal. Appl, 20 (2), pp. 303-353. , Apr
Fiori, S., Quasi-geodesic neural learning algorithms over the orthogonal group: A tutorial (2005) J. Mach. Learn. Res, 6, pp. 743-781. , May
Fiori, S., Learning independent components on the orthogonal group of matrices by retractions (2007) Neural Process. Lett, 25 (3), pp. 187-198. , Jun
Nishimori, Y., Akaho, S., Plumbley, M.D., (2006) Riemannian Optimization Method on the Flag Manifold for Independent Subspace Analysis (Lecture Notes in Computer Science), 3889, pp. 295-302. , Berlin, Germany: Springer-Verlag
Yamada, I., Ezaki, T., An orthogonal matrix optimization by dual Cayley parametrization technique (2003) Proc. 4th Int. Symp. Independ. Compon. Anal. Blind Signal Separat., Nara, Japan, pp. 35-40. , Apr
Rahbar, K., Reilly, J.P., Geometric optimization methods for blind source separation of signals (2000) Proc. 2nd Int. Workshop Independ. Compon. Anal. Blind Signal Separat., Helsinki, Finland, pp. 375-380. , Jun
Nikpour, M., Manton, J.H., Hori, G., Algorithms on the Stiefel manifold for joint diagonalisation (2002) Proc IEEE Int. Conf. Acoust., Speech, Signal Process., Orlando, FL, pp. 1481-1484. , May
Abrudan, T.E., Eriksson, J., Koivunen, V., Steepest descent algorithms for optimization under unitary matrix constraint (2008) IEEE Trans. Signal Process, 56 (3), pp. 1134-1147. , Mar
Abrudan, T., Eriksson, J., Koivunen, V., Conjugate gradient algorithm for optimization under unitary matrix constraint (2009) Signal Process, 89 (9), pp. 1704-1714. , Sep
Joho, M., Mathis, H., Joint diagonalization of correlation matrices by using gradient methods with application to blind signal separation (2002) Proc IEEE Sensor Array Multichannel Signal Process, pp. 273-277. , Workshop, Rosslyn, VA, Aug
Joho, M., Rahbar, K., Joint diagonalization of correlation matrices by using Newton methods with application to blind signal separation (2002) Proc IEEE Sensor Array Multichannel Signal Process, pp. 403-407. , Workshop, Rosslyn, VA, Aug
Lee, T.-W., Wachtler, T., Sejnowski, T.J., Color opponency constitutes a sparse representation for the chromatic structure of natural scenes (2001) Advances in Neural Information Processing Systems, 13, pp. 866-872. , T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press
Moon, S., Qi, H., Hybrid dimensionality reduction method based on support vector machine and independent component analysis (2012) IEEE Trans. Neural Netw. Learn. Syst, 23 (5), pp. 749-761. , May
Hyvärinen, A., Karhunen, J., Oja, E., (2001) Independent Component Analysis, , New York: Wiley
Lewicki, M.S., Sejnowski, T.J., Learning overcomplete representations (2000) Neural Comput, 12 (2), pp. 337-365. , Feb
Zhang, W.-T., Lou, S.-T., Iterative algorithm for joint zero diagonalization with application in blind source separation (2011) IEEE Trans. Neural Netw, 22 (7), pp. 1107-1118. , Jul
Douglas, S.C., Amari, S.-I., Kung, S.-Y., On gradient adaptation with unit-norm constraints (2000) IEEE Trans. Signal Process, 48 (6), pp. 1843-1847. , Jun
Shen, H., Diepold, K., Hüper, K., Geometric algorithms for the nonwhitened one-unit linear independent component analysis problem (2009) Proc. 15th IEEE Workshop Stat. Signal Process., pp. 381-384. , Cardiff, U.K., Aug.-Sep
Absil, P.-A., Gallivan, K.A., Joint diagonalization on the oblique manifold for independent component analysis (2006) Proc. 31st IEEE Int. Conf. Acoust., Speech Signal Process, 5, pp. 945-948. , Toulouse, France May
Shen, H., Hüper, K., Block Jacobi-type methods for non-orthogonal joint diagonalisation (2009) Proc. 34th IEEE Int. Conf. Acoust., Speech Signal Process., Taipei, Taiwan, pp. 3285-3288. , Apr
Shen, H., Kleinsteuber, M., (2010) Complex Blind Source Separation Via Simultaneous Strong Uncorrelating Transform (Lecture Notes in Computer Science), 6365, pp. 287-294. , Berlin, Germany: Springer-Verlag
Yuen, P.C., Lai, J.H., Face representation using independent component analysis (2002) Pattern Recognit, 35 (6), pp. 1247-1257. , Jun
Chiang, S.-S., Chang, C.-I., Ginsberg, I.W., Unsupervised hyperspectral image analysis using independent component analysis (2000) Proc IEEE Int. Geosci. Remote Sens. Symp, 7, pp. 3136-3138. , Honolulu, HI Jul
Gaucel, J.-M., Guillaume, M., Bourennane, S., (2006) Non Orthogonal Component Analysis: Application to Anomaly Detection (Lecture Notes in Computer Science), 4179, pp. 1198-1209. , Berlin, Germany: Springer-Verlag
Afsari, B., Krishnaprasad, P.S., (2004) Some Gradient Based Joint Diagonalization Methods for ICA (Lecture Notes in Computer Science), 3195, pp. 437-444. , Berlin, Germany: Springer-Verlag
Trendafilov, N.T., Lippert, R.A., The multimode Procrustes problem (2002) Linear Algebra Appl, 349, pp. 245-264. , Jul
Depczynski, U., Stöckler, J., A differential geometric approach to equidistributed knots on Riemannian manifolds (1998) Approximation Theory IX, Theoretical Aspects, 1, pp. 99-106. , C. K. Chui and L. L. Schumaker, Eds. Nashville, TN: Vanderbilt Univ. Press
Absil, P.-A., Mahony, R., Sepulchre, R., (2008) Optimization Algorithms on Matrix Manifolds, , Princeton NJ: Princeton Univ. Press
Buono, N.D., Elia, C., Computation of few Lyapunov exponents by geodesic based algorithms (2003) Future Generat. Comput. Syst, 19 (3), pp. 425-430. , Apr
Selvan, S.E., Amato, U., Qi, C., Gallivan, K.A., Carfora, M.F., Larobina, M., Alfano, B., Unconstrained optimizers for ICA learning on oblique manifold using Parzen density estimation (2011) Dept. Math., Florida State Univ., Tallahassee, Tech. Rep. FSU11-05, , May
Silverman, B., (1985) Density Estimation for Statistics and Data Analysis, , New York: Chapman & Hall
Yang, C., Duraiswami, R., Gumerov, N.A., Davis, L., Improved fast Gauss transform and efficient kernel density estimation (2003) Proc. 9th IEEE Int. Conf. Comput. Vis, 1, pp. 664-671. , Nice, France Oct
Polak, E., (1997) Optimization: Algorithms and Consistent Approximations, , New York: Springer-Verlag
Gilbert, J.C., Nocedal, J., Global convergence properties of conjugate gradient methods for optimization (1992) SIAM J. Optim, 2 (1), pp. 21-42. , Feb
Hager, W.W., Zhang, H., A survey of nonlinear conjugate gradient methods (2006) Pacific J. Optim, 2 (1), pp. 35-58. , Jan
Dai, Y.H., Yuan, Y., An efficient hybrid conjugate gradient method for unconstrained optimization (2001) Ann. Oper. Res, 103 (1-4), pp. 33-47. , Mar
Hestenes, M.R., Stiefel, E., Methods of conjugate gradients for solving linear systems (1952) J. Res. Nat. Bureau Std, 49 (6), pp. 409-436. , Dec
Fletcher, R., (1987) Practical Methods of Optimization, , 2nd ed New York: Wiley
Hager, W.W., A derivative-based bracketing scheme for univariate minimization and the conjugate gradient method (1989) Comput. Math. Appl, 18 (9), pp. 779-795
Powell, M.J.D., Restart procedures for the conjugate gradient method (1977) Math. Program, 12 (1), pp. 241-254. , Dec
Selvan, S.E., (2007) Generating Linear Combination of Spectral Images with Mutually Exclusive Specific Information, , Ph.D. dissertation Dept. Inf. Technol. & Math., Univ. de la Méditerranée, Marseille, France Jun
Byatt, D., Coope, I.D., Price, C.J., Effect of limited precision on the BFGS quasi-Newton algorithm (2004) ANZIAM J, 45, pp. C283-C295. , May
Savas, B., Lim, L.-H., Quasi-Newton methods on Grassmannians and multilinear approximations of tensors (2010) SIAM J. Sci. Comput, 32 (6), pp. 3352-3393. , Nov
Manton, J.H., Optimization algorithms exploiting unitary constraints (2002) IEEE Trans. Signal Process, 50 (3), pp. 635-650. , Mar
Brace, I., Manton, J.H., An improved BFGS-on-manifold algorithm for computing weighted low rank approximations (2006) Proc. 17th Int. Symp. Math. Theory Netw. Syst., Kyoto, Japan, pp. 1735-1738. , Jul
Qi, C., (2011) Numerical Optimization Methods on Riemannian Manifolds, , Ph.D. dissertation Dept. Math., Florida State Univ., Tallahassee
Bertsekas, D.P., On the Goldstein-Levitin-Polyak gradient projection method (1976) IEEE Trans. Autom. Control, 21 (2), pp. 174-184. , Apr
Bertsekas, D.P., Projected Newton methods for optimization problems with simple constraints (1982) SIAM J. Control Optim, 20 (2), pp. 221-246. , Mar
Kelley, C.T., (1999) Iterative Methods for Optimization, , Philadelphia PA: SIAM
Rosen, J.B., The gradient projection method for nonlinear programming. Part II. Nonlinear constraints (1961) SIAM J. Appl. Math, 9 (4), pp. 514-532
Luenberger, D.G., The gradient projection method along geodesics (1972) Manage. Sci, 18 (11), pp. 620-631. , Jul
Absil, P.-A., Malick, J., Projection-like retractions on matrix manifolds (2012) SIAM J. Optim, 22 (1), pp. 135-158
Helmke, U., Moore, J.B., (1994) Optimization and Dynamical Systems (Communications and Control Engineering), , London, U.K.: Springer-Verlag
Amari, S.-I., Chen, T.-P., Cichocki, A., Nonholonomic orthogonal learning algorithms for blind source separation (2000) Neural Comput, 12 (6), pp. 1463-1484. , Jul
Selvan, S.E., Musta̧tea, A., Xavier, C.C., Sequeira, J., Accurate estimation of ICA weight matrix by implicit constraint imposition using Lie group (2009) IEEE Trans. Neural Netw, 20 (10), pp. 1565-1580. , Oct
Li, X.-L., Adalí, T., Independent component analysis by entropy bound minimization (2010) IEEE Trans. Signal Process, 58 (10), pp. 5151-5164. , Oct
Seth, S., Rao, M., Park, I., Príncipe, J.C., A unified framework for quadratic measures of independence (2011) IEEE Trans. Signal Process, 59 (8), pp. 3624-3635. , Aug
Kim, J., Park, H., Fast nonnegative matrix factorization: An activeset-like method and comparisons (2011) SIAM J. Sci. Comput, 33 (6), pp. 3261-3281
Jankovic, M.V., Sugiyama, M., A multipurpose linear component analysis method based on modulated Hebb-Oja learning rule (2008) IEEE Signal Process. Lett, 15, pp. 677-680
Hyvärinen, A., Fast and robust fixed-point algorithms for independent component analysis (1999) IEEE Trans. Neural Netw, 10 (3), pp. 626-634. , May
Cardoso, J.-F., Souloumiac, A., Blind beamforming for non Gaussian signals (1993) IEE Proc. F, Radar Signal Process, 140 (6), pp. 362-370. , Dec
Makeig, S., Bell, A.J., Jung, T.-P., Sejnowski, T.J., Independent component analysis of electroencephalographic data (1996) Advances in Neural Information Processing Systems, 8, pp. 145-151. , D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA: MIT Press
Bach, F.R., Jordan, M.I., Kernel independent component analysis (2002) J. Mach. Learn. Res, 3, pp. 1-48. , Jul
Amato, U., Antoniadis, A., Grégoire, G., Independent component discriminant analysis (2003) Int. Math. J, 3 (7), pp. 735-753
Amari, S., Cichocki, A., Yang, H.H., A new learning algorithm for blind signal separation (1996) Advances in Neural Information Processing Systems, 8, pp. 757-763. , D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA: MIT Press
Cardoso, J. -F., Blind signal separation: Statistical principles (1998) Proc IEEE, 86 (10), pp. 2009-2025. , Oc
Plumbley, M. D., Geometrical methods for non-negative ICA: Manifolds, Lie groups and toral subalgebras (2005) Neurocomputing, 67, pp. 161-197. , Aug
Douglas, S. C., Self-stabilized gradient algorithms for blind source separation with orthogonality constraints (2000) IEEE Trans. Neural Netw, 11 (6), pp. 1490-1497. , Nov
Plumbley, M. D., (2004) Lie Group Methods for Optimization with Orthogonality Constraints (Lecture Notes in Computer Science), 3195, pp. 1245-1252. , Berlin, Germany: Springer-Verlag
Hild, K. E., Erdogmus, D., Pr ncipe, J., Blind source separation using Renyi's mutual information (2001) IEEE Signal Process. Lett, 8 (6), pp. 174-176. , Jun
Pham, D. -T., Fast algorithms for mutual information based independent component analysis (2004) IEEE Trans. Signal Process, 52 (10), pp. 2690-2700. , Oct
Tsai, D. -M., Lai, S. -C., Independent component analysis-based background subtraction for indoor surveillance (2009) IEEE Trans. Image Process, 18 (1), pp. 158-167. , Jan
Abrudan, T. E., Eriksson, J., Koivunen, V., Steepest descent algorithms for optimization under unitary matrix constraint (2008) IEEE Trans. Signal Process, 56 (3), pp. 1134-1147. , Mar
Lee, T. -W., Wachtler, T., Sejnowski, T. J., Color opponency constitutes a sparse representation for the chromatic structure of natural scenes (2001) Advances in Neural Information Processing Systems, 13, pp. 866-872. , T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press
Hyv rinen, A., Karhunen, J., Oja, E., (2001) Independent Component Analysis, , New York: Wiley
Lewicki, M. S., Sejnowski, T. J., Learning overcomplete representations (2000) Neural Comput, 12 (2), pp. 337-365. , Feb
Zhang, W. -T., Lou, S. -T., Iterative algorithm for joint zero diagonalization with application in blind source separation (2011) IEEE Trans. Neural Netw, 22 (7), pp. 1107-1118. , Jul
Douglas, S. C., Amari, S. -I., Kung, S. -Y., On gradient adaptation with unit-norm constraints (2000) IEEE Trans. Signal Process, 48 (6), pp. 1843-1847. , Jun
Absil, P. -A., Gallivan, K. A., Joint diagonalization on the oblique manifold for independent component analysis (2006) Proc. 31st IEEE Int. Conf. Acoust., Speech Signal Process, 5, pp. 945-948. , Toulouse, France May
Shen, H., H per, K., Block Jacobi-type methods for non-orthogonal joint diagonalisation (2009) Proc. 34th IEEE Int. Conf. Acoust., Speech Signal Process., Taipei, Taiwan, pp. 3285-3288. , Apr
Yuen, P. C., Lai, J. H., Face representation using independent component analysis (2002) Pattern Recognit, 35 (6), pp. 1247-1257. , Jun
Chiang, S. -S., Chang, C. -I., Ginsberg, I. W., Unsupervised hyperspectral image analysis using independent component analysis (2000) Proc IEEE Int. Geosci. Remote Sens. Symp, 7, pp. 3136-3138. , Honolulu, HI Jul
Gaucel, J. -M., Guillaume, M., Bourennane, S., (2006) Non Orthogonal Component Analysis: Application to Anomaly Detection (Lecture Notes in Computer Science), 4179, pp. 1198-1209. , Berlin, Germany: Springer-Verlag
Trendafilov, N. T., Lippert, R. A., The multimode Procrustes problem (2002) Linear Algebra Appl, 349, pp. 245-264. , Jul
Depczynski, U., St ckler, J., A differential geometric approach to equidistributed knots on Riemannian manifolds (1998) Approximation Theory IX, Theoretical Aspects, 1, pp. 99-106. , C. K. Chui and L. L. Schumaker, Eds. Nashville, TN: Vanderbilt Univ. Press
Absil, P. -A., Mahony, R., Sepulchre, R., (2008) Optimization Algorithms on Matrix Manifolds, , Princeton NJ: Princeton Univ. Press
Buono, N. D., Elia, C., Computation of few Lyapunov exponents by geodesic based algorithms (2003) Future Generat. Comput. Syst, 19 (3), pp. 425-430. , Apr
Selvan, S. E., Amato, U., Qi, C., Gallivan, K. A., Carfora, M. F., Larobina, M., Alfano, B., Unconstrained optimizers for ICA learning on oblique manifold using Parzen density estimation (2011) Dept. Math., Florida State Univ., Tallahassee, Tech. Rep. FSU11-05, , May
Gilbert, J. C., Nocedal, J., Global convergence properties of conjugate gradient methods for optimization (1992) SIAM J. Optim, 2 (1), pp. 21-42. , Feb
Hager, W. W., Zhang, H., A survey of nonlinear conjugate gradient methods (2006) Pacific J. Optim, 2 (1), pp. 35-58. , Jan
Dai, Y. H., Yuan, Y., An efficient hybrid conjugate gradient method for unconstrained optimization (2001) Ann. Oper. Res, 103 (1-4), pp. 33-47. , Mar
Hestenes, M. R., Stiefel, E., Methods of conjugate gradients for solving linear systems (1952) J. Res. Nat. Bureau Std, 49 (6), pp. 409-436. , Dec
Hager, W. W., A derivative-based bracketing scheme for univariate minimization and the conjugate gradient method (1989) Comput. Math. Appl, 18 (9), pp. 779-795
Powell, M. J. D., Restart procedures for the conjugate gradient method (1977) Math. Program, 12 (1), pp. 241-254. , Dec
Selvan, S. E., (2007) Generating Linear Combination of Spectral Images with Mutually Exclusive Specific Information, , Ph. D. dissertation Dept. Inf. Technol. & Math., Univ. de la M diterran e, Marseille, France Jun
Savas, B., Lim, L. -H., Quasi-Newton methods on Grassmannians and multilinear approximations of tensors (2010) SIAM J. Sci. Comput, 32 (6), pp. 3352-3393. , Nov
Manton, J. H., Optimization algorithms exploiting unitary constraints (2002) IEEE Trans. Signal Process, 50 (3), pp. 635-650. , Mar
Bertsekas, D. P., On the Goldstein-Levitin-Polyak gradient projection method (1976) IEEE Trans. Autom. Control, 21 (2), pp. 174-184. , Apr
Bertsekas, D. P., Projected Newton methods for optimization problems with simple constraints (1982) SIAM J. Control Optim, 20 (2), pp. 221-246. , Mar
Kelley, C. T., (1999) Iterative Methods for Optimization, , Philadelphia PA: SIAM
Rosen, J. B., The gradient projection method for nonlinear programming. Part II. Nonlinear constraints (1961) SIAM J. Appl. Math, 9 (4), pp. 514-532
Luenberger, D. G., The gradient projection method along geodesics (1972) Manage. Sci, 18 (11), pp. 620-631. , Jul
Absil, P. -A., Malick, J., Projection-like retractions on matrix manifolds (2012) SIAM J. Optim, 22 (1), pp. 135-158
Amari, S. -I., Chen, T. -P., Cichocki, A., Nonholonomic orthogonal learning algorithms for blind source separation (2000) Neural Comput, 12 (6), pp. 1463-1484. , Jul
Selvan, S. E., Musta tea, A., Xavier, C. C., Sequeira, J., Accurate estimation of ICA weight matrix by implicit constraint imposition using Lie group (2009) IEEE Trans. Neural Netw, 20 (10), pp. 1565-1580. , Oct
Li, X. -L., Adal, T., Independent component analysis by entropy bound minimization (2010) IEEE Trans. Signal Process, 58 (10), pp. 5151-5164. , Oct
Jankovic, M. V., Sugiyama, M., A multipurpose linear component analysis method based on modulated Hebb-Oja learning rule (2008) IEEE Signal Process. Lett, 15, pp. 677-680
Hyv rinen, A., Fast and robust fixed-point algorithms for independent component analysis (1999) IEEE Trans. Neural Netw, 10 (3), pp. 626-634. , May
Cardoso, J. -F., Souloumiac, A., Blind beamforming for non Gaussian signals (1993) IEE Proc. F, Radar Signal Process, 140 (6), pp. 362-370. , Dec
Gao, B., Woo, W. L., Dlay, S. S., Variational regularized 2-D nonnegative matrix factorization (2012) IEEE Trans. Neural Netw. Learn. Syst, 23 (5), pp. 703-716. , May
Bach, F. R., Jordan, M. I., Kernel independent component analysis (2002) J. Mach. Learn. Res, 3, pp. 1-48. , Jul
Descent algorithms on oblique manifold for source-adaptive ICA contrast