View contact record, Full name: Irene Russo Krauss
Menu piccolo
Institute
About us
Documents
News
Organization chart
Locations
Staff
Contact us
Activities
Education
Career opportunities
Meetings
Research
Research Areas
Biomolecules
Imaging
e-Health
Projects
Publications
Patents
Resources
Awards and acknowledgments
Statistics
Private Area
Login
Link utili
Staff
Research areas
Activities
Bibliography
Papers
CMS
Generic
IT
Advanced search▼
Staff: advanced search.
Query:
Options:
Any
All
Exact
Extended
Role or Position:
All positions
--------------------------------
Administration
Research&Development
Technical Staff
Associated Scientist
--------------------------------
Director of Institute
Research Director
Senior Researcher
Researcher
Technology Director
Senior Technologist
Technologist
Associated Scientist
Administrative officer
Administrative employee
Technician
Technical assistant
Temporary Researcher
Temporary Technologist
Temporary Technician
Temporary Tech Assistant
Research Fellow
Working site:
All sites
--------------------------------
Naples - De Amicis
Naples - Castellino
Turin
Staff
Research areas
Activities
Bibliography
Papers
CMS
Generic
Basic info
Publications
Photo
Name
Irene Russo Krauss
No research areas
No activities
Empty curriculum
@article{IBB_ID_54042, author={Riccardi C, Musumeci D, Capuozzo A, Irace C, King S, Russo Krauss I, Paduano L, Montesarchio D}, title={"dressing up" an Old Drug: An Aminoacyl Lipid for the Functionalization of Ru(III)-Based Anticancer Agents}, date={2018}, journal={Acs Biomater Sci Eng (ISSN: 2373-9878)}, year={2018}, fullvolume={196}, volume={196}, pages={163--174}, url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85037865210&doi=10.1021%2facsbiomaterials.7b00547&partnerID=40&md5=7fd37b83067d714cc9deb55d9773d19a}, abstract={In the search for more efficient anticancer treatments, Ru(III) complexes have attracted much interest among metal-based candidate drugs, showing marked antitumor and antimetastatic activity associated with lower systemic toxicity. Remarkable examples are the Ru(III) complexes NAMI-A and KP1019, which have reached advanced clinical evaluation. In order to improve the in vivo stability of Ru(III)-based drugs, as well as their cellular uptake and effectiveness, a new approach has been proposed by our research group, based on the incorporation of the active, NAMI-A-like Ru(III) complex into highly functionalized nucleolipidic structures, i.e., hybrid molecules containing a nucleoside or nucleotide central core derivatized with a lipid chain, ensuring both efficient protection against extracellular degradation and high cellular internalization of the metal. Aiming at expanding the chemical diversity of available amphiphilic Ru(III) complexes, we here selected a trifunctional α-amino acid to replace the nucleosidic core of previously prepared nucleolipid-based Ru(III) complexes. The amino acidic scaffold, linked to the Ru(III) complex, is decorated with both hydrophilic and lipophilic moieties, conferring high propensity to form stable aggregates in water, which is required to obtain a suitable nanocarrier for the drug delivery. Following this approach, a novel compound, indicated here as compound I, was successfully prepared and characterized, then studied in coformulation with the biocompatible cationic lipid 1,2-dioleyl-3-trimethylammoniumpropane chloride (DOTAP) by dynamic light scattering (DLS), small angle neutron scattering (SANS), and UV-vis analysis. Evaluated in vitro on a panel of human and nonhuman cell lines, it showed good antiproliferative activity on cancer cells, with IC50 values in the μM range, and no relevant cytotoxicity on the healthy cells used as control. © 2017 American Chemical Society.}, keywords={Amphiphilic Amino Acid, Anticancer Agents, Antiproliferative Activity, Nanoaggregates, Ru(iii) Complexes, Biocompatibility, Cell Culture, Chlorine Compounds, Cytotoxicity, Dynamic Light Scattering, Neutron Scattering, Ruthenium, Anti-Cancer Agents, Anti-Proliferative Activities, Anticancer Treatment, Cellular Internalization, Efficient Protections, Systemic Toxicities, Ruthenium Compounds, 2 Dioleoyl 3 Trimethylammoniopropane, Ruthenium Complex, Water, 3t3-L1 Cell Line, Antineoplastic Activity, Article, Biological Activity, C6 Cell Line (glioma), Controlled Study, Drug Delivery System, Drug Formulation, Female, Hacat Cell Line, Hela Cell Line, Human, Human Cell, Hydrophilicity, In Vitro Study, Lipophilicity, Mcf-7 Cell Line, Nonhuman, Photon Correlation Spectroscopy, Priority Journal, Ultraviolet Spectroscopy, }, references={Rademaker-Lakhai, J.M., Van Den Bongard, D., Pluim, D., Beijnen, J.H., Schellens, J.H.M., A phase i and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent (2004) Clin. Cancer Res., 10 (11), pp. 3717-372 Hartinger, C.G., Jakupec, M.A., Zorbas-Seifried, S., Groessl, M., Egger, A., Berger, W., Zorbas, H., Keppler, B.K., KP1019, a new redox-active anticancer agent-preclinical development and results of a clinical phase i study in tumor patients (2008) Chem. Biodiversity, 5 (10), pp. 2140-2155 Lentz, F., Drescher, A., Lindauer, A., Henke, M., Hilger, R.A., Hartinger, C.G., Scheulen, M.E., Jaehde, U., Pharmacokinetics of a novel anticancer ruthenium complex (KP1019, FFC14A) in a phase i dose-escalation study (2009) Anti-Cancer Drugs, 20 (2), pp. 97-103 Leijen, S., Burgers, S.A., Baas, P., Pluim, D., Tibben, M., Van Werkhoven, E., Alessio, E., Schellens, J.H.M., Phase I/II study with ruthenium compound NAMI-A and gemcitabine in patients with non-small cell lung cancer after first line therapy (2015) Invest. New Drugs, 33 (1), pp. 201-214 Bergamo, A., Sava, G., Ruthenium anticancer compounds: Myths and realities of the emerging metal-based drugs (2011) Dalton Trans., 40 (31), pp. 7817-7823 Bergamo, A., Gaiddon, C., Schellens, J.H., Beijnen, J.H., Sava, G., Approaching tumour therapy beyond platinum drugs: Status of the art and perspectives of ruthenium drug candidates (2012) J. Inorg. Biochem., 106 (1), pp. 90-99 Bacac, M., Hotze, A.C.G., Van Der Schilden, K., Haasnoot, J.G., Pacor, S., Alessio, E., Sava, G., Reedijk, J., The hydrolysis of the anti-cancer ruthenium complex NAMI-A affects its DNA binding and antimetastatic activity: An NMR evaluation (2004) J. Inorg. Biochem., 98 (2), pp. 402-412 Alessio, E., Thirty years of the drug candidate NAMI-A and the myths in the field of ruthenium anticancer compounds: A personal perspective (2017) Eur. J. Inorg. Chem., 2017 (12), pp. 1549-1560 Wheate, N.J., Walker, S., Craig, G.E., Oun, R., The status of platinum anticancer drugs in the clinic and in clinical trials (2010) Dalton Trans., 39 (35), pp. 8113-8127 Simeone, L., Mangiapia, G., Irace, C., Di Pascale, A., Colonna, A., Ortona, O., De Napoli, L., Paduano, L., Nucleolipid nanovectors as molecular carriers for potential applications in drug delivery (2011) Mol. BioSyst., 7 (11), pp. 3075-3086 Mangiapia, G., D'Errico, G., Simeone, L., Irace, C., Radulescu, A., Di Pascale, A., Colonna, A., Paduano, L., Ruthenium-based complex nanocarriers for cancer therapy (2012) Biomaterials, 33 (14), pp. 3770-3782 Mangiapia, G., Vitiello, G., Irace, C., Santamaria, R., Colonna, A., Angelico, R., Radulescu, A., Paduano, L., Anticancer cationic ruthenium nanovectors: From rational molecular design to cellular uptake and bioactivity (2013) Biomacromolecules, 14 (8), pp. 2549-2560 Montesarchio, D., Mangiapia, G., Vitiello, G., Musumeci, D., Irace, C., Santamaria, R., D'Errico, G., Paduano, L., A new design for nucleolipid-based Ru(III) complexes as anticancer agents (2013) Dalton Trans., 42 (48), pp. 16697-16708 Vitiello, G., Luchini, A., D'Errico, G., Santamaria, R., Capuozzo, A., Irace, C., Montesarchio, D., Paduano, L., Cationic liposomes as efficient nanocarriers for the drug delivery of an anticancer cholesterol-based ruthenium complex (2015) J. Mater. Chem. B, 3 (15), pp. 3011-3023 Riccardi, C., Musumeci, D., Irace, C., Paduano, L., Montesarchio, D., Ru (III) complexes for anticancer therapy: The importance of being nucleolipidic (2017) Eur. J. Org. Chem., 2017 (7), pp. 1100-1119 Luchini, A., Vitiello, G., Rossi, F., Ruiz De Ballesteros, O., Radulescu, A., D'Errico, G., Montesarchio, D., Paduano, L., Developing functionalized Fe3O4-Au nanoparticles: A physico-chemical insight (2015) Phys. Chem. Chem. Phys., 17 (8), pp. 6087-6097 Luchini, A., Irace, C., Santamaria, R., Montesarchio, D., Heenan, R.K., Szekely, N., Flori, A., Paduano, L., Phosphocholine-decorated superparamagnetic iron oxide nanoparticles: Defining the structure and probing in vivo applications (2016) Nanoscale, 8 (19), pp. 10078-10086 Stolnik, S., Illum, L., Davis, S.S., Long circulating microparticulate drug carriers (1995) Adv. Drug Delivery Rev., 16 (23), pp. 195-214 Nishiyama, N., Kataoka, K., Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery (2006) Pharmacol. Ther., 112 (3), pp. 630-648 Stenzel, M.H., RAFT polymerization: An avenue to functional polymeric micelles for drug delivery (2008) Chem. Commun., 44 (30), pp. 3486-3503 Rösler, A., Vandermeulen, G.W.M., Klok, H.A., Advanced drug delivery devices via self-assembly of amphiphilic block copolymers (2001) Adv. Drug Delivery Rev., 53 (1), pp. 95-108 Lomakin, A., Teplow, D.B., Benedek, G.B., Quasielastic light scattering for protein assembly studies (2005) Amyloid Proteins: Methods and Protocols, 299, pp. 153-174. , Sigurdsson, E. M. Humana Press: Totowa, NJ Zhang, H., Annunziata, O., Effect of macromolecular polydispersity on diffusion coefficients measured by Rayleigh interferometry (2008) J. Phys. Chem. B, 112 (12), pp. 3633-3643 Heenan, R.K., Penfold, J., King, S.M., SANS at pulsed neutron sources: Present and future prospects (1997) J. Appl. Crystallogr., 30 (6), pp. 1140-1147 Russell, T.P., Lin, J.S., Spooner, S., Wignall, G.D., Intercalibration of small-angle X-ray and neutron scattering data (1988) J. Appl. Crystallogr., 21 (6), pp. 629-638 Bartlett, P., Ottewill, R.H., A neutron scattering study of the structure of a bimodal colloidal crystal (1992) J. Chem. Phys., 96 (4), pp. 3306-3318 Hoyle, C.E., Bowman, C.N., Thiol-ene click chemistry (2010) Angew. Chem., Int. Ed., 49 (9), pp. 1540-1573 Carpino, L.A., 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive (1993) J. Am. Chem. Soc., 115 (10), pp. 4397-4398 Alessio, E., Balducci, G., Lutman, A., Mestroni, G., Calligaris, M., Attia, W.M., Synthesis and characterization of two new classes of ruthenium(III)-sulfoxide complexes with nitrogen donor ligands (L) (1993) Inorg. Chim. Acta, 203 (2), pp. 205-217. , Na[trans-RuCl4(R2SO)(L)] and mer, cis-RuCl3(R2SO)(R2SO)(L). the crystal structure of Na[trans-RuCl4(DMSO)(NH3)] · 2DMSO, Na[trans-RuCl4(DMSO)(Im)] · H2O, Me2CO (Im = imidazole) and mer, cis-RuCl3(DMSO)(DMSO)(NH3) Musumeci, D., Rozza, L., Merlino, A., Paduano, L., Marzo, T., Massai, L., Messori, L., Montesarchio, D., Interaction of anticancer Ru(III) complexes with single stranded and duplex DNA model systems (2015) Dalton Trans., 44 (31), pp. 13914-13925 Berghausen, J., Zipfel, J., Lindner, P., Richtering, W., Influence of water-soluble polymers on the shear-induced structure formation in lyotropic lamellar phases (2001) J. Phys. Chem. B, 105 (45), pp. 11081-11088 Santamaria, R., Bevilacqua, M.A., Maffettone, C., Irace, C., Iovine, B., Colonna, A., Induction of H-ferritin synthesis by oxalomalate is regulated at both the transcriptional and post-transcriptional levels (2006) Biochim. Biophys. Acta, Mol. Cell Res., 1763 (8), pp. 815-822 Miniaci, M.C., Irace, C., Capuozzo, A., Piccolo, M., Di Pascale, A., Russo, A., Lippiello, P., Santamaria, R., Cysteine prevents the reduction in keratin synthesis induced by iron deficiency in human keratinocytes (2016) J. Cell. Biochem., 117 (2), pp. 402-412 Irace, C., Misso, G., Capuozzo, A., Piccolo, M., Riccardi, C., Luchini, A., Caraglia, M., Santamaria, R., Antiproliferative effects of ruthenium-based nucleolipidic nanoaggregates in human models of breast cancer in vitro: Insights into their mode of action (2017) Sci. Rep., 7, pp. 45236-45249 Masters, J.R., HeLa cells 50 years on: The good, the bad and the ugly (2002) Nat. Rev. Cancer, 2 (4), pp. 315-319 Grobben, B., De Deyn, P.P., Slegers, H., Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion (2002) Cell Tissue Res., 310 (3), pp. 257-270 Dragutan, I., Dragutan, V., Demonceau, A., The expanding chemistry of the ruthenium complexes (2015) Molecules, 20 (9), pp. 17244-17274 Abid, M., Shamsi, F., Azam, A., Ruthenium complexes: An emerging ground to the development of metallopharmaceuticals for cancer therapy (2016) Mini-Rev. Med. Chem., 16 (10), pp. 772-786 Ravera, M., Baracco, S., Cassino, C., Zanello, P., Osella, D., Appraisal of the redox behaviour of the antimetastatic ruthenium(III) complex [ImH][RuCl4(DMSO)(Im)], NAMI-A (2004) Dalton Trans., (15), pp. 2347-2351 Zheng, K., Wu, Q., Wang, C., Tan, W., Mei, W., Ruthenium(II) complexes as potential apoptosis inducers in chemotherapy (2017) Anticancer Agents Med. Chem., 17 (1), pp. 29-39}, document_type={Journal Article, }, affiliation={Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia 21, Napoli, 80126, Italy CNR, Istituto di Biostrutture e Bioimmagini, Via Mezzocannone 16, Napoli, 80134, Italy Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, Napoli, 80131, Italy ISIS Facility Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, United Kingdom CSGI, Consorzio Interuniversitario per Lo Sviluppo Dei Sistemi A Grande Interfase, Via della Lastruccia 3, Sesto Fiorentino, (Florence), 50019, Italy Istituto per l'Endocrinologia e l'Oncologia Gaetano Salvatore, Consiglio Nazionale Delle Ricerche (CNR), Via Pansini 5, Napoli, 80131, Italy}, ibbaffiliation={1}, } @article{IBB_ID_53420, author={Pica A, Russo Krauss I, Parente V, Tateishi-karimata H, Nagatoishi S, Tsumoto K, Sugimoto N, Sica F}, title={Through-bond effects in the ternary complexes of thrombin sandwiched by two DNA aptamers}, date={2016 Nov 28}, journal={Nucleic Acids Res (ISSN: 0305-1048, 1362-4962)}, year={2016}, fullvolume={210}, volume={210}, pages={N/D--N/D}, url={}, abstract={Aptamers directed against human thrombin can selectively bind to two different exosites on the protein surface. The simultaneous use of two DNA aptamers, HD1 and HD22, directed to exosite I and exosite II respectively, is a very powerful approach to exploit their combined affinity. Indeed, strategies to link HD1 and HD22 together have been proposed in order to create a single bivalent molecule with an enhanced ability to control thrombin activity. In this work, the crystal structures of two ternary complexes, in which thrombin is sandwiched between two DNA aptamers, are presented and discussed. The structures shed light on the cross talk between the two exosites. The through-bond effects are particularly evident at exosite II, with net consequences on the HD22 structure. Moreover, thermodynamic data on the binding of the two aptamers are also reported and analyzed.}, keywords={, }, references={}, document_type={Journal Article, }, affiliation={Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy., Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone, 16, I-80134 Naples, Italy., Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe 650-0047, Japan., Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113- 8656, Japan., Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe 650-0047, Japan sugimoto@konan-u.ac.jp., Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan., Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy filosica@unina.it., }, ibbaffiliation={1}, } @article{IBB_ID_53214, author={Ferraro G, Pica A, Russo Krauss I, Pane F, Amoresano A, Merlino A}, title={Effect of temperature on the interaction of cisplatin with the model protein hen egg white lysozyme}, date={2016}, journal={J Biol Inorg Chem (ISSN: 0949-8257, 1432-1327electronic, 0949-8257print)}, year={2016}, fullvolume={248}, volume={248}, pages={1--10}, url={https://www2.scopus.com/inward/record.uri?eid=2-s2.0-84962145344&partnerID=40&md5=4da59018e31bc36a7100526355df83d8}, abstract={The products of the reaction between cisplatin (CDDP) and the model protein hen egg white lysozyme (HEWL) at 20, 37 and 55 °C in pure water were studied by UV–Vis absorption spectroscopy, intrinsic fluorescence and circular dichroism, dynamic and electrophoretic light scattering and inductively coupled plasma mass spectrometry. X-ray structures were also solved for the adducts formed at 20 and 55 °C. Data demonstrate that high temperature facilitates the formation of CDDP-HEWL adducts, where Pt atoms bind ND1 atom of His15 or NE2 atom of His15 and NH1 atom of Arg14. Our study suggests that high human body temperature (fever) could increase the rate of drug binding to proteins thus enhancing possible toxic side effects related to CDDP administration. © 2016 SBIC}, keywords={Cisplatin, Hen Egg White Lysozyme, Metallodrugs, Platinum-Based Drugs, Protein–ligand Interactions, }, references={}, document_type={Journal Article, }, affiliation={Department of Chemical Sciences, University of Naples Federico II, via Cintia, Naples, Italy CNR Institute of Biostructure and Bioimages, via Mezzocannone 16, Naples, Italy}, ibbaffiliation={1}, } @article{IBB_ID_52752, author={Merlino A, Caterino M, Russo Krauss I, Vergara A}, title={Missing gold atoms in lysozyme crystals used to grow gold nanoparticles}, date={2015}, journal={Nat Nanotechnol (ISSN: 1748-3387)}, year={2015}, fullvolume={310}, volume={310}, pages={285--285}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84927164388&partnerID=40&md5=ab5ecb96d19f87b4da44f06c3422eb4a}, abstract={}, keywords={Gold, Gold Nanoparticle, Lysozyme, Atom, Crystal Structure, Crystallization, Electron, Hypothesis, Letter, Molecular Recognition, Priority Journal, Transmission Electron Microscopy, }, references={}, document_type={Letter, Journal Article, }, affiliation={Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, Naples, Italy Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Naples, Italy}, ibbaffiliation={1}, } @article{IBB_ID_52753, author={Picone D, Donnarumma F, Ferraro G, Russo Krauss I, Fagagnini A, Gotte G, Merlino A}, title={Platinated oligomers of bovine pancreatic ribonuclease: Structure and stability}, date={2015}, journal={J Chem Res (ISSN: 0162-0134, 1873-3344, 0162-0134print)}, year={2015}, fullvolume={414}, volume={414}, pages={37--43}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84924260246&partnerID=40&md5=a57781077a03413b74fcbdb83268b3f8}, abstract={The reaction between cis-diamminedichloroplatinum(II) (CDDP), cisplatin, a common anticancer drug, and bovine pancreatic ribonuclease (RNase A), induces extensive protein aggregation, leading to the formation of one dimer, one trimer and higher oligomers whose yields depend on cisplatin/protein ratio. Structural and functional properties of the purified platinated species, together with their spontaneous dissociation and thermally induced denaturation, have been characterized. Platinated species preserve a significant, although reduced, ribonuclease activity. The high resistance of the dimers against dissociation and the different thermal unfolding profiles suggest a quaternary structure different from those of the well-known swapped dimers of RNase A. © 2015 Elsevier Inc. All rights reserved.}, keywords={Cisplatin, Platinated Ribonucleases, Protein Aggregation, Protein-Metal Interactions, Ribonuclease Oligomers, Dimer, Pancreatic Ribonuclease, Article, Crystal Structure, Crystallization, Dissociation, Enzyme Activity, Enzyme Analysis, Enzyme Denaturation, Enzyme Purification, Enzyme Stability, Enzyme Structure, Protein Folding, Protein Quaternary Structure, Protein Unfolding, X Ray Diffraction, Bovinae, }, references={Comess, K.M., Lippard, S.J., (1993) Molecular Aspects of Platinum-DNA Interactions in Molecular Aspects of Anticancer Drug-DNA Interactions, pp. 134-168. , S. Neidle, M. Waring, Macmillan Londo Jamieson, E.R., Lippard, S.J., (1999) Chem. Rev., 99, pp. 2467-2498 Takahara, P.M., Rosenzweig, A.C., Frederick, C.A., Lippard, S.J., (1995) Nature, 377, pp. 649-652 Kartalou, M., Essigmann, J.M., (2001) Mutat. Res., 478, pp. 1-21 Che, C.-M., Siu, F.M., (2010) Curr. Opin. Chem. Biol., 14, pp. 255-261 Arnesano, F., Banci, L., Bertini, I., Felli, I.C., Losacco, M., Natile, G., (2011) J. Am. Chem. Soc., 133, pp. 18361-18369 Messori, L., Merlino, A., (2014) Inorg. Chem., 53, pp. 3929-3931 Casini, A., Mastrobuoni, G., Temperini, C., Gabbiani, C., Francese, S., Moneti, G., Supuran, C.T., Messori, L., (2007) Chem. Commun., pp. 156-158 Tanley, S.W., Schreurs, A.M., Kroon-Batenburg, L.M., Meredith, J., Prendergast, R., Walsh, D., Bryant, P., Helliwell, J.R., (2012) Acta Crystallogr., 68 D, pp. 601-612 Mizumura, Y., Matsumura, Y., Hamaguchi, T., Nishiyama, N., Kataoka, K., Kawaguchi, T., Hrushesky, W.J., Kakizoe, T., (2001) Jpn. J. Cancer Res., 92, pp. 328-336 Casini, A., Reedijk, J., (2012) Chem. Sci., 3, pp. 3135-3144 Pinato, O., Musetti, C., Sissi, C., (2014) Metallomics, 6, pp. 380-395 Rabik, C.A., Dolan, M.E., (2007) Cancer Treat. Rev., 33, pp. 9-23 Arnesano, F., Natile, G., (2008) Pure Appl. Chem., 80, pp. 2715-2725 Todd, R.C., Lippard, S.J., (2009) Metallomics, 1, pp. 280-291 Boal, A.K., Rosenzweig, A.C., (2009) J. Am. Chem. Soc., 131, pp. 14196-14197 Raines, R.T., (1998) Chem. Rev., 98, pp. 1045-1066 Vergara, A., Russo Krauss, I., Montesarchio, D., Paduano, L., Merlino, A., (2013) Inorg. Chem., 52, pp. 10714-10716 Messori, L., Scaletti, F., Massai, L., Cinellu, M.A., Russo Krauss, I., Di Martino, G., Vergara, A., Merlino, A., (2014) Metallomics, 6, pp. 233-236 Messori, L., Marzo, T., Michelucci, E., Russo Krauss, I., Navarro-Ranninger, C., Quiroga, A.G., Merlino, A., (2014) Inorg. Chem., 53, pp. 7806-7808 Crestfield, A.M., Stein, W.H., Moore, S., (1962) Arch. Biochem. Biophys. Suppl., 1, pp. 217-222 Gotte, G., Laurents, D.V., Merlino, A., Picone, D., Spadaccini, R., (2013) FEBS Lett., 587, pp. 3601-3608 Liu, Y.S., Hart, P.J., Schlunegger, M.P., Eisenberg, D., (1998) Proc. Natl. Acad. Sci. U. S. A., 95, pp. 3437-3442 Liu, Y.S., Gotte, G., Libonati, M., Eisenberg, D., (2001) Nat. Struct. Biol., 8, pp. 211-214 Merlino, A., Vitagliano, L., Ceruso, M.A., Mazzarella, L., (2004) Biophys. J., 86, pp. 2383-2391 Merlino, A., Ceruso, M.A., Vitagliano, L., Mazzarella, L., (2005) Biophys. J., 88, pp. 2003-2012 Gotte, G., Bertoldi, M., Libonati, M., (1999) Eur. J. Biochem., 265, pp. 680-687 Matousek, J., Gotte, G., Pouckova, P., Soucek, J., Slavik, T., Vottariello, F., Libonati, M., (2003) J. Biol. Chem., 278, pp. 23817-23822 Kunitz, M., (1946) J. Biol. Chem., 164, pp. 563-568 Boix, E., Wu, Y., Vasandani, V.M., Saxena, S.K., Ardelt, W., Ladner, J., Youle, R.J., (1996) J. Mol. Biol., 257, pp. 992-1007 Libonati, M., Floridi, A., (1969) Eur. J. Biochem., 8, pp. 81-87 Russo Krauss, I., Sica, F., Mattia, C.A., Merlino, A., (2012) Int. J. Mol. Sci., 13, pp. 3782-3800 Otwinowski, Z., Minor, W., (1997) Methods Enzymol., 276, pp. 307-326 McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C., Read, R.J., (2005) Acta Crystallogr., 61 D, pp. 458-464 Fedorov, A.A., Joseph-Mccarthy, D., Fedorov, E., Sirakova, D., Graf, I., Almo, S.C., (1996) Biochemistry, 35, pp. 15962-15979 Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Vagin, A.A., (2011) Acta Crystallogr., 67 D, pp. 355-367 Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., (2010) Acta Crystallogr., 66 D, pp. 486-501 Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Wilson, K.S., (2011) Acta Crystallogr., 67 D, pp. 235-242 Moreno-Gordaliza, E., Canas, B., Palacios, M.A., Gomez-Gomez, M.M., (2009) Anal. Chem., 81, pp. 3507-3516 Ardelt, W., Shogen, K., Darzynkiewicz, Z., (2008) Curr. Pharm. Biotechnol., 9, pp. 215-225 Sica, F., Di Fiore, A., Zagari, A., Mazzarella, L., (2003) Proteins, 52, pp. 263-271 Spadaccini, R., Ercole, C., Gentile, M.A., Sanfelice, D., Boelens, R., Wechselberger, R., Batta, G., Picone, D., (2012) PLoS One, 7, p. e29076 Piccoli, R., Di Donato, A., D'Alessio, G., (1988) Biochem. J., 253, pp. 329-336 Soucek, J., Pouckova, P., Matousek, J., Stockbauer, P., Dostal, J., Zadinova, M., (1996) Neoplasma, 43, pp. 335-340 Greenfield, N.J., (2006) Nat. Protoc., 1, pp. 2876-2890 Bucci, E., Vitagliano, L., Barone, R., Sorrentino, S., D'Alessio, G., Graziano, G., (2005) Biophys. Chem., 116, pp. 89-95}, document_type={Journal Article, }, affiliation={Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario DiMonte sant'Angelo, Via Cintia, Naples, Italy Institute of Biostructures and Bioimages, CNR, Via Mezzocannone 16, Naples, Italy Department of Life and Reproduction Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, Verona, Italy}, ibbaffiliation={1}, } @article{IBB_ID_11789, author={Merlino A, Russo Krauss I, Castellano I, Ruocco MR, Capasso A, De Vendittis E, Rossi B, Sica F}, title={Structural and denaturation studies of two mutants of a cold adapted superoxide dismutase point to the importance of electrostatic interactions in protein stability}, date={2014 Mar}, journal={Bba-Gen Subjects (ISSN: 0925-4439, 0006-3002, 1570-9639)}, year={2014}, fullvolume={487}, volume={487}, pages={632--640}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84893303686&partnerID=40&md5=a004ba1ff29471b9cf928bd5e6207301}, abstract={A peculiar feature of the psychrophilic iron superoxide dismutase from Pseudoalteromonas haloplanktis (PhSOD) is the presence in its amino acid sequence of a reactive cysteine (Cys57). To define the role of this residue, a structural characterization of the effect of two PhSOD mutations, C57S and C57R, was performed. Thermal and denaturant-induced unfolding of wild type and mutant PhSOD followed by circular dichroism and fluorescence studies revealed that C -> R substitution alters the thermal stability and the resistance against denaturants of the enzyme, whereas C57S only alters the stability of the protein against urea. The crystallographic data on the C57R mutation suggest an involvement of the Arg side chain in the formation of salt bridges on protein surface. These findings support the hypothesis that the thermal resistance of PhSOD relies on optimization of charge-charge interactions on its surface. Our study contributes to a deeper understanding of the denaturation mechanism of superoxide dismutases, suggesting the presence of a structural dimeric intermediate between the native state and the unfolded state. This hypothesis is supported by the crystalline and solution data on the reduced form of the enzyme. (C) 2014 Elsevier B.V. All rights reserved.}, keywords={Crystal Structure, Mutants, Psychrophilic Enzyme, Superoxide Dismutase, Thermal Stability, Unfolding, Arginine, Cysteine, Iron Superoxide Dismutase, Sodium Chloride, Amino Acid Sequence, Article, Bacterial Mutation, Circular Dichroism, Crystallography, Enzyme Denaturation, Enzyme Stability, Enzyme Structure, Fluorescence, Heat Tolerance, Nonhuman, Priority Journal, Protein Interaction, Pseudoalteromonas, Pseudoalteromonas Haloplanktis, Static Electricity, Substitution Reaction, Thermostability, Cold Temperature, X-Ray, Models, Molecular, Protein Conformation, Protein Denaturation, Protein Stability, Spectrometry, }, references={D'Amico, S., Collins, T., Marx, J.C., Feller, G., Gerday, C., Psychrophilic microorganisms: Challenges for life (2006) EMBO Rep., 7, pp. 385-38 Feller, G., Life at low temperatures: Is disorder the driving force? (2007) Extremophiles, 11, pp. 211-216 Marx, J.C., Blaise, V., Collins, T., D'Amico, S., Delille, D., Gratia, E., Hoyoux, A., Gerday, C., A perspective on cold enzymes: Current knowledge and frequently asked questions (2004) Cell. Mol. Biol. (Noisy-le-grand), 50, pp. 643-655 Huston, A.L., Haeggstrom, J.Z., Feller, G., Cold adaptation of enzymes: Structural, kinetic and microcalorimetric characterizations of an aminopeptidase from the Arctic psychrophile Colwellia psychrerythraea and of human leukotriene A(4) hydrolase (2008) Biochim. Biophys. Acta, 1784, pp. 1865-1872 Siddiqui, K.S., Cavicchioli, R., Cold-adapted enzymes (2006) Annual Review of Biochemistry, 75, pp. 403-433. , DOI 10.1146/annurev.biochem.75.103004.142723 De Vendittis, E., Castellano, I., Cotugno, R., Ruocco, M.R., Raimo, G., Masullo, M., Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition (2008) Journal of Theoretical Biology, 250 (1), pp. 156-171. , DOI 10.1016/j.jtbi.2007.09.006, PII S0022519307004249 Merlino, A., Russo Krauss, I., Castellano, I., De Vendittis, E., Rossi, B., Conte, M., Vergara, A., Sica, F., Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis (2010) J. Struct. Biol., 172, pp. 343-352 Castellano, I., Di Maro, A., Ruocco, M.R., Chambery, A., Parente, A., Di Martino, M.T., Parlato, G., De Vendittis, E., Psychrophilic superoxide dismutase from Pseudoalteromonas haloplanktis: Biochemical characterization and identification of a highly reactive cysteine residue (2006) Biochimie, 88 (10), pp. 1377-1389. , DOI 10.1016/j.biochi.2006.04.005, PII S0300908406000551 Miller, A.F., Superoxide dismutases: Ancient enzymes and new insights (2012) FEBS Lett., 586, pp. 585-595 Perry, J.J., Shin, D.S., Getzoff, E.D., Tainer, J.A., The structural biochemistry of the superoxide dismutases (2010) Biochim. Biophys. Acta, 1804, pp. 245-262 Castellano, I., Ruocco, M.R., Cecere, F., Di Maro, A., Chambery, A., Michniewicz, A., Parlato, G., De Vendittis, E., Glutathionylation of the iron superoxide dismutase from the psychrophilic eubacterium Pseudoalteromonas haloplanktis (2008) Biochim. Biophys. Acta, 1784, pp. 816-826 Parge, H.E., Getzoff, E.D., Scandella, C.S., Crystallographic characterization of recombinant human CuZn superoxide dismutase (1986) Journal of Biological Chemistry, 261 (34), pp. 16215-16218 McRee, D.E., Redford, S.M., Getzoff, E.D., Lepock, J.R., Hallewell, R.A., Tainer, J.A., Changes in crystallographic structure and thermostability of a Cu,Zn superoxide dismutase mutant resulting from the removal of a buried cysteine (1990) J. Biol. Chem., 265, pp. 14234-14241 Russo Krauss, I., Merlino, A., Vergara, A., Sica, F., An overview of biological macromolecule crystallization (2013) Int. J. Mol. Sci., 14, pp. 11643-11691 Merlino, A., Krauss, I.R., Castellano, I., De Vendittis, E., Vergara, A., Sica, F., Crystallization and preliminary X-ray diffraction studies of a psychrophilic iron superoxide dismutase from Pseudoalteromonas haloplanktis (2008) Protein and Peptide Letters, 15 (4), pp. 415-418. , http://docstore.ingenta.com/cgi-bin/ds_deliver/1/u/d/ISIS/44188690.1/ben/ ppl/2008/00000015/00000004/art00017/AD8EFBDF6FAC2CBA121067526311180442B08F628F. pdf?link=http://www.ingentaconnect.com/error/delivery&format=pdf, DOI 10.2174/092986608784246533 Lah, M.S., Dixon, M.M., Pattridge, K.A., Stallings, W.C., Fee, J.A., Ludwig, M.L., Structure-function in Escherichia coli iron superoxide dismutase: Comparisons with the manganese enzyme from Thermus thermophilus (1995) Biochemistry, 34, pp. 1646-1660 Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods in Enzymology, 276, pp. 307-326. , DOI 10.1016/S0076-6879(97)76066-X Brunger, A.T., Adams, P.D., Clore, G.M., Delano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Warren, G.L., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr. D Biol. Crystallogr., 54 (PART 5), pp. 905-921 Murshudov, G.N., Vagin, A.A., Dodson, E.J., Refinement of macromolecular structures by the maximum-likelihood method (1997) Acta Crystallographica Section D: Biological Crystallography, 53 (3), pp. 240-255. , DOI 10.1107/S0907444996012255 Jones, T.A., Bergdoll, M., Kjeldgaard, M., O: A macromolecule modeling environment (1990) Crystallogr Model Methods Mol Des, [Pap Symp], pp. 189-199. , C. Bugg, S. Ealick, Springer-Verlag Press Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta Crystallogr. D Biol. Crystallogr., 66 (PART 4), pp. 486-501 Laskowski, R.A., Macarthur, M.W., Moss, M.D., Thorton, J.M., PROCHECK: A program to check the stereochemical quality of protein structure (1993) J. Appl. Crystallogr., 26, pp. 283-291 McCord, J.M., Fridovich, I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) (1969) J. Biol. Chem., 244, pp. 6049-6055 Dello Russo, A., Rullo, R., Nitti, G., Masullo, M., Bocchini, V., Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: Average hydrophobicity and amino acid weight are involved in the adaptation of proteins to extreme environments (1997) Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1343 (1), pp. 23-30. , DOI 10.1016/S0167-4838(97)00105-2, PII S0167483897001052 Tierney, D.L., Fee, J.A., Ludwig, M.L., Penner-Hahn, J.E., X-ray absorption spectroscopy of the iron site in Escherichia coli Fe(III) superoxide dismutase (1995) Biochemistry, 34, pp. 1661-1668 Vathyam, S., Byrd, R.A., Miller, A.F., Mapping the effects of metal ion reduction and substrate analog binding to Fe-superoxide dismutase by NMR spectroscopy (2000) Magn. Reson. Chem., 38, pp. 536-542 Struvay, C., Feller, G., Optimization to low temperature activity in psychrophilic enzymes (2012) Int. J. Mol. Sci., 13, pp. 11643-11665 Pedersen, H.L., Willassen, N.P., Leiros, I., The first structure of a cold-adapted superoxide dismutase (SOD): Biochemical and structural characterization of iron SOD from Aliivibrio salmonicida (2009) Acta Crystallogr. Sect. F: Struct. Biol. Cryst. Commun., 65, pp. 84-92 DiDonato, M., Craig, L., Huff, M.E., Thayer, M.M., Cardoso, R.M.F., Kassmann, C.J., Lo, T.P., Tainer, J.A., ALS mutants of human superoxide dismutase form fibrous aggregates via framework destabilization (2003) Journal of Molecular Biology, 332 (3), pp. 601-615. , DOI 10.1016/S0022-2836(03)00889-1 Mizuno, K., Whittaker, M.M., Bachinger, H.P., Whittaker, J.W., Calometric studies on the tight binding metal interactions of Escherichia coli manganese superoxide dismutase (2004) Journal of Biological Chemistry, 279 (26), pp. 27339-27344. , DOI 10.1074/jbc.M400813200 Ludwig, M.L., Metzger, A.L., Pattridge, K.A., Stallings, W.C., Manganese superoxide dismutase from Thermus thermophilus. A structural model refined at 1.8 A resolution (1991) J. Mol. Biol., 219, pp. 335-358 Vance, C.K., Miller, A.-F., Spectroscopic comparisons of the pH dependencies of Fe-substituted (Mn)superoxide dismutase and Fe-superoxide dismutase (1998) Biochemistry, 37 (16), pp. 5518-5527. , DOI 10.1021/bi972580r De Vendittis, A., Amato, M., Mickniewicz, A., Parlato, G., De Angelis, A., Castellano, I., Rullo, R., De Vendittis, E., Regulation of the properties of superoxide dismutase from the dental pathogenic microorganism Streptococcus mutans by iron- and manganese-bound co-factor (2010) Mol. Biosyst., 6, pp. 1973-1982 De Vendittis, A., Marco, S., Di Maro, A., Chambery, A., Albino, A., Masullo, M., Michniewicz, A., Rullo, R., Properties of a putative cambialistic superoxide dismutase from the aerotolerant bacterium Streptococcus thermophilus strain LMG 18311 (2012) Protein Pept. Lett., 19, pp. 333-344 Zavodszky, P., Kardos, J., Svingor, A., Petsko, G.A., Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins (1998) Proceedings of the National Academy of Sciences of the United States of America, 95 (13), pp. 7406-7411. , DOI 10.1073/pnas.95.13.7406 Bae, E., Phillips Jr., G.N., Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases (2004) Journal of Biological Chemistry, 279 (27), pp. 28202-28208. , DOI 10.1074/jbc.M401865200 Georlette, D., Damien, B., Blaise, V., Depiereux, E., Uversky, V.N., Gerday, C., Feller, G., Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases (2003) Journal of Biological Chemistry, 278 (39), pp. 37015-37023. , DOI 10.1074/jbc.M305142200 Unsworth, L.D., Van Der Oost, J., Koutsopoulos, S., Hyperthermophilic enzymes - Stability, activity and implementation strategies for high temperature applications (2007) FEBS Journal, 274 (16), pp. 4044-4056. , DOI 10.1111/j.1742-4658.2007.05954.x Shin, D.S., Didonato, M., Barondeau, D.P., Hura, G.L., Hitomi, C., Berglund, J.A., Getzoff, E.D., Tainer, J.A., Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: Structures, stability, mechanism, and insights into amyotrophic lateral sclerosis (2009) J. Mol. Biol., 385, pp. 1534-1555 Myers, J.K., Pace, C.N., Scholtz, J.M., Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding (1995) Protein Sci., 4, pp. 2138-2148 O'Brien, E.P., Dima, R.I., Brooks, B., Thirumalai, D., Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: Lessons for protein denaturation mechanism (2007) Journal of the American Chemical Society, 129 (23), pp. 7346-7353. , DOI 10.1021/ja069232+ Granata, V., Del Vecchio, P., Barone, G., Shehi, E., Fusi, P., Tortora, P., Graziano, G., Guanidine-induced unfolding of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus (2004) International Journal of Biological Macromolecules, 34 (3), pp. 195-201. , DOI 10.1016/j.ijbiomac.2004.04.002, PII S0141813004000200 Marx, J. C., Blaise, V., Collins, T., D'Amico, S., Delille, D., Gratia, E., Hoyoux, A., Gerday, C., A perspective on cold enzymes: Current knowledge and frequently asked questions (2004) Cell. Mol. Biol. (Noisy-le-grand), 50, pp. 643-655 Huston, A. L., Haeggstrom, J. Z., Feller, G., Cold adaptation of enzymes: Structural, kinetic and microcalorimetric characterizations of an aminopeptidase from the Arctic psychrophile Colwellia psychrerythraea and of human leukotriene A (4) hydrolase (2008) Biochim. Biophys. Acta, 1784, pp. 1865-1872 Siddiqui, K. S., Cavicchioli, R., Cold-adapted enzymes (2006) Annual Review of Biochemistry, 75, pp. 403-433. , DOI 10. 1146/annurev. biochem. 75. 103004. 142723 Miller, A. F., Superoxide dismutases: Ancient enzymes and new insights (2012) FEBS Lett., 586, pp. 585-595 Perry, J. J., Shin, D. S., Getzoff, E. D., Tainer, J. A., The structural biochemistry of the superoxide dismutases (2010) Biochim. Biophys. Acta, 1804, pp. 245-262 Parge, H. E., Getzoff, E. D., Scandella, C. S., Crystallographic characterization of recombinant human CuZn superoxide dismutase (1986) Journal of Biological Chemistry, 261 (34), pp. 16215-16218 McRee, D. E., Redford, S. M., Getzoff, E. D., Lepock, J. R., Hallewell, R. A., Tainer, J. A., Changes in crystallographic structure and thermostability of a Cu, Zn superoxide dismutase mutant resulting from the removal of a buried cysteine (1990) J. Biol. Chem., 265, pp. 14234-14241 Lah, M. S., Dixon, M. M., Pattridge, K. A., Stallings, W. C., Fee, J. A., Ludwig, M. L., Structure-function in Escherichia coli iron superoxide dismutase: Comparisons with the manganese enzyme from Thermus thermophilus (1995) Biochemistry, 34, pp. 1646-1660 Brunger, A. T., Adams, P. D., Clore, G. M., Delano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Warren, G. L., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr. D Biol. Crystallogr., 54 (PART 5), pp. 905-921 Murshudov, G. N., Vagin, A. A., Dodson, E. J., Refinement of macromolecular structures by the maximum-likelihood method (1997) Acta Crystallographica Section D: Biological Crystallography, 53 (3), pp. 240-255. , DOI 10. 1107/S0907444996012255 Jones, T. A., Bergdoll, M., Kjeldgaard, M., O: A macromolecule modeling environment (1990) Crystallogr Model Methods Mol Des, [Pap Symp], pp. 189-199. , C. Bugg, S. Ealick, Springer-Verlag Press Laskowski, R. A., Macarthur, M. W., Moss, M. D., Thorton, J. M., PROCHECK: A program to check the stereochemical quality of protein structure (1993) J. Appl. Crystallogr., 26, pp. 283-291 McCord, J. M., Fridovich, I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) (1969) J. Biol. Chem., 244, pp. 6049-6055 Tierney, D. L., Fee, J. A., Ludwig, M. L., Penner-Hahn, J. E., X-ray absorption spectroscopy of the iron site in Escherichia coli Fe (III) superoxide dismutase (1995) Biochemistry, 34, pp. 1661-1668 Pedersen, H. L., Willassen, N. P., Leiros, I., The first structure of a cold-adapted superoxide dismutase (SOD): Biochemical and structural characterization of iron SOD from Aliivibrio salmonicida (2009) Acta Crystallogr. Sect. F: Struct. Biol. Cryst. Commun., 65, pp. 84-92 Ludwig, M. L., Metzger, A. L., Pattridge, K. A., Stallings, W. C., Manganese superoxide dismutase from Thermus thermophilus. A structural model refined at 1. 8 A resolution (1991) J. Mol. Biol., 219, pp. 335-358 Vance, C. K., Miller, A. -F., Spectroscopic comparisons of the pH dependencies of Fe-substituted (Mn) superoxide dismutase and Fe-superoxide dismutase (1998) Biochemistry, 37 (16), pp. 5518-5527. , DOI 10. 1021/bi972580r Unsworth, L. D., Van Der Oost, J., Koutsopoulos, S., Hyperthermophilic enzymes - Stability, activity and implementation strategies for high temperature applications (2007) FEBS Journal, 274 (16), pp. 4044-4056. , DOI 10. 1111/j. 1742-4658. 2007. 05954. x Shin, D. S., Didonato, M., Barondeau, D. P., Hura, G. L., Hitomi, C., Berglund, J. A., Getzoff, E. D., Tainer, J. A., Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: Structures, stability, mechanism, and insights into amyotrophic lateral sclerosis (2009) J. Mol. Biol., 385, pp. 1534-1555 Myers, J. K., Pace, C. N., Scholtz, J. M., Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding (1995) Protein Sci., 4, pp. 2138-2148 O'Brien, E. P., Dima, R. I., Brooks, B., Thirumalai, D., Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: Lessons for protein denaturation mechanism (2007) Journal of the American Chemical Society, 129 (23), pp. 7346-7353. , DOI 10. 1021/ja069232+}, document_type={Journal Article, }, affiliation={Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte sant'Angelo, I-80126 Napoli, Italy Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via S. Pansini 5, I-80131 Napoli, Italy Istituto Nazionale di Biostrutture e Biosistemi, Consorzio Interuniversitario, Viale Medaglie d'Oro 305, I-00136 Roma, Italy}, ibbaffiliation={1}, } @article{IBB_ID_11456, author={Russo Krauss I, Parkinson GN, Merlino A, Mattia CA, Randazzo A, Novellino E, Mazzarella L, Sica F}, title={A regular thymine tetrad and a peculiar supramolecular assembly in the first crystal structure of an all-LNA G-quadruplex}, date={2014 Feb}, journal={Acta Crystallogr D Biol Crystallogr (ISSN: 0907-4449, 0907-4449linking)}, year={2014}, fullvolume={484}, volume={484}, pages={362--370}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84894210808&partnerID=40&md5=150ded0c90cbfe5575a524b3aefd43e1}, abstract={Locked nucleic acids (LNAs) are formed by bicyclic ribonucleotides where the O2' and C4' atoms are linked through a methylene bridge and the sugar is blocked in a 3'-endo conformation. They represent a promising tool for therapeutic and diagnostic applications and are characterized by higher thermal stability and nuclease resistance with respect to their natural counterparts. However, structural descriptions of LNA-containing quadruplexes are rather limited, since few NMR models have been reported in the literature. Here, the first crystallographically derived model of an all-LNA-substituted quadruplex-forming sequence 5'-TGGGT-3' is presented refined at 1.7 angstrom resolution. This high-resolution crystallographic analysis reveals a regular parallel G-quadruplex arrangement terminating in a well defined thymine tetrad at the 3'-end. The detailed picture of the hydration pattern reveals LNA-specific features in the solvent distribution. Interestingly, two closely packed quadruplexes are present in the asymmetric unit. They face one another with their 3'-ends giving rise to a compact higher-order structure. This new assembly suggests a possible way in which sequential quadruplexes can be disposed in the crowded cell environment. Furthermore, as the formation of ordered structures by molecular self-assembly is an effective strategy to obtain nanostructures, this study could open the way to the design of a new class of LNA-based building blocks for nanotechnology.}, keywords={G-Quadruplex, Locked Nucleic Acids, Thymine Tetrad, Guanine Quadruplex, Oligonucleotide, Article, Chemical Structure, Chemistry, Thermodynamics, X Ray Crystallography, X-Ray, Models, Molecular, }, references={Battye, T.G.G., Kontogiannis, L., Johnson, O., Powell, H.R., Leslie, A.G.W., (2011) Acta Cryst., D67, pp. 271-28 Beane, R., Gabillet, S., Montaillier, C., Arar, K., Corey, D.R., (2008) Biochemistry, 47, pp. 13147-13149 Beane, R.L., Ram, R., Gabillet, S., Arar, K., Monia, B.P., Corey, D.R., (2007) Biochemistry, 46, pp. 7572-7580 Blanchet, C., Pasi, M., Zakrzewska, K., Lavery, R., (2011) Nucleic Acids Res., 39, pp. W68-W73 Bondensgaard, K., Petersen, M., Singh, S.K., Rajwanshi, V.K., Kumar, R., Wengel, J., Jacobsen, J.P., (2000) Chemistry, 6, pp. 2687-2695 Bonifacio, L., Church, F.C., Jarstfer, M.B., (2008) Int. J. Mol. Sci., 9, pp. 422-433 Braasch, D.A., Corey, D.R., (2001) Chem. Biol., 8, pp. 1-7 Braasch, D.A., Liu, Y., Corey, D.R., (2002) Nucleic Acids Res., 30, pp. 5160-5167 Briones, C., Moreno, M., (2012) Anal. Bioanal. Chem., 402, pp. 3071-3089 Brunet, E., Corgnali, M., Perrouault, L., Roig, V., Asseline, U., Sørensen, M.D., Babu, B.R., Giovannangeli, C., (2005) Nucleic Acids Res., 33, pp. 4223-4234 Brünger, A.T., Adams, P.D., Clore, G.M., De Lano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.-S., Warren, G.L., (1998) Acta Cryst., D54, pp. 905-921 Bugaut, A., Balasubramanian, S., (2012) Nucleic Acids Res., 40, pp. 4727-4741 Cáceres, C., Wright, G., Gouyette, C., Parkinson, G., Subirana, J.A., (2004) Nucleic Acids Res., 32, pp. 1097-1102 Campbell, M.A., Wengel, J., (2011) Chem. Soc. Rev., 40, pp. 5680-5689 Cogoi, S., Zorzet, S., Rapozzi, V., Géci, I., Pedersen, E.B., Xodo, L.E., (2013) Nucleic Acids Res., 41, pp. 4049-4064 Collie, G.W., Haider, S.M., Neidle, S., Parkinson, G.N., (2010) Nucleic Acids Res., 38, pp. 5569-5580 Collie, G.W., Parkinson, G.N., Neidle, S., Rosu, F., De Pauw, E., Gabelica, V., (2010) J. Am. Chem. Soc., 132, pp. 9328-9334 Collie, G.W., Sparapani, S., Parkinson, G.N., Neidle, S., (2011) J. Am. Chem. Soc., 133, pp. 2721-2728 Crinelli, R., Bianchi, M., Gentilini, L., Magnani, M., (2002) Nucleic Acids Res., 30, pp. 2435-2443 Deng, J., Xiong, Y., Sundaralingam, M., (2001) Proc. Natl Acad. Sci. USA, 98, pp. 13665-13670 Doessing, H., Vester, B., (2011) Molecules, 16, pp. 4511-4526 Donini, S., Clerici, M., Wengel, J., Vester, B., Peracchi, A., (2007) J. Biol. Chem., 282, pp. 35510-35518 Emsley, P., Cowtan, K., (2004) Acta Cryst., D60, pp. 2126-2132 Endo, M., Sugiyama, H., (2009) Chembiochem, 10, pp. 2420-2443 Evans, P., (2006) Acta Cryst., D62, pp. 72-82 Evans, P.R., Murshudov, G.N., (2013) Acta Cryst., D69, pp. 1204-1214 Fluiter, K., Mook, O.R., Baas, F., (2009) Methods Mol. Biol., 487, pp. 189-203 Förster, C., Zydek, M., Rothkegel, M., Wu, Z., Gallin, C., Gessner, R., Lisdat, F., Fürste, J.P., (2012) Biochem. Biophys. Res. Commun., 419, pp. 60-65 Galeone, A., Mayol, L., Virgilio, A., Virno, A., Randazzo, A., (2008) Mol. Biosys., 4, pp. 426-430 Gupta, N., Fisker, N., Asselin, M.C., Lindholm, M., Rosenbohm, C., Ørum, H., Elmén, J., Straarup, E.M., (2010) PLoS One, 5, pp. e10682 Haider, S., Parkinson, G.N., Neidle, S., (2002) J. Mol. Biol., 320, pp. 189-200 Hazel, P., Parkinson, G.N., Neidle, S., (2006) J. Am. Chem. Soc., 128, pp. 5480-5487 Jakobsen, M.R., Haasnoot, J., Wengel, J., Berkhout, B., Kjems, J., (2007) Retrovirology, 4, p. 29 Jepsen, J.S., Wengel, J., (2004) Curr. Opin. Drug Discov. Devel., 7, pp. 188-194 Kantardjieff, K.A., Rupp, B., (2003) Protein Sci., 12, pp. 1865-1871 Kanwar, J.R., Roy, K., Kanwar, R.K., (2011) Crit. Rev. Biochem. Mol. Biol., 46, pp. 459-477 Kauppinen, S., Vester, B., Wengel, J., (2006) Handb. Exp. Pharmacol., 2006, pp. 405-422 Kaur, H., Babu, B.R., Maiti, S., (2007) Chem. Rev., 107, pp. 4672-4697 Kaur, H., Scaria, V., Maiti, S., (2010) Biochemistry, 49, pp. 9449-9456 Kierzek, E., Pasternak, A., Pasternak, K., Gdaniec, Z., Yildirim, I., Turner, D.H., Kierzek, R., (2009) Biochemistry, 48, pp. 4377-4387 Koshkin, A.A., Nielsen, P., Meldgaard, M., Rajwanshi, V.K., Singh, S.K., Wengel, J., (1998) J. Am. Chem. Soc., 120, pp. 13252-13253 Krissinel, E., Henrick, K., (2004) Acta Cryst., D60, pp. 2256-2268 Kumar, R., Singh, S.K., Koshkin, A.A., Rajwanshi, V.K., Meldgaard, M., Wengel, J., (1998) Bioorg. Med. Chem. Lett., 8, pp. 2219-2222 Kurreck, J., Wyszko, E., Gillen, C., Erdmann, V.A., (2002) Nucleic Acids Res., 30, pp. 1911-1918 Lam, E.Y., Beraldi, D., Tannahill, D., Balasubramanian, S., (2013) Nature Commun., 4, p. 1796 Lanford, R.E., Hildebrandt-Eriksen, E.S., Petri, A., Persson, R., Lindow, M., Munk, M.E., Kauppinen, S., Ørum, H., (2010) Science, 327, pp. 198-201 Lech, C.J., Heddi, B., Phan, A.T., (2013) Nucleic Acids Res., 41, pp. 2034-2046 Lee, M.P., Parkinson, G.N., Hazel, P., Neidle, S., (2007) J. Am. Chem. Soc., 129, pp. 10106-10107 McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C., Read, R.J., (2005) Acta Cryst., D61, pp. 458-464 Miller, M.C., Buscaglia, R., Chaires, J.B., Lane, A.N., Trent, J.O., (2010) J. Am. Chem. Soc., 132, pp. 17105-17107 Miyoshi, D., Nakao, A., Sugimoto, N., (2002) Biochemistry, 41, pp. 15017-15024 Miyoshi, D., Sugimoto, N., (2008) Biochimie, 90, pp. 1040-1051 Murshudov, G.N., Skubák, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Vagin, A.A., (2011) Acta Cryst., D67, pp. 355-367 Nielsen, J.T., Arar, K., Petersen, M., (2006) Nucleic Acids Res., 34, pp. 2006-2014 Obika, S., Nanbu, D., Hari, Y., Andoh, J., Morio, K., Doi, T., Imanishi, T., (1998) Tetrahedron Lett., 39, pp. 5401-5404 Patel, P.K., Hosur, R.V., (1999) Nucleic Acids Res., 27, pp. 2457-2464 Petraccone, L., Erra, E., Randazzo, A., Giancola, C., (2006) Biopolymers, 83, pp. 584-594 Phillips, K., Dauter, Z., Murchie, A.I., Lilley, D.M., Luisi, B., (1997) J. Mol. Biol., 273, pp. 171-182 Pradhan, D., Hansen, L.H., Vester, B., Petersen, M., (2011) Chemistry, 17, pp. 2405-2413 Randazzo, A., Esposito, V., Ohlenschläger, O., Ramachandran, R., Mayola, L., (2004) Nucleic Acids Res., 32, pp. 3083-3092 Russo Krauss, I., Merlino, A., Giancola, C., Randazzo, A., Mazzarella, L., Sica, F., (2011) Nucleic Acids Res., 39, pp. 7858-7867 Schmidt, K.S., Borkowski, S., Kurreck, J., Stephens, A.W., Bald, R., Hecht, M., Friebe, M., Erdmann, V.A., (2004) Nucleic Acids Res., 32, pp. 5757-5765 Straarup, E.M., Fisker, N., Hedtjärn, M., Lindholm, M.W., Rosenbohm, C., Aarup, V., Hansen, H.F., Koch, T., (2010) Nucleic Acids Res., 38, pp. 7100-7111 Sun, Z., Xiang, W., Guo, Y., Chen, Z., Liu, W., Lu, D., (2011) Biochem. Biophys. Res. Commun., 409, pp. 430-435 Vester, B., Hansen, L.H., Lundberg, L.B., Babu, B.R., Sørensen, M.D., Wengel, J., Douthwaite, S., (2006) BMC Mol. Biol., 7, p. 19 Winn, M.D., (2011) Acta Cryst., D67, pp. 235-242 Xu, Y., Ishizuka, T., Kimura, T., Komiyama, M., (2010) J. Am. Chem. Soc., 132, pp. 7231-7233 Zaghloul, E.M., Madsen, A.S., Moreno, P.M., Oprea, I.I., El-Andaloussi, S., Bestas, B., Gupta, P., Smith, C.I., (2011) Nucleic Acids Res., 39, pp. 1142-1154 Zheng, G., Lu, X.-J., Olson, W.K., (2009) Nucleic Acids Res., 37, pp. W240-W246 Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R., Leslie, A. G. W., (2011) Acta Cryst., D67, pp. 271-28 Beane, R. L., Ram, R., Gabillet, S., Arar, K., Monia, B. P., Corey, D. R., (2007) Biochemistry, 46, pp. 7572-7580 Braasch, D. A., Corey, D. R., (2001) Chem. Biol., 8, pp. 1-7 Braasch, D. A., Liu, Y., Corey, D. R., (2002) Nucleic Acids Res., 30, pp. 5160-5167 Br nger, A. T., Adams, P. D., Clore, G. M., De Lano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. -S., Warren, G. L., (1998) Acta Cryst., D54, pp. 905-921 C ceres, C., Wright, G., Gouyette, C., Parkinson, G., Subirana, J. A., (2004) Nucleic Acids Res., 32, pp. 1097-1102 Campbell, M. A., Wengel, J., (2011) Chem. Soc. Rev., 40, pp. 5680-5689 Collie, G. W., Haider, S. M., Neidle, S., Parkinson, G. N., (2010) Nucleic Acids Res., 38, pp. 5569-5580 Collie, G. W., Parkinson, G. N., Neidle, S., Rosu, F., De Pauw, E., Gabelica, V., (2010) J. Am. Chem. Soc., 132, pp. 9328-9334 Collie, G. W., Sparapani, S., Parkinson, G. N., Neidle, S., (2011) J. Am. Chem. Soc., 133, pp. 2721-2728 Evans, P. R., Murshudov, G. N., (2013) Acta Cryst., D69, pp. 1204-1214 F rster, C., Zydek, M., Rothkegel, M., Wu, Z., Gallin, C., Gessner, R., Lisdat, F., F rste, J. P., (2012) Biochem. Biophys. Res. Commun., 419, pp. 60-65 Jakobsen, M. R., Haasnoot, J., Wengel, J., Berkhout, B., Kjems, J., (2007) Retrovirology, 4, p. 29 Jepsen, J. S., Wengel, J., (2004) Curr. Opin. Drug Discov. Devel., 7, pp. 188-194 Kantardjieff, K. A., Rupp, B., (2003) Protein Sci., 12, pp. 1865-1871 Kanwar, J. R., Roy, K., Kanwar, R. K., (2011) Crit. Rev. Biochem. Mol. Biol., 46, pp. 459-477 Kaur, H., Babu, B. R., Maiti, S., (2007) Chem. Rev., 107, pp. 4672-4697 Koshkin, A. A., Nielsen, P., Meldgaard, M., Rajwanshi, V. K., Singh, S. K., Wengel, J., (1998) J. Am. Chem. Soc., 120, pp. 13252-13253 Lam, E. Y., Beraldi, D., Tannahill, D., Balasubramanian, S., (2013) Nature Commun., 4, p. 1796 Lanford, R. E., Hildebrandt-Eriksen, E. S., Petri, A., Persson, R., Lindow, M., Munk, M. E., Kauppinen, S., rum, H., (2010) Science, 327, pp. 198-201 Lech, C. J., Heddi, B., Phan, A. T., (2013) Nucleic Acids Res., 41, pp. 2034-2046 Lee, M. P., Parkinson, G. N., Hazel, P., Neidle, S., (2007) J. Am. Chem. Soc., 129, pp. 10106-10107 McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C., Read, R. J., (2005) Acta Cryst., D61, pp. 458-464 Miller, M. C., Buscaglia, R., Chaires, J. B., Lane, A. N., Trent, J. O., (2010) J. Am. Chem. Soc., 132, pp. 17105-17107 Murshudov, G. N., Skub k, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Vagin, A. A., (2011) Acta Cryst., D67, pp. 355-367 Nielsen, J. T., Arar, K., Petersen, M., (2006) Nucleic Acids Res., 34, pp. 2006-2014 Patel, P. K., Hosur, R. V., (1999) Nucleic Acids Res., 27, pp. 2457-2464 Schmidt, K. S., Borkowski, S., Kurreck, J., Stephens, A. W., Bald, R., Hecht, M., Friebe, M., Erdmann, V. A., (2004) Nucleic Acids Res., 32, pp. 5757-5765 Straarup, E. M., Fisker, N., Hedtj rn, M., Lindholm, M. W., Rosenbohm, C., Aarup, V., Hansen, H. F., Koch, T., (2010) Nucleic Acids Res., 38, pp. 7100-7111 Winn, M. D., (2011) Acta Cryst., D67, pp. 235-242 Zaghloul, E. M., Madsen, A. S., Moreno, P. M., Oprea, I. I., El-Andaloussi, S., Bestas, B., Gupta, P., Smith, C. I., (2011) Nucleic Acids Res., 39, pp. 1142-1154 Zheng, G., Lu, X. -J., Olson, W. K., (2009) Nucleic Acids Res., 37, pp. W240-W246}, document_type={Journal Article, }, affiliation={Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte sant'Angelo, Via Cinthia, I-80126 Napoli, Italy Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom Institute of Biostructure and Bioimages, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy National Institute Biostructures and Biosystems, Inter-University Consortium, Viale Medaglie d'Oro 305, I-00136 Rome, Italy}, ibbaffiliation={1}, } @article{IBB_ID_12434, author={Caterino M, Merlino A, Balsamo A, Russo Krauss I, Parisi S, Vergara A}, title={Reaction of Hg2+ Insertion into Cysteine Pairs Within Bovine Insulin Crystals Followed via Raman Spectroscopy}, date={2014 Feb}, journal={J Solution Chem (ISSN: 0095-9782)}, year={2014}, fullvolume={315}, volume={315}, pages={135--143}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84894429683&partnerID=40&md5=ff5bdb8fd6dd1e495720a24cbba8d8d2}, abstract={Chemical modifications of protein crystals may be achieved via soaking of reactants from their precipitating solution, through the solvent channel, into the protein matrix. We describe a Raman microscopy approach to follow mercury insertion into cysteine pairs within protein single crystals, via soaking in an aqueous Hg2+ solution. The method has been developed using bovine insulin as the model system. Applying an efficient mercuration protocol, consisting of a first step of disulphide bridge TCEP-induced reduction within the crystal, followed by overnight reaction with a HgCl2 solution, we obtained Hg-derivative crystals. Raman spectra collected on these derivative crystals, kept in the mother liquor, reveal a characteristic Raman band at 335 cm(-1), which has been assigned to a -S-Hg-S- bridge. The analysis provides Raman-based markers of mercury binding to cysteines, and thus of mercury intoxication.}, keywords={Disulfide Bridges, Insulin, Mercury Binding, Protein Crystallization, Raman Spectroscopy, }, references={Park, J.D., Zheng, W., Human exposure and health effects of inorganic and elemental mercury (2012) J. Prev. Med. Public Health, 45, pp. 344-352. , 10.3961/jpmph.2012.45.6.34 Karagas, M.R., Choi, A.L., Oken, E., Horvat, M., Schoeny, R., Kamai, E., Cowell, W., Korrick, S., Evidence on the human health effects of low-level methylmercury exposure (2012) Environ. Health Perspect., 120, p. 799806. , 10.1289/ehp.1104494 Aschner, M., Onishchenko, N., Ceccatelli, S., Toxicology of alkylmercury compounds (2010) Metal Ions Life Sci., 7, pp. 403-434. , 1:CAS:528:DC%2BC3cXjvVegsrg%3D 10.1039/9781849730822-00403 Garcia, J.J., Martinez-Ballarin, E., Millan-Plano, S., Allue, J.L., Albendea, C., Fuentes, L., Escanero, J.F., Effects of trace elements on membrane fluidity (2005) J. Trace Elem. Med Biol., 19, pp. 19-22. , 1:CAS:528:DC%2BD2MXht1yntLzK 10.1016/j.jtemb.2005.07.007 Houston, M.C., Role of mercury toxicity in hypertension, cardiovascular disease, and stroke (2011) J. Clin. Hypertens. (Greenwich), 13, pp. 621-637. , 1:CAS:528:DC%2BC3MXht1ejtrvK 10.1111/j.1751-7176.2011.00489.x Koedrith, P., Seo, Y.R., Advances in carcinogenic metal toxicity and potential molecular markers (2011) Int. J. Mol. Sci., 12, pp. 9576-9595. , 1:CAS:528:DC%2BC38XptF2guw%3D%3D 10.3390/ijms12129576 Valko, M., Morris, H., Cronin, M.T., Metals, toxicity and oxidative stress (2005) Curr. Med. Chem., 12, pp. 1161-1208. , 1:CAS:528:DC%2BD2MXktlant7g%3D 10.2174/0929867053764635 Bernhoft, R.A., Mercury toxicity and treatment: A review of the literature (2012) J. Environ. Public Health., 2012, pp. 460-508. , 10.1155/2012/460508 Guzzi, G., Porta, C.A., Molecular mechanisms triggered by mercury (2008) Toxicology, 244, pp. 1-12. , 1:CAS:528:DC%2BD1cXht12qtQ%3D%3D 10.1016/j.tox.2007.11.002 Vas, J., Monestier, M., Immunology of mercury (2008) Ann. N. Y. Acad. Sci., 1143, pp. 240-267. , 1:CAS:528:DC%2BD1MXpvFKqtA%3D%3D 10.1196/annals.1443.022 Carvalho, C.M., Chew, E.H., Hashemy, S.I., Lu, J., Holmgren, A., Inhibition of the human thioredoxin system (2008) J. Biol. Chem., 283, pp. 11913-11923. , 1:CAS:528:DC%2BD1cXltVyku7k%3D 10.1074/jbc.M710133200 Brooks, P., Davidson, N., Mercury(II) complexes of imidazole and histidine (1959) J. Am. Chem. Soc., 82, pp. 2118-2123. , 10.1021/ja01494a008 Shim, S.M., Dorworth, L., Lasrado, J., Santerre, C., Mercury and fatty acids in canned tuna, salmon, and mackerel (2004) J. Food Sci., 69, pp. 681-C684. , 1:CAS:528:DC%2BD2cXhtFars7bN 10.1111/j.1365-2621.2004.tb09915.x Zamora, F., Kunsman, M., Sabat, M., Lippert, B., Metal-stabilized rare tautomers of nucleobases. 6. Imino tautomer of adenine in a mixed-nucleobase complex of mercury(II) (1997) Inorg. Chem., 36, pp. 1583-1587. , 1:CAS:528:DyaK2sXitVGjsbk%3D 10.1021/ic961167p Corbeil, M.C., Beauchamp, A.L., Alex, S., Savoie, R., Interaction of the methylmercury cation with glycine and alanine: A vibrational and X-ray diffraction study (1986) Can. J. Chem., 64, pp. 1876-1884. , 1:CAS:528:DyaL2sXosFSgtQ%3D%3D 10.1139/v86-309 Saunders, C., Burford, N., Werner-Zwanzinger, U., McDonald, R., Preparation and comprehensive characterization of [Hg 6(alanine)4(NO3)4]·H 2O (2008) Inorg. Chem., 47, pp. 3693-3699. , 1:CAS:528:DC%2BD1cXktFSgsLg%3D 10.1021/ic702321d Kalaiselvi, D., Kumar, R.M., Jayave, R., Redetermination of poly[l-chloroheptachlorido-13-L-proline-12-L-proline tetramercury(II)] (2008) Acta Crystallogr. Sect. e, 64, pp. 1048-m1049. , 10.1107/S160053680802196X Structure Reports Saunders, C., (2009) Isolation of Lead and Mercury Amino Acid Complexes with Characterization in the Solid State, the Solution State, and Gas State, , PhD thesis, Department of Chemistry, Dalhouse University Taylor, N., Carty, A., Nature of mercury(II) ion-l-cysteine complexes implicated in mercury biochemistry (1977) J. Am. Chem. Soc., 99, pp. 6143-6145. , 1:CAS:528:DyaE2sXlsVOgs7k%3D 10.1021/ja00460a072 Adams M., .J., Hodgkin D., .C., Raeburn U., .A., Crystal structure of a complex of mercury(II) chloride and histidine hydrochloride (1970) J. Chem. Soc. A, pp. 2632-2635 Book, L., Carty, A.J., Chieh, C., Five-coordinated halogenomercurate(II) complexes: Crystal structures of bis(l-tryptophanium) trichloromercurate(II) and bis(d, l-homocysteine thiolactonium) tetrabromomercurate(II) (1981) Can. J. Chem., 59, pp. 138-143. , 1:CAS:528:DyaL3MXhs1Gqurg%3D 10.1139/v81-022 Alcock N., .W., Lampe P., .A., Moore, P., Crystal structures of methyl(L-tyrosinato) mercury(II) monohydrate and [L-(2-amino-4-phenylbutanoato)] methylmercury(II) (1978) J. Chem. Soc. Dalton Trans, pp. 1324-1328 Vergara, A., Merlino, A., Pizzo, E., D'Alessio, G., Mazzarella, L., A novel method for detection of selenomethionine incorporation in protein crystals via Raman microscopy (2008) Acta Crystallogr. Sect. D, 64, pp. 167-171. , 1:CAS:528:DC%2BD1cXhtVGisb4%3D 10.1107/S0907444907058416 Carey, P.R., Dong, J., Following ligand binding and ligand reactions in proteins via Raman crystallography (2004) Biochemistry, 43, pp. 8885-8893. , 1:CAS:528:DC%2BD2cXltVKru7s%3D 10.1021/bi049138a Vergara, A., Franzese, M., Merlino, A., Bonomi, G., Verde, C., Giordano, D., Mazzarella, L., Correlation between hemichrome stability and the Root effect in tetrameric hemoglobins (2009) Biophys. J., 97, pp. 866-874. , 1:CAS:528:DC%2BD1MXhsVChsrbM 10.1016/j.bpj.2009.04.056 Zheng, R., Zheng, X., Dong, J., Carey, P.R., Proteins can convert to β-sheet in single crystals (2004) Protein Sci., 13, pp. 1288-1294. , 1:CAS:528:DC%2BD2cXjsFKlu7Y%3D 10.1110/ps.03550404 Merlino, A., Verde, C., Di Prisco, G., Mazzarella, L., Vergara, A., Reduction of ferric hemoglobin from Trematomus bernacchii in a partial bis-histidyl state produces a deoxy coordination even when encapsulated into the crystal phase (2008) J. Spectrosc., 22, pp. 143-152. , 1:CAS:528:DC%2BD1cXkvVOqsLo%3D 10.1155/2008/328463 Carpentier, P., Royant, A., Weik, M., Bourgeois, D., Advances in spectroscopic methods for biological crystals. 2. Raman spectroscopy (2007) Appl. Cryst., 40, pp. 1113-1122. , 1:CAS:528:DC%2BD2sXht12ht7vE 10.1107/S0021889807044202 Katona, G., Carpentier, P., Nivière, V., Amara, P., Adam, V., Ohana, J., Bourgeois, D., Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme (2007) Science, 316, pp. 449-453. , 1:CAS:528:DC%2BD2sXktlSkurs%3D 10.1126/science.1138885 Merlino, A., Fuchs, M.R., Pica, A., Balsamo, A., Dworkowski, F.S.N., Pompidor, G., Mazzarella, L., Vergara, A., Selective X-ray-induced NO photodissociation in haemoglobin crystals: Evidence from a Raman-assisted crystallographic study (2013) Acta Crystallogr. Sect. D, 69, pp. 137-140. , 1:CAS:528:DC%2BC3sXitF2j 10.1107/S0907444912042229 Vitagliano, L., Vergara, A., Bonomi, G., Merlino, A., Verde, C., Di Prisco, G., Howes, B.D., Mazzarella, L., Spectroscopic and crystallographic characterization of a tetrameric hemoglobin oxidation reveals structural features of the functional intermediate relaxed/tense state (2008) J. Am. Chem. Soc., 130, pp. 10527-10535. , 1:CAS:528:DC%2BD1cXovVGls7w%3D 10.1021/ja803363p Vergara, A., D'Errico, G., Montesarchio, D., Mangiapia, G., Paduano, L., Merlino, A., Interaction of anticancer ruthenium compounds with proteins: High resolution X-ray structures and Raman microscopy studies of the adduct between hen egg white lysozyme and AziRu (2013) Inorg. Chem., 52, pp. 4157-4159. , 1:CAS:528:DC%2BC3sXksVyis7k%3D 10.1021/ic4004142 Smulevich, G., Feis, A., Howes, B.D., Fifteen years of Raman spectroscopy of engineered heme containing peroxidases: What have we learned? (2005) Acc. Chem. Res., 38, pp. 433-440. , 1:CAS:528:DC%2BD2MXjsVGgsrg%3D 10.1021/ar020112q Vergara, A., Vitagliano, L., Merlino, A., Sica, F., Marino, K., Verde, C., Di Prisco, G., Mazzarella, L., An order-disorder transition plays a role in switching off the Root effect in fish hemoglobins (2010) J. Biol. Chem., 285, pp. 32568-32575. , 1:CAS:528:DC%2BC3cXht1Gqur%2FJ 10.1074/jbc.M110.143537 Annunziata, O., Vergara, A., Paduano, L., Sartorio, R., Miller, D.G., Albright, J.G., Precision of interferometric diffusion coefficients in a four-component system relevant to protein crystal growth: Lysozyme-tetra(ethylene glycol)-NaCl-H2O (2003) J. Phys. Chem. B, 107, pp. 6590-6597. , 1:CAS:528:DC%2BD3sXks1SqsLk%3D 10.1021/jp0301094 Vergara, A., Annunziata, O., Paduano, L., Miller, D.G., Albright, J.G., Sartorio, R., Multicomponent diffusion in crowded solutions. 2. Mutual diffusion in the ternary system tetra(ethylene glycol)-NaCl-water (2004) J. Phys. Chem. B, 108, pp. 2764-2772. , 1:CAS:528:DC%2BD2cXot1GktQ%3D%3D 10.1021/jp036219s Badger, J., Caspar, D.L., Water structure in cubic insulin crystals (1991) Proc. Natl. Acad. Sci. USA, 88, pp. 622-626. , 1:CAS:528:DyaK3MXpsFalsg%3D%3D 10.1073/pnas.88.2.622 Smith, G.D., Pangborn, W.A., Blessing, R.H., The structure of T6 bovine insulin (2005) Acta Crystallogr. Sect. D, 61, pp. 1476-1482. , 10.1107/S0907444905025771 Sperling, R., Steinberg, I.Z., Simultaneous reduction and mercuration of disulfide bond A6-A11 of insulin by monovalent mercury (1974) Biochemistry, 13, pp. 2007-2013. , 1:CAS:528:DyaE2cXksVKmurc%3D 10.1021/bi00707a002 Dong, J., Swift, K., Matayoshi, E., Nienaber, V.L., Weitzberg, M., Rockway, T., Carey, P.R., Probing inhibitors binding to human urokinase crystals by Raman microscopy: Implications for compound screening (2001) Biochemistry, 40, pp. 9751-9757. , 1:CAS:528:DC%2BD3MXltlyhtL0%3D 10.1021/bi010955+ Zako, T., Sakono, M., Hashimoto, N., Ihara, M., Maeda, M., Bovine insulin filaments induced by reducing disulfide bonds show a different morphology, secondary structure, and cell toxicity from intact insulin amyloid fibrils (2009) Biophys. J., 96, pp. 3331-3340. , 1:CAS:528:DC%2BD1MXnvVeltb0%3D 10.1016/j.bpj.2008.12.3957 Zhu, G., Zhu, X., Fan, Q., Wan, X., Raman spectra of amino acids and their aqueous solutions (2011) Acta Spectrochim. A, 78, pp. 1187-1195. , 10.1016/j.saa.2010.12.079 During, J.R., Cox, A.W., Spectra and structure of organophosphorus compounds. XIV. Infrared and Raman spectra, vibrational assignment and the asymmetric potential function for ethylphosphine and ethylphosphine-d2 (1975) J. Chem. Phys., 63, pp. 2303-2310. , 10.1063/1.431681 Jalilehvand, F., Leung, B.O., Izadifard, M., Damian, E., Mercury(II) cysteine complexes in alkaline aqueous solution (2005) Inorg. Chem., 45, pp. 66-73. , 10.1021/ic0508932 Hoffmann, G.G., Brockner, W., Steinfatt, I., Bis(n-alkanethiolato) mercury(II) compounds, Hg(SC n H 2n+1)2 (n = 1 to 10, 12): Preparation methods, vibrational spectra, GC/MS investigations, and exchange reactions with diorganyl disulfides (2001) Inorg. Chem., 40, pp. 977-985. , 1:CAS:528:DC%2BD3MXnvVOmsw%3D%3D 10.1021/ic000638b Fahey, R.C., Hunt, J.S., Windham, G.C., On the cysteine and cystine content of proteins. Differences between intracellular and extracellular proteins (1977) J. Mol. Evol., 10, pp. 155-160. , 1:CAS:528:DyaE1cXjtlCmsQ%3D%3D 10.1007/BF01751808 Hansen, R.E., Roth, D., Winther, J.R., Quantifying the global cellular thiol-disulfide status (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 422-437. , 1:CAS:528:DC%2BD1MXhtVelsb4%3D 10.1073/pnas.0812149106 Park, J. D., Zheng, W., Human exposure and health effects of inorganic and elemental mercury (2012) J. Prev. Med. Public Health, 45, pp. 344-352. , 10. 3961/jpmph. 2012. 45. 6. 34 Karagas, M. R., Choi, A. L., Oken, E., Horvat, M., Schoeny, R., Kamai, E., Cowell, W., Korrick, S., Evidence on the human health effects of low-level methylmercury exposure (2012) Environ. Health Perspect., 120, p. 799806. , 10. 1289/ehp. 1104494 Garcia, J. J., Martinez-Ballarin, E., Millan-Plano, S., Allue, J. L., Albendea, C., Fuentes, L., Escanero, J. F., Effects of trace elements on membrane fluidity (2005) J. Trace Elem. Med Biol., 19, pp. 19-22. , 1: CAS: 528: DC%2BD2MXht1yntLzK 10. 1016/j. jtemb. 2005. 07. 007 Houston, M. C., Role of mercury toxicity in hypertension, cardiovascular disease, and stroke (2011) J. Clin. Hypertens. (Greenwich), 13, pp. 621-637. , 1: CAS: 528: DC%2BC3MXht1ejtrvK 10. 1111/j. 1751-7176. 2011. 00489. x Bernhoft, R. A., Mercury toxicity and treatment: A review of the literature (2012) J. Environ. Public Health., 2012, pp. 460-508. , 10. 1155/2012/460508 Carvalho, C. M., Chew, E. H., Hashemy, S. I., Lu, J., Holmgren, A., Inhibition of the human thioredoxin system (2008) J. Biol. Chem., 283, pp. 11913-11923. , 1: CAS: 528: DC%2BD1cXltVyku7k%3D 10. 1074/jbc. M710133200 Shim, S. M., Dorworth, L., Lasrado, J., Santerre, C., Mercury and fatty acids in canned tuna, salmon, and mackerel (2004) J. Food Sci., 69, pp. 681-C684. , 1: CAS: 528: DC%2BD2cXhtFars7bN 10. 1111/j. 1365-2621. 2004. tb09915. x Corbeil, M. C., Beauchamp, A. L., Alex, S., Savoie, R., Interaction of the methylmercury cation with glycine and alanine: A vibrational and X-ray diffraction study (1986) Can. J. Chem., 64, pp. 1876-1884. , 1: CAS: 528: DyaL2sXosFSgtQ%3D%3D 10. 1139/v86-309 Adams M., . J., Hodgkin D., . C., Raeburn U., . A., Crystal structure of a complex of mercury (II) chloride and histidine hydrochloride (1970) J. Chem. Soc. A, pp. 2632-2635 Alcock N., . W., Lampe P., . A., Moore, P., Crystal structures of methyl (L-tyrosinato) mercury (II) monohydrate and [L- (2-amino-4-phenylbutanoato)] methylmercury (II) (1978) J. Chem. Soc. Dalton Trans, pp. 1324-1328 Carey, P. R., Dong, J., Following ligand binding and ligand reactions in proteins via Raman crystallography (2004) Biochemistry, 43, pp. 8885-8893. , 1: CAS: 528: DC%2BD2cXltVKru7s%3D 10. 1021/bi049138a Smith, G. D., Pangborn, W. A., Blessing, R. H., The structure of T6 bovine insulin (2005) Acta Crystallogr. Sect. D, 61, pp. 1476-1482. , 10. 1107/S0907444905025771 During, J. R., Cox, A. W., Spectra and structure of organophosphorus compounds. XIV. Infrared and Raman spectra, vibrational assignment and the asymmetric potential function for ethylphosphine and ethylphosphine-d2 (1975) J. Chem. Phys., 63, pp. 2303-2310. , 10. 1063/1. 431681 Hoffmann, G. G., Brockner, W., Steinfatt, I., Bis (n-alkanethiolato) mercury (II) compounds, Hg (SC n H 2n+1) 2 (n = 1 to 10, 12): Preparation methods, vibrational spectra, GC/MS investigations, and exchange reactions with diorganyl disulfides (2001) Inorg. Chem., 40, pp. 977-985. , 1: CAS: 528: DC%2BD3MXnvVOmsw%3D%3D 10. 1021/ic000638b Fahey, R. C., Hunt, J. S., Windham, G. C., On the cysteine and cystine content of proteins. Differences between intracellular and extracellular proteins (1977) J. Mol. Evol., 10, pp. 155-160. , 1: CAS: 528: DyaE1cXjtlCmsQ%3D%3D 10. 1007/BF01751808 Hansen, R. E., Roth, D., Winther, J. R., Quantifying the global cellular thiol-disulfide status (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 422-437. , 1: CAS: 528: DC%2BD1MXhtVelsb4%3D 10. 1073/pnas. 0812149106}, document_type={Journal Article, }, affiliation={Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte sant'Angelo, Via Cintia, 80126 Naples, Italy CNR, Institute of Biostructures and Bioimages, Naples, Italy Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy}, ibbaffiliation={1}, } @article{IBB_ID_12435, author={Messori L, Scaletti F, Massai L, Cinellu MA, Russo Krauss I, Di Martino G, Vergara A, Paduano L, Merlino A}, title={Interactions of gold-based drugs with proteins: crystal structure of the adduct formed between ribonuclease A and a cytotoxic gold(III) compound}, date={2014}, journal={Metallomics (ISSN: 1756-5901, 1756-591x)}, year={2014}, fullvolume={339}, volume={339}, pages={233--236}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84893276097&partnerID=40&md5=6ba50ce6078b2777e720fe9dcdca3ca6}, abstract={The reaction of Auoxo6, a dinuclear gold(III) complex, with the model protein bovine pancreatic ribonuclease is explored here by X-ray diffraction and ESI mass spectrometry. Data provide clues on the processes of adduct formation and of enzyme inhibition and, inductively, on the likely mode of action of this metallodrug.}, keywords={Adduct Formation, Bovine Pancreatic Ribonuclease, Cytotoxic, Dinuclear, Esi Mass Spectrometry, Mode Of Action, Model Proteins, X Ray Diffraction, Gold, Auoxo6, Auranofin, Gold Complex, Histidine, Ligand, Metallodrug, Peroxiredoxin, Prodrug, Thioredoxin Reductase, Unclassified Drug, Antineoplastic Activity, Cattle, Chemical Structure, Complex Formation, Conference Paper, Crystal Structure, Electrospray Mass Spectrometry, Enzyme Activity, Nonhuman, Priority Journal, Animals, Cell Death, Crystallography, X-Ray, Hydrolysis, Molecular, Saccharomyces Cerevisiae, Electrospray Ionization, }, references={Sun, R.W.-Y., Lok, C.-N., Fong, T.T.-H., Li, C.K.-L., Yang, Z.F., Zou, T., Siu, A.F.-M., Che, C.-M., (2013) Chem. Sci., 4, p. 197 Zhang, J.-J., Sun, R.W.-Y., Che, C.-M., (2012) Chem. Commun., 48, p. 3388 Zhang, J.-J., Lu, W., Sun, R.W.-Y., Che, C.-M., (2012) Angew. Chem., Int. Ed., 51, p. 4882 Yan, J.J., Chow, A.L.-F., Leung, C.H., Sun, R.W.-Y., Ma, D.L., Che, C.-M., (2010) Chem. Commun., 46, p. 3893 Li, C.K.-L., Sun, R.W.-Y., Kui, S.C.-F., Zhu, N., Che, C.-M., (2006) Chem.-Eur. J., 12, p. 5253 Nobili, S., Mini, E., Landini, I., Gabbiani, C., Casini, A., Messori, L., (2010) Med. Res. Rev., 30, p. 550 Barnes, K.R., Lippard, S.J., (2004) Metal Ions Biol. Syst., Cisplatin and Related Anticancer Drugs: Recent Advances and Insights, 42, pp. 43-77. , ed. A. Sigel and H. Sigel, Marcel Dekker Inc., New York Basel Netherlands Sun, R.W.-Y., Li, C.K.-L., Ma, D.-L., Yan, J.J., Lock, C.-N., Leung, C.-H., Zhu, N., Che, C.-M., (2010) Chem.-Eur. J., 16, p. 3097 Chow, K.H.-M., Sun, R.W.-Y., Lam, J.B.B., Li, C.K.-L., Xu, A., Ma, D.-L., Abagyan, R., Che, C.-M., (2010) Cancer Res., 70, p. 329 Lum, C.T., Yang, Z.F., Li, H.J., Sun, R.W.-Y., Fan, S.T., Poon, R.T., Lin, M.C.M., Kung, H.F., (2006) Int. J. Cancer, 118, p. 1527 Wang, Y., He, Q.Y., Sun, R.W.-Y., Che, C.-M., Chiu, J.F., (2005) Cancer Res., 65, p. 11553 Che, C.-M., Sun, R.W.-Y., Yu, W.-Y., Ko, C.-B., Zhu, N., Sun, H., (2003) Chem. Commun., p. 1718 Cattaruzza, L., Fregona, D., Mongiat, M., Ronconi, L., Fassina, A., Colombatti, A., Aldinucci, D., (2011) Int. J. Cancer, 128, p. 206 Milacic, V., Chen, D., Ronconi, L., Landis-Piwowar, K.R., Fregona, D., Dou, Q.P., (2006) Cancer Res., 66, p. 10478 Ronconi, L., Giovagnini, L., Marzano, C., Bettio, F., Graziani, R., Pilloni, G., Fregona, D., (2005) Inorg. Chem., 44, p. 1867 Giovagnini, L., Ronconi, L., Aldinucci, D., Lorenzon, D., Sitran, S., Fregona, D., (2005) J. Med. Chem., 48, p. 1588 De Vos, D., Ho, S.Y., Tiekink, E.R., (2004) Bioinorg. Chem. Appl., 2, p. 141 Zhang, C.X., Lippard, S.J., (2003) Curr. Opin. Chem. Biol., 7, p. 481 Rosenberg, B., Van Camp, L., Trosko, J.E., Mansour, V.H., (1969) Nature, 222, p. 385 Zou, J., Taylor, P., Dornan, J., Robinson, S.P., Walkinshaw, M.D., Sadler, P.J., (2000) Angew. Chem., Int. Ed., 39, pp. 2931-2934 Urig, S., Fritz-Wolf, K., Réau, R., Herold-Mende, C., Tóth, K., Davioud-Charvet, E., Becker, K., (2006) Angew. Chem., Int. Ed., 45, p. 1881 Bhabak, K.P., Bhuyan, B.J., Mugesh, G., (2011) Dalton Trans., 40, p. 2099 Richards, F.M., Wyckoff, H.W., (1971) The Enzymes, 4, pp. 647-806. , ed. D. Boyer, Academic Press, San Diego Raines, R.T., (1998) Chem. Rev., 98, p. 1045 Marshal, G.R., Fengand, J.A., Kuster, D.J., (2008) Biopolymers, 90, p. 259 D'Alessio, G., Riordan, J.F., (1997) Ribonucleases. Structures and Functions, , Academic Press, New York Gutte, B., Merryfield, R.B., (1971) J. Biol. Chem., 246, p. 1922 Kartha, G., Bello, J., Harker, D., (1967) Nature, 213, p. 862 Merlino, A., Sica, F., Mazzarella, L., (2007) J. Phys. Chem., 111, p. 5483 Balakrishnan, R., Ramasubbu, N., Varughese, K.I., Parthasarathy, R., (1997) Proc. Natl. Acad. Sci. U. S. A., 94, p. 9620 Vergara, A., Montesarchio, D., Russo Krauss, I., Paduano, L., Merlino, A., (2013) Inorg. Chem., 52, p. 10714 Isab, A.A., Sadler, P.J., (1977) Biochim. Biophys. Acta, 492, p. 322 Maruyama, T., Sonokawa, S., Matsushita, H., Goto, M., (2007) J. Inorg. Biochem, 101, p. 180 Vitagliano, L., Merlino, A., Zagari, A., Mazzarella, L., (2000) Protein Sci., 9, p. 1217 Casini, A., Cinellu, M.A., Minghetti, G., Gabbiani, C., Coronnello, M., Mini, E., Messori, L., (2006) J. Med. Chem., 49, p. 5524 Cinellu, M.A., Maiore, L., Manassero, M., Casini, A., Arca, M., Fiebig, H.-H., Kelter, G., Messori, L., (2010) ACS Med. Chem. Lett., 1, p. 336 Messori, L., Scaletti, F., Massai, L., Cinellu, M.A., Gabbiani, C., Vergara, A., Merlino, A., (2013) Chem. Commun., 49, p. 10100 Mendes, F., Groessl, M., Nazarov, A.A., Tsybin, Y.O., Sava, G., Santos, I., Dyson, P.J., Casini, A., (2011) J. Med. Chem., 54, p. 2196 Kunitz, M., (1946) J. Biol. Chem., 164, p. 563 Merlino, A., Vitagliano, L., Ceruso, M.A., Di Nola, A., Mazzarella, L., (2002) Biopolymers, 65, p. 274 Sun, R. W. -Y., Lok, C. -N., Fong, T. T. -H., Li, C. K. -L., Yang, Z. F., Zou, T., Siu, A. F. -M., Che, C. -M., (2013) Chem. Sci., 4, p. 197 Zhang, J. -J., Sun, R. W. -Y., Che, C. -M., (2012) Chem. Commun., 48, p. 3388 Zhang, J. -J., Lu, W., Sun, R. W. -Y., Che, C. -M., (2012) Angew. Chem., Int. Ed., 51, p. 4882 Yan, J. J., Chow, A. L. -F., Leung, C. H., Sun, R. W. -Y., Ma, D. L., Che, C. -M., (2010) Chem. Commun., 46, p. 3893 Li, C. K. -L., Sun, R. W. -Y., Kui, S. C. -F., Zhu, N., Che, C. -M., (2006) Chem. -Eur. J., 12, p. 5253 Barnes, K. R., Lippard, S. J., (2004) Metal Ions Biol. Syst., Cisplatin and Related Anticancer Drugs: Recent Advances and Insights, 42, pp. 43-77. , ed. A. Sigel and H. Sigel, Marcel Dekker Inc., New York Basel Netherlands Sun, R. W. -Y., Li, C. K. -L., Ma, D. -L., Yan, J. J., Lock, C. -N., Leung, C. -H., Zhu, N., Che, C. -M., (2010) Chem. -Eur. J., 16, p. 3097 Chow, K. H. -M., Sun, R. W. -Y., Lam, J. B. B., Li, C. K. -L., Xu, A., Ma, D. -L., Abagyan, R., Che, C. -M., (2010) Cancer Res., 70, p. 329 Lum, C. T., Yang, Z. F., Li, H. J., Sun, R. W. -Y., Fan, S. T., Poon, R. T., Lin, M. C. M., Kung, H. F., (2006) Int. J. Cancer, 118, p. 1527 Wang, Y., He, Q. Y., Sun, R. W. -Y., Che, C. -M., Chiu, J. F., (2005) Cancer Res., 65, p. 11553 Che, C. -M., Sun, R. W. -Y., Yu, W. -Y., Ko, C. -B., Zhu, N., Sun, H., (2003) Chem. Commun., p. 1718 De Vos, D., Ho, S. Y., Tiekink, E. R., (2004) Bioinorg. Chem. Appl., 2, p. 141 Zhang, C. X., Lippard, S. J., (2003) Curr. Opin. Chem. Biol., 7, p. 481 Bhabak, K. P., Bhuyan, B. J., Mugesh, G., (2011) Dalton Trans., 40, p. 2099 Richards, F. M., Wyckoff, H. W., (1971) The Enzymes, 4, pp. 647-806. , ed. D. Boyer, Academic Press, San Diego Raines, R. T., (1998) Chem. Rev., 98, p. 1045 Marshal, G. R., Fengand, J. A., Kuster, D. J., (2008) Biopolymers, 90, p. 259 Isab, A. A., Sadler, P. J., (1977) Biochim. Biophys. Acta, 492, p. 322 Cinellu, M. A., Maiore, L., Manassero, M., Casini, A., Arca, M., Fiebig, H. -H., Kelter, G., Messori, L., (2010) ACS Med. Chem. Lett., 1, p. 336}, document_type={Journal Article, }, affiliation={Department of Chemistry Ugo Schiff, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy CNR Institute of Biostructures and Bioimages, Napoli, Italy}, ibbaffiliation={1}, } @article{IBB_ID_11636, author={Russo Krauss I, Messori L, Cinellu MA, Marasco D, Sirignano R, Merlino A}, title={Interactions of gold-based drugs with proteins: the structure and stability of the adduct formed in the reaction between lysozyme and the cytotoxic gold(III) compound Auoxo3}, date={2014}, journal={Dalton T (ISSN: 1477-9226, 1477-9234, 1477-9226linking)}, year={2014}, fullvolume={339}, volume={339}, pages={17483--17488}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84908638607&partnerID=40&md5=89f8874bd9754ddd31b46ec597f6df42}, abstract={The structure and stability of the adduct formed in the reaction between Auoxo3, a dinuclear gold(iii) compound, and the model protein hen egg white lysozyme (HEWL) are investigated by X-ray crystallography, UV-Vis absorption spectroscopy and circular dichroism (CD). It is found that Auoxo3 breaks down completely, undergoes reduction and produces reactive gold(i) species able to bind the protein and form stable derivatives. The behaviour of Auoxo3 is compared with that of two analogous gold(iii) complexes previously studied: a few significant differences are highlighted. The general implications of these new results for the mode of action of cytotoxic gold complexes are discussed.}, keywords={Cytotoxic, }, references={Bernard, P.J., Berners-Price, S.J., (2007) Coord. Chem. Rev., 251, p. 188 Nobili, S., Mini, E., Landini, I., Gabbiani, C., Casini, A., Messori, L., (2010) Med. Res. Rev., 30, p. 550 Barnes, K.R., Lippard, S.J., (2004) Metal Ions Biol. Syst., Cisplatin and Related Anticancer Drugs: Recent Advances and Insights, 42. , ed. A. Sigel and H. Sigel, Marcel Dekker Inc., New York, Basel, Netherlands, p. 43 Sun, R.W.-Y., Li, C.K.-L., Ma, D.-L., Yan, J.J., Lock, C.-N., Leung, C.-H., Zhu, N., Che, C.-M., (2010) Chem.-Eur. J., 16, p. 3097 Chow, K.H.-M., Sun, R.W.-Y., Lam, J.B.B., Li, C.K.-L., Xu, A., Ma, D.-L., Abagyan, R., Che, C.-M., (2010) Cancer Res., 70, p. 329 Lum, C.T., Yang, Z.F., Li, H.J., Sun, R.W.-Y., Fan, S.T., Poon, R.T., Lin, M.C.M., Kung, H.F., (2006) Int. J. Cancer, 118, p. 1527 Wang, Y., He, Q.Y., Sun, R.W.-Y., Che, C.-M., Chiu, J.F., (2005) Cancer Res., 65, p. 11553 Che, C.-M., Sun, R.W.-Y., Yu, W.-Y., Ko, C.-B., Zhu, N., Sun, H., (2003) Chem. Commun., p. 1718 Cattaruzza, L., Fregona, D., Mongiat, M., Ronconi, L., Fassina, A., Colombatti, A., Aldinucci, D., (2011) Int. J. Cancer, 128, p. 206 Milacic, V., Chen, D., Ronconi, L., Landis-Piwowar, K.R., Fregona, D., Dou, Q.P., (2006) Cancer Res., 66, p. 10478 Ronconi, L., Giovagnini, L., Marzano, C., Bettio, F., Graziani, R., Pilloni, G., Fregona, D., (2005) Inorg. Chem., 44, p. 1867 Giovagnini, L., Ronconi, L., Aldinucci, D., Lorenzon, D., Sitran, S., Fregona, D., (2005) J. Med. Chem., 48, p. 1588 De Vos, D., Ho, S.Y., Tiekink, E.R., (2004) Bioinorg. Chem. Appl., 2, p. 141 Zhang, C.X., Lippard, S.J., (2003) Curr. Opin. Chem. Biol., 7, p. 481 Li, C.K.-L., Sun, R.W.-Y., Kui, S.C.-F., Zhu, N., Che, C.-M., (2006) Chem.-Eur. J., 12, p. 5253 Casini, A., Cinellu, M.A., Minghetti, G., Gabbiani, C., Coronnello, M., Mini, E., Messori, L., (2006) J. Med. Chem., 49, p. 5524 Cinellu, M.A., Maiore, L., Manassero, M., Casini, A., Arca, M., Fiebig, H.-H., Kelter, G., Messori, L., (2010) ACS Med. Chem. Lett., 1, p. 336 Saggioro, D., Riogobello, M.P., Paloschi, L., Folda, A., Moggach, S.A., Parsons, S., Ronconi, L., Bindoli, A., (2007) Chem. Biol., 14, p. 1128 Powis, G., Kirkpatrick, D.L., (2007) Curr. Opin. Pharmacol., 7, p. 392 Bindoli, A., Rigobello, M.P., Scutari, G., Gabbiani, C., Casini, A., Messori, L., (2009) Coord. Chem. Rev., 253, p. 1692 Pratesi, A., Gabbiani, C., Michelucci, E., Ginanneschi, M., Papini, A.M., Rubbiani, R., Ott, I., Messori, L., (2014) J. Inorg. Biochem., 136, p. 161 Bhabak, K.P., Bhuyan, B.J., Mugesh, G., (2011) Dalton Trans., 40, p. 2099 Zou, J., Taylor, P., Dornan, J., Robinson, S.P., Walkinshaw, M.D., Sadler, P.J., (2000) Angew. Chem., Int. Ed., 39, p. 2931 Urig, S., Fritz-Wolf, K., Réau, R., Herold-Mende, C., Tóth, K., Davioud-Charvet, E., Becker, K., (2006) Angew. Chem., Int. Ed., 45, p. 1881 Messori, L., Scaletti, F., Massai, L., Cinellu, M.A., Gabbiani, C., Vergara, A., Merlino, A., (2013) Chem. Commun., 49, p. 10100 Helliwell, J.R., Tanley, S.W., (2013) Acta Crystallogr., Sect. D: Biol. Crystallogr., 68, p. 121 Messori, L., Marzo, T., Gabbiani, C., Valdes, A.A., Quiroga, A.G., Merlino, A., (2013) Inorg. Chem., 52, p. 13827 Tanley, S.W., Schreurs, A.M., Kroon-Batenburg, L.M., Helliwell, J.R., (2012) Acta Crystallogr., Sect F: Struct. Biol. Cryst. Commun., 68, p. 1300 Santos-Silva, T., Mukhopadhyay, A., Seixas, J.D., Bernardes, G.J., Romao, C.C., Romao, M.J., (2011) J. Am. Chem. Soc., 133, p. 1192 Vergara, A., Montesarchio, D., Russo Krauss, I., Paduano, L., Merlino, A., (2013) Inorg. Chem., 52, p. 10714 Balakrishnan, R., Ramasubbu, N., Varughese, K.I., Parthasarathy, R., (1997) Proc. Natl. Acad. Sci. U. S. A., 94, p. 9620 Messori, L., Merlino, A., (2014) Inorg. Chem., 53, p. 3929 Messori, L., Cinellu, M.A., Merlino, A., (2014) ACS Med. Chem. Lett., 5, p. 1110 Pellegrini, E., Piano, D., Bowler, M.W., (2011) Acta Crystallogr., Sect. D: Biol. Crystallogr., 67, p. 902 Russo Krauss, I., Sica, F., Mattia, C.A., Merlino, A., (2012) Int. J. Mol. Sci., 13, p. 3782 Otwinowski, Z., Minor, W., (1997) Methods Enzymol., 276, p. 307 Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Vagin, A.A., (2011) Acta Crystallogr., Sect. D: Biol. Crystallogr., 67, p. 355 Emsley, P., Cowtan, K., (2004) Acta Crystallogr., Sect. D: Biol. Crystallogr., 60, p. 2126 Vergara, A., D'Errico, G., Montesarchio, D., Mangiapia, G., Paduano, L., Merlino, A., (2013) Inorg. Chem., 52, p. 4157 Bernard, P. J., Berners-Price, S. J., (2007) Coord. Chem. Rev., 251, p. 188 Barnes, K. R., Lippard, S. J., (2004) Metal Ions Biol. Syst., Cisplatin and Related Anticancer Drugs: Recent Advances and Insights, 42. , ed. A. Sigel and H. Sigel, Marcel Dekker Inc., New York, Basel, Netherlands, p. 43 Sun, R. W. -Y., Li, C. K. -L., Ma, D. -L., Yan, J. J., Lock, C. -N., Leung, C. -H., Zhu, N., Che, C. -M., (2010) Chem. -Eur. J., 16, p. 3097 Chow, K. H. -M., Sun, R. W. -Y., Lam, J. B. B., Li, C. K. -L., Xu, A., Ma, D. -L., Abagyan, R., Che, C. -M., (2010) Cancer Res., 70, p. 329 Lum, C. T., Yang, Z. F., Li, H. J., Sun, R. W. -Y., Fan, S. T., Poon, R. T., Lin, M. C. M., Kung, H. F., (2006) Int. J. Cancer, 118, p. 1527 Wang, Y., He, Q. Y., Sun, R. W. -Y., Che, C. -M., Chiu, J. F., (2005) Cancer Res., 65, p. 11553 Che, C. -M., Sun, R. W. -Y., Yu, W. -Y., Ko, C. -B., Zhu, N., Sun, H., (2003) Chem. Commun., p. 1718 De Vos, D., Ho, S. Y., Tiekink, E. R., (2004) Bioinorg. Chem. Appl., 2, p. 141 Zhang, C. X., Lippard, S. J., (2003) Curr. Opin. Chem. Biol., 7, p. 481 Li, C. K. -L., Sun, R. W. -Y., Kui, S. C. -F., Zhu, N., Che, C. -M., (2006) Chem. -Eur. J., 12, p. 5253 Cinellu, M. A., Maiore, L., Manassero, M., Casini, A., Arca, M., Fiebig, H. -H., Kelter, G., Messori, L., (2010) ACS Med. Chem. Lett., 1, p. 336 Bhabak, K. P., Bhuyan, B. J., Mugesh, G., (2011) Dalton Trans., 40, p. 2099 Helliwell, J. R., Tanley, S. W., (2013) Acta Crystallogr., Sect. D: Biol. Crystallogr., 68, p. 121 Tanley, S. W., Schreurs, A. M., Kroon-Batenburg, L. M., Helliwell, J. R., (2012) Acta Crystallogr., Sect F: Struct. Biol. Cryst. Commun., 68, p. 1300 Murshudov, G. N., Skubak, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Vagin, A. A., (2011) Acta Crystallogr., Sect. D: Biol. Crystallogr., 67, p. 355}, document_type={Journal Article, Research Support, Non-U. S. Gov'T, }, affiliation={Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte sant'Angelo, Via CintiaNapoli, Italy CNR Institute of Biostructures and BioimagesNapoli, Italy Department of Pharmacy, University of Naples Federico IINapoli, Italy}, ibbaffiliation={1}, } @article{IBB_ID_52074, author={Pica A, Russo Krauss I, Merlino A, Nagatoishi S, Sugimoto N, Sica F}, title={Dissecting the contribution of thrombin exosite I in the recognition of thrombin binding aptamer}, date={2013 Dec}, journal={Febs Journal (ISSN: 1742-464x)}, year={2013}, fullvolume={387}, volume={387}, pages={6581--6588}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84889679159&partnerID=40&md5=1f45d2202a9a3ad23e2a5852b16dc0c8}, abstract={Thrombin plays a pivotal role in the coagulation cascade; therefore, it represents a primary target in the treatment of several blood diseases. The 15-mer DNA oligonucleotide 5-GGTTGGTGTGGTTGG-3, known as thrombin binding aptamer (TBA), is a highly potent inhibitor of the enzyme. TBA folds as an antiparallel chair-like G-quadruplex structure, with two G-tetrads surrounded by two TT loops on one side and a TGT loop on the opposite side. Previous crystallographic studies have shown that TBA binds thrombin exosite I by its TT loops, T3T4 and T12T13. In order to get a better understanding of the thrombin-TBA interaction, we have undertaken a crystallographic characterization of the complexes between thrombin and two TBA mutants, TBAT3 and TBAT12, which lack the nucleobase of T3 and T12, respectively. The structural details of the two complexes show that exosite I is actually split into two regions, which contribute differently to TBA recognition. These results provide the basis for a more rational design of new aptamers with improved therapeutic action.}, keywords={Biosensors, G-Quadruplex, Human Thrombin, Protein-Nucleic Acid Complex, Thrombin Binding Aptamer, Thrombosis, Guanine Quadruplex, Thrombin Binding Aptamer Delta T12, Thrombin Exosite I, Unclassified Drug, Article, Complex Formation, Crystallography, Molecular Mechanics, Molecular Recognition, Priority Journal, Protein Binding, Protein Folding, Protein Function, Protein Interaction, Protein Modification, Structure Analysis, Nucleotide, Circular Dichroism, Crystallization, Mutation, }, references={Janin, J., Rodier, F., Chakrabarti, P., Bahadur, R.P., Macromolecular recognition in the Protein Data Bank (2007) Acta Crystallogr D, 63, pp. 1- Hong, H., Goel, S., Zhang, Y., Cai, W., Molecular imaging with nucleic acid aptamers (2011) Curr Med Chem, 18, pp. 4195-4205 Keefe, A.D., Pai, S., Ellington, A., Aptamers as therapeutics (2010) Nat Rev Drug Discov, 9, pp. 537-550 Hermann, T., Patel, D.J., Adaptive recognition by nucleic acid aptamers (2000) Science, 287, pp. 820-825 Tan, W., Wang, H., Chen, Y., Zhang, X., Zhu, H., Yang, C., Yang, R., Liu, C., Molecular aptamers for drug delivery (2011) Trends Biotechnol, 29, pp. 634-640 Musumeci, D., Montesarchio, D., Polyvalent nucleic acid aptamers and modulation of their activity: A focus on the thrombin binding aptamer (2012) Pharmacol Ther, 136, pp. 202-215 Dhar, S., Gu, F.X., Langer, R., Farokhzad, O.C., Lippard, S.J., Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles (2008) Proc Natl Acad Sci USA, 105, pp. 17356-17361 Bunka, D.H., Platonova, O., Stockley, P.G., Development of aptamer therapeutics (2010) Curr Opin Pharmacol, 10, pp. 557-562 Bompiani, K.M., Woodruff, R.S., Becker, R.C., Nimjee, S.M., Sullenger, B.A., Antidote control of aptamer therapeutics: The road to a safer class of drug agents (2012) Curr Pharm Biotechnol, 13, pp. 1924-1934 Avino, A., Fabrega, C., Tintore, M., Eritja, R., Thrombin binding aptamer, more than a simple aptamer: Chemically modified derivatives and biomedical applications (2012) Curr Pharm des, 18, pp. 2036-2047 Huntington, J.A., Molecular recognition mechanisms of thrombin (2005) J Thromb Haemost, 3, pp. 1861-1872 Fenton II, J.W., Thrombin specificity (1981) Ann N y Acad Sci, 370, pp. 468-495 Adams, T.E., Huntington, J.A., Thrombin-cofactor interactions: Structural insights into regulatory mechanisms (2006) Arterioscler Thromb Vasc Biol, 26, pp. 1738-1745 Welsby, I.J., Monroe, D.M., Lawson, J.H., Hoffmann, M., Recombinant activated factor VII and the anaesthetist (2005) Anaesthesia, 60, pp. 1203-1212 Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H., Toole, J.J., Selection of single-stranded DNA molecules that bind and inhibit human thrombin (1992) Nature, 355, pp. 564-566 Russo Krauss, I., Pica, A., Merlino, A., Mazzarella, L., Sica, F., Duplex-quadruplex motifs in a peculiar structural organization cooperatively contribute to thrombin binding of a DNA aptamer (2013) Acta Crystallogr D, 69. , doi: 10.1107/S0907444913022269 Russo Krauss, I., Merlino, A., Randazzo, A., Novellino, E., Mazzarella, L., Sica, F., High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity (2012) Nucleic Acids Res, 40, pp. 8119-8128 MacAya, R.F., Schultze, P., Smith, F.W., Roe, J.A., Feigon, J., Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution (1993) Proc Natl Acad Sci USA, 90, pp. 3745-3749 Burge, S., Parkinson, G.N., Hazel, P., Todd, A.K., Neidle, S., Quadruplex DNA: Sequence, topology and structure (2006) Nucleic Acids Res, 34, pp. 5402-5415 Borbone, N., Bucci, M., Oliviero, G., Morelli, E., Amato, J., D'Atri, V., D'Errico, S., Piccialli, G., Investigating the role of T7 and T12 residues on the biological properties of thrombin-binding aptamer: Enhancement of anticoagulant activity by a single nucleobase modification (2012) J Med Chem, 55, pp. 10716-10728 Sagi, J., G-quadruplexes incorporating modified constituents: A review (2013) J Biomol Struct Dyn, , in press. doi: 10.1080/07391102.2013.775074 Bunka, D.H., Stockley, P.G., Aptamers come of age - At last (2006) Nat Rev Microbiol, 4, pp. 588-596 Nagatoishi, S., Sugimoto, N., Interaction of water with the G-quadruplex loop contributes to the binding energy of G-quadruplex to protein (2012) Mol BioSyst, 8, pp. 2766-2770 Figueiredo, A.C., Clement, C.C., Zakia, S., Gingold, J., Philipp, M., Pereira, P.J., Rational design and characterization of D-Phe-Pro-D-Arg-derived direct thrombin inhibitors (2012) PLoS ONE, 7, pp. e34354 Lima, L.M., Becker, C.F., Giesel, G.M., Marques, A.F., Cargnelutti, M.T., De Oliveira Neto, M., Monteiro, R.Q., Polikarpov, I., Structural and thermodynamic analysis of thrombin:suramin interaction in solution and crystal phases (2009) Biochim Biophys Acta, 1794, pp. 873-881 Davis, J.T., G-quartets 40 years later: From 5′-GMP to molecular biology and supramolecular chemistry (2004) Angew Chem Int Ed Engl, 43, pp. 668-698 Bonifacio, L., Church, F.C., Jarstfer, M.B., Effect of locked-nucleic acid on a biologically active G-quadruplex. A structure-activity relationship of the thrombin aptamer (2008) Int J Mol Sci, 9, pp. 422-433 Heckel, A., Mayer, G., Light regulation of aptamer activity: An anti-thrombin aptamer with caged thymidine nucleobases (2005) J Am Chem Soc, 127, pp. 822-823 Nagatoishi, S., Isono, N., Tsumoto, K., Sugimoto, N., Loop residues of thrombin-binding DNA aptamer impact G-quadruplex stability and thrombin binding (2011) Biochimie, 93, pp. 1231-1238 Padmanabhan, K., Tulinsky, A., An ambiguous structure of a DNA 15-mer thrombin complex (1996) Acta Crystallogr D, 52, pp. 272-282 Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods in Enzymology, pp. 307-326. , In (Carter Jr.C.W., ed.), Academic Press, New York McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J., Phaser crystallographic software (2007) J Appl Crystallogr, 40, pp. 658-674 Brunger, A.T., Adams, P.D., Clore, G.M., Delano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Pannu, N.S., Crystallography and NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr D, 54, pp. 905-921 Vagin, A.A., Steiner, R.A., Lebedev, A.A., Potterton, L., McNicholas, S., Long, F., Murshudov, G.N., REFMAC5 dictionary: Organization of prior chemical knowledge and guidelines for its use (2004) Acta Crystallogr D, 60, pp. 2184-2195 Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta Crystallogr D, 66, pp. 486-501 Laskowski, R.A., Moss, D.S., Thornton, J.M., Main-chain bond lengths and bond angles in protein structures (1993) J Mol Biol, 231, pp. 1049-1067 Schrodinger, L., (2010) The PyMOL Molecular Graphics System, Version 1.3, , Schrödinger, LLC Keefe, A. D., Pai, S., Ellington, A., Aptamers as therapeutics (2010) Nat Rev Drug Discov, 9, pp. 537-550 Dhar, S., Gu, F. X., Langer, R., Farokhzad, O. C., Lippard, S. J., Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA-PEG nanoparticles (2008) Proc Natl Acad Sci USA, 105, pp. 17356-17361 Bunka, D. H., Platonova, O., Stockley, P. G., Development of aptamer therapeutics (2010) Curr Opin Pharmacol, 10, pp. 557-562 Bompiani, K. M., Woodruff, R. S., Becker, R. C., Nimjee, S. M., Sullenger, B. A., Antidote control of aptamer therapeutics: The road to a safer class of drug agents (2012) Curr Pharm Biotechnol, 13, pp. 1924-1934 Huntington, J. A., Molecular recognition mechanisms of thrombin (2005) J Thromb Haemost, 3, pp. 1861-1872 Fenton II, J. W., Thrombin specificity (1981) Ann N y Acad Sci, 370, pp. 468-495 Adams, T. E., Huntington, J. A., Thrombin-cofactor interactions: Structural insights into regulatory mechanisms (2006) Arterioscler Thromb Vasc Biol, 26, pp. 1738-1745 Welsby, I. J., Monroe, D. M., Lawson, J. H., Hoffmann, M., Recombinant activated factor VII and the anaesthetist (2005) Anaesthesia, 60, pp. 1203-1212 Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., Toole, J. J., Selection of single-stranded DNA molecules that bind and inhibit human thrombin (1992) Nature, 355, pp. 564-566 MacAya, R. F., Schultze, P., Smith, F. W., Roe, J. A., Feigon, J., Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution (1993) Proc Natl Acad Sci USA, 90, pp. 3745-3749 Bunka, D. H., Stockley, P. G., Aptamers come of age - At last (2006) Nat Rev Microbiol, 4, pp. 588-596 Figueiredo, A. C., Clement, C. C., Zakia, S., Gingold, J., Philipp, M., Pereira, P. J., Rational design and characterization of D-Phe-Pro-D-Arg-derived direct thrombin inhibitors (2012) PLoS ONE, 7, pp. e34354 Lima, L. M., Becker, C. F., Giesel, G. M., Marques, A. F., Cargnelutti, M. T., De Oliveira Neto, M., Monteiro, R. Q., Polikarpov, I., Structural and thermodynamic analysis of thrombin: suramin interaction in solution and crystal phases (2009) Biochim Biophys Acta, 1794, pp. 873-881 Davis, J. T., G-quartets 40 years later: From 5 -GMP to molecular biology and supramolecular chemistry (2004) Angew Chem Int Ed Engl, 43, pp. 668-698 McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., Read, R. J., Phaser crystallographic software (2007) J Appl Crystallogr, 40, pp. 658-674 Brunger, A. T., Adams, P. D., Clore, G. M., Delano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Pannu, N. S., Crystallography and NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr D, 54, pp. 905-921 Vagin, A. A., Steiner, R. A., Lebedev, A. A., Potterton, L., McNicholas, S., Long, F., Murshudov, G. N., REFMAC5 dictionary: Organization of prior chemical knowledge and guidelines for its use (2004) Acta Crystallogr D, 60, pp. 2184-2195 Laskowski, R. A., Moss, D. S., Thornton, J. M., Main-chain bond lengths and bond angles in protein structures (1993) J Mol Biol, 231, pp. 1049-1067}, document_type={Journal Article, }, affiliation={Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy Institute of Biostructures and Bioimaging, CNR, Naples, Italy Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Japan Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Japan Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan Interuniversity Consortium of Structural and Systems Biology, Rome, Italy}, ibbaffiliation={1}, } @article{IBB_ID_52073, author={Russo Krauss I, Pica A, Merlino A, Mazzarella L, Sica F}, title={Duplex-quadruplex motifs in a peculiar structural organization cooperatively contribute to thrombin binding of a DNA aptamer}, date={2013 Dec}, journal={Acta Crystallogr D Biol Crystallogr (ISSN: 0907-4449, 0907-4449linking)}, year={2013}, fullvolume={384}, volume={384}, pages={2403--2411}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84889634850&partnerID=40&md5=8ea8ccc2fa482b88751ad6b0a6fb5aa6}, abstract={Potent second-generation thrombin aptamers adopt a duplex-quadruplex bimodular folding and recognize thrombin exosite II with very high affinity and specificity. A sound model of these oligonucleotides, either free or in complex with thrombin, is not yet available. Here, a structural study of one of these aptamers, HD22-27mer, is presented. The crystal structure of this aptamer in complex with thrombin displays a novel architecture in which the helical stem is enchained to a pseudo-G-quadruplex. The results also underline the role of the residues that join the duplex and quadruplex motifs and control their recruitment in thrombin binding. © 2013 International Union of Crystallography.}, keywords={Aptamers, Duplex-Quadruplex Motifs, Thrombin, Thrombin Aptamer, Article, Chemical Structure, Chemistry, Conformation, Human, Metabolism, Nucleotide Sequence, Protein Binding, X Ray Crystallography, Base Sequence, X-Ray, Models, Molecular, Nucleic Acid Conformation, Chemistry Metabolism, Duplex Quadruplex Motifs, }, references={Balasubramanian, S., Neidle, S., (2009) Curr. Opin. Chem. Biol., 13, pp. 345-35 Brünger, A.T., Adams, P.D., Clore, G.M., Delano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.-S., Warren, G.L., (1998) Acta Cryst., D54, pp. 905-921 Chinnapen, D.J., Sen, D., (2002) Biochemistry, 41, pp. 5202-5212 Chou, S.-H., Chin, K.-H., Wang, A.H.-J., (2005) Trends Biochem. Sci., 30, pp. 231-234 Dolinnaya, N.G., Yuminova, A.V., Spiridonova, V.A., Arutyunyan, A.M., Kopylov, A.M., (2012) J. Biomol. Struct. Dyn., 30, pp. 524-531 Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., (2010) Acta Cryst., D66, pp. 486-501 Fernando, H., Sewitz, S., Darot, J., Tavaré, S., Huppert, J.L., Balasubramanian, S., (2009) Nucleic Acids Res., 37, pp. 6716-6722 Gatto, B., Palumbo, M., Sissi, C., (2009) Curr. Med. Chem., 16, pp. 1248-1265 Hasegawa, H., Taira, K., Sode, K., Ikebukuro, K., (2008) Sensors, 8, pp. 1090-1098 Hooft, R.W., Vriend, G., Sander, C., Abola, E.E., (1996) Nature (London), 381, p. 272 Jayasena, S.D., (1999) Clin. Chem., 45, pp. 1628-1650 Keefe, A.D., Pai, S., Ellington, A., (2010) Nature Rev. Drug Discov., 9, pp. 537-550 Kumari, S., Bugaut, A., Huppert, J.L., Balasubramanian, S., (2007) Nature Chem. Biol., 3, pp. 218-221 Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., (1993) J. Appl. Cryst., 26, pp. 283-291 Lawrence, M.C., Colman, P.M., (1993) J. Mol. Biol., 234, pp. 946-950 Li, T., Wang, E., Dong, S., (2009) PLoS One, 4, pp. e5126 Lin, P.-H., Chen, R.-H., Lee, C.-H., Chang, Y., Chen, C.-S., Chen, W.-Y., (2011) Colloids Surf. B, 88, pp. 552-558 Lipps, H.J., Rhodes, D., (2009) Trends Cell Biol., 19, pp. 414-422 Long, S.B., Long, M.B., White, R.R., Sullenger, B.A., (2008) RNA, 14, pp. 2504-2512 MacAya, R.F., Schultze, P., Smith, F.W., Roe, J.A., Feigon, J., (1993) Proc. Natl Acad. Sci. USA, 90, pp. 3745-3749 MacAya, R.F., Waldron, J.A., Beutel, B.A., Gao, H., Joesten, M.E., Yang, M., Patel, R., Cook, A.F., (1995) Biochemistry, 34, pp. 4478-4492 Marson, G., Palumbo, M., Sissi, C., (2012) Curr. Pharm. Des., 18, pp. 2027-2035 Mayer, G., Müller, J., MacK, T., Freitag, D.F., Hover, T., Pötzsch, B., Heckel, A., (2009) ChemBioChem, 10, pp. 654-657 McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C., Read, R.J., (2005) Acta Cryst., D61, pp. 458-464 Mori, T., Oguro, A., Ohtsu, T., Nakamura, Y., (2004) Nucleic Acids Res., 32, pp. 6120-6128 Müller, J., Freitag, D., Mayer, G., Pötzsch, B., (2008) J. Thromb. Haemost., 6, pp. 2105-2112 Müller, J., Wulffen, B., Pötzsch, B., Mayer, G., (2007) ChemBio-Chem, 8, pp. 2223-2226 Murshudov, G.N., Skubák, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Vagin, A.A., (2011) Acta Cryst., D67, pp. 355-367 Musumeci, D., Montesarchio, D., (2012) Pharmacol. Ther., 136, pp. 202-215 Nagatoishi, S., Isono, N., Tsumoto, K., Sugimoto, N., (2011) Biochimie, 93, pp. 1231-1238 Otwinowski, Z., Minor, W., (1997) Methods Enzymol., 276, pp. 307-326 Pasternak, A., Hernandez, F.J., Rasmussen, L.M., Vester, B., Wengel, J., (2011) Nucleic Acids Res., 39, pp. 1155-1164 Patel, D.J., Phan, A.T., Kuryavyi, V., (2007) Nucleic Acids Res., 35, pp. 7429-7455 Pileur, F., Andreola, M.L., Dausse, E., Michel, J., Moreau, S., Yamada, H., Gaidamakov, S.A., Cazenave, C., (2003) Nucleic Acids Res., 31, pp. 5776-5788 Rangnekar, A., Zhang, A.M., Li, S.S., Bompiani, K.M., Hansen, M.N., Gothelf, K.V., Sullenger, B.A., Labean, T.H., (2012) Nanomedicine, 8, pp. 673-681 Russo Krauss, I., Merlino, A., Giancola, C., Randazzo, A., Mazzarella, L., Sica, F., (2011) Nucleic Acids Res., 39, pp. 7858-7867 Silverman, A.P., Bu, W., Cohen, S.M., Lippard, S.J., (2002) J. Biol. Chem., 277, pp. 49743-49749 Spiridonova, V.A., Rog, E.V., Dugina, T.N., Strukova, S.M., Kopylov, A.M., (2003) Russ. J. Bioorg. Chem., 29, pp. 450-453 Tan, W., Wang, H., Chen, Y., Zhang, X., Zhu, H., Yang, C., Yang, R., Liu, C., (2011) Trends Biotechnol., 29, pp. 634-640 Tasset, D.M., Kubik, M.F., Steiner, W., (1997) J. Mol. Biol., 272, pp. 688-698 Wang, K.Y., Krawczyk, S.H., Bischofberger, N., Swaminathan, S., Bolton, P.H., (1993) Biochemistry, 32, pp. 11285-11292 Williamson, J.R., (1994) Annu. Rev. Biophys. Biomol. Struct., 23, pp. 703-730 Zavyalova, E., Golovin, A., Reshetnikov, R., Mudrik, N., Panteleyev, D., Pavlova, G., Kopylov, A., (2011) Curr. Med. Chem., 18, pp. 3343-3350 Zhou, G., Huang, X., Qu, Y., (2010) Biochem. Eng. J., 52, pp. 117-122 Br nger, A. T., Adams, P. D., Clore, G. M., Delano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. -S., Warren, G. L., (1998) Acta Cryst., D54, pp. 905-921 Chinnapen, D. J., Sen, D., (2002) Biochemistry, 41, pp. 5202-5212 Chou, S. -H., Chin, K. -H., Wang, A. H. -J., (2005) Trends Biochem. Sci., 30, pp. 231-234 Dolinnaya, N. G., Yuminova, A. V., Spiridonova, V. A., Arutyunyan, A. M., Kopylov, A. M., (2012) J. Biomol. Struct. Dyn., 30, pp. 524-531 Hooft, R. W., Vriend, G., Sander, C., Abola, E. E., (1996) Nature (London), 381, p. 272 Jayasena, S. D., (1999) Clin. Chem., 45, pp. 1628-1650 Keefe, A. D., Pai, S., Ellington, A., (2010) Nature Rev. Drug Discov., 9, pp. 537-550 Laskowski, R. A., MacArthur, M. W., Moss, D. S., Thornton, J. M., (1993) J. Appl. Cryst., 26, pp. 283-291 Lawrence, M. C., Colman, P. M., (1993) J. Mol. Biol., 234, pp. 946-950 Lin, P. -H., Chen, R. -H., Lee, C. -H., Chang, Y., Chen, C. -S., Chen, W. -Y., (2011) Colloids Surf. B, 88, pp. 552-558 Lipps, H. J., Rhodes, D., (2009) Trends Cell Biol., 19, pp. 414-422 Long, S. B., Long, M. B., White, R. R., Sullenger, B. A., (2008) RNA, 14, pp. 2504-2512 MacAya, R. F., Schultze, P., Smith, F. W., Roe, J. A., Feigon, J., (1993) Proc. Natl Acad. Sci. USA, 90, pp. 3745-3749 MacAya, R. F., Waldron, J. A., Beutel, B. A., Gao, H., Joesten, M. E., Yang, M., Patel, R., Cook, A. F., (1995) Biochemistry, 34, pp. 4478-4492 Mayer, G., M ller, J., MacK, T., Freitag, D. F., Hover, T., P tzsch, B., Heckel, A., (2009) ChemBioChem, 10, pp. 654-657 McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C., Read, R. J., (2005) Acta Cryst., D61, pp. 458-464 M ller, J., Freitag, D., Mayer, G., P tzsch, B., (2008) J. Thromb. Haemost., 6, pp. 2105-2112 M ller, J., Wulffen, B., P tzsch, B., Mayer, G., (2007) ChemBio-Chem, 8, pp. 2223-2226 Murshudov, G. N., Skub k, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Vagin, A. A., (2011) Acta Cryst., D67, pp. 355-367 Patel, D. J., Phan, A. T., Kuryavyi, V., (2007) Nucleic Acids Res., 35, pp. 7429-7455 Silverman, A. P., Bu, W., Cohen, S. M., Lippard, S. J., (2002) J. Biol. Chem., 277, pp. 49743-49749 Tasset, D. M., Kubik, M. F., Steiner, W., (1997) J. Mol. Biol., 272, pp. 688-698 Wang, K. Y., Krawczyk, S. H., Bischofberger, N., Swaminathan, S., Bolton, P. H., (1993) Biochemistry, 32, pp. 11285-11292 Williamson, J. R., (1994) Annu. Rev. Biophys. Biomol. Struct., 23, pp. 703-730}, document_type={Journal Article, }, affiliation={Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, I-80126 Naples, Italy Institute of Biostructure and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Naples, Italy National Institute Biostructures and Biosystems, Inter-University Consortium, Viale Medaglie d'Oro 305, I-00136 Rome, Italy}, ibbaffiliation={1}, } @article{IBB_ID_52076, author={Sica F, Pica A, Merlino A, Russo Krauss I, Ercole C, Picone D}, title={The multiple forms of bovine seminal ribonuclease: Structure and stability of a C-terminal swapped dimer}, date={2013 Nov 29}, journal={Febs Lett (ISSN: 0014-5793, 0014-5793print, 1873-3468electronic)}, year={2013}, fullvolume={328}, volume={328}, pages={3755--3762}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84887989317&partnerID=40&md5=69ab07525e4c7e1b7cd5d22f32504202}, abstract={Bovine seminal ribonuclease (BS-RNase) acquires an interesting anti-tumor activity associated with the swapping on the N-terminal. The first direct experimental evidence on the formation of a C-terminal swapped dimer (C-dimer) obtained from the monomeric derivative of BS-RNase, although under non-native conditions, is here reported. The X-ray model of this dimer reveals a quaternary structure different from that of the C-dimer of RNase A, due to the presence of three mutations in the hinge peptide 111-116. The mutations increase the hinge peptide flexibility and decrease the stability of the C-dimer against dissociation. The biological implications of the structural data are also discussed. Structure summary of protein interactions: BS-RNase and BS-RNase bind by x-ray crystallography (View interaction) BS-RNase and BS-RNase bind by molecular sieving (1, 2) BS-RNase and BS-RNase bind by blue native page (View interaction) (C) 2013 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.}, keywords={Bovine Seminal Ribonuclease, C-Terminal 3d Domain Swapping, Cytotoxic Rnase, Hinge Peptide, Multiple Swapping, Dimer, Isoenzyme, Amino Acid Sequence, Article, Carboxy Terminal Sequence, Chemical Model, Controlled Study, Enzyme Stability, Enzyme Structure, Mutation, Nonhuman, Priority Journal, Protein Function, Protein Quaternary Structure, Seminal Plasma, X Ray, Artificial Dimer Of Bs-Rnase Obtained By Incubation In Acetic Acid Of Mbs And Lyophilisation, Artificial Dimer Of Staa-Bs-Rnase Obtained By Incubation In Acetic Acid Of Staa-Mbs And Lyophilisation, Bovine Pancreatic Ribonuclease (ec 3 1 2 27 5), Covalent Swapped Isomer Of Bs-Rnase, Covalent Unswapped Isomer Of Bs-Rnase, D(art)-Bs, D(art)-Staa-Bs, Dithiothreitol, G16s N17t P19a S20a Variant Of Bs-Rnase, G16s N17t P19a S20a Variant Of Mbs, Iodoacetamide, L28q Variant Of Mbs, L28q-Mbs, M×m, Monomeric Derivative Of Bs-Rnase With Cysteines 31 And 32 Either Linked To Glutathione Moieties Or Alkylated With Iodoacetamide, Ncd-Bs, Non-Covalent Swapped Dimer Of Bs-Rnase With Cysteines 31 And 32 Linked To Iodoacetamide, Obtained By Selective Reduction Of The Swapped Isoform And Iodoalkylation, P19a L28q Variant Of Bs-Rnase, P19a L28q Variant Of Mbs, Palq-Bs-Rnase, Palq-Mbs, R80s Variant Of Staa-Bs-Rnase, R80s Variant Of Staa-Mbs, R80s-Staa-Bs-Rnase, R80s-Staa-Mbs, Ribonuclease Inhibitor, Size-Exclusion Chromatography, Animals, Cattle, Crystallography, X-Ray, Endoribonucleases, Molecular Sequence Data, Protein Multimerization, Protein Structure, Tertiary, D (art)-Bs, D (art)-Staa-Bs, }, references={Liu, Y., Eisenberg, D., 3D domain swapping: As domains continue to swap (2002) Protein Sci., 11, pp. 1285-129 Vitagliano, L., Adinolfi, S., Sica, F., Merlino, A., Zagari, A., A potential allosteric subsite generated by domain swapping in bovine seminal ribonuclease (1999) J. Mol. Biol., 293, pp. 569-577 Youle R., .J., D'Alessio, G., (1997) Antitumor RNases In: Ribonucleases: Structures and Functions, pp. 491-514. , (G. D'Alessio and J.F. Riordan Eds.), Academic Press, New York Sambashivan, S., Liu, Y., Sawaya, M.R., Gingery, M., Eisenberg, D., Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure (2005) Nature, 437, pp. 266-269 Bennett, M.J., Sawaya, M.R., Eisenberg, D., Deposition diseases and 3D domain swapping (2006) Structure, 14, pp. 811-824 Koharudin, L.M., Liu, L., Gronenborn, A.M., Different 3D domain-swapped oligomeric cyanovirin-N structures suggest trapped folding intermediates (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 7702-7707 Crestfield, A.M., Stein, W.H., Moore, S., On the preparation of bovine pancreatic ribonuclease A (1963) J. Biol. Chem., 238, pp. 618-621 Gotte, G., Mahmoud Helmy, A., Ercole, C., Spadaccini, R., Laurents, D.V., Double domain swapping in bovine seminal RNase: Formation of distinct N- and C-swapped tetramers and multimers with increasing biological activities (2012) PLoS One, 7, p. 46804 Piccoli, R., Tamburrini, M., Piccialli, G., Di Donato, A., Parente, A., The dual-mode quaternary structure of seminal RNase (1992) Proc. Natl. Acad. Sci. USA, 89, pp. 1870-1874 Matousek, J., The effect of bovine seminal ribonuclease (AS RNase) on cells of Crocker tumour in mice (1973) Experientia, 29, pp. 858-859 Kim, J.S., Soucek, J., Matousek, J., Raines, R.T., Structural basis for the biological activities of bovine seminal ribonuclease (1995) J. Biol. Chem., 270, pp. 10525-10530 Merlino, A., Ercole, C., Picone, D., Pizzo, E., Mazzarella, L., The buried diversity of bovine seminal ribonuclease: Shape and cytotoxicity of the swapped non-covalent form of the enzyme (2008) J. Mol. Biol., 376, pp. 427-437 Giancola, C., Ercole, C., Fotticchia, I., Spadaccini, R., Pizzo, E., Structure-cytotoxicity relationships in bovine seminal ribonuclease: New insights from heat and chemical denaturation studies on variants (2011) FEBS J., 278, pp. 111-122 Sica, F., Di Fiore, A., Merlino, A., Mazzarella, L., Structure and stability of the non-covalent swapped dimer of bovine seminal ribonuclease: An enzyme tailored to evade ribonuclease protein inhibitor (2004) J. Biol. Chem., 279, pp. 36753-36760 Kobe, B., Deisenhofer, J., Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A (1996) J. Mol. Biol., 264, pp. 1028-1043 Merlino, A., Russo Krauss, I., Perillo, M., Mattia, C.A., Ercole, C., Toward an antitumor form of bovine pancreatic ribonuclease: The crystal structure of three noncovalent dimeric mutants (2009) Biopolymers, 91, pp. 1029-1037 Ercole, C., Colamarino, R.A., Pizzo, E., Fogolari, F., Spadaccini, R., Comparison of the structural and functional properties of RNase A and BS-RNase: A stepwise mutagenesis approach (2009) Biopolymers, 91, pp. 1009-1017 Spadaccini, R., Ercole, C., Gentile, M.A., Sanfelice, D., Boelens, R., NMR studies on structure and dynamics of the monomeric derivative of BS-RNase: New insights for 3D domain swapping (2012) PLoS One, 7, p. 29076 Liu, Y., Hart, P.J., Schlunegger, M.P., Eisenberg, D., The crystal structure of a 3D domain-swapped dimer of RNase A at a 2.1-A resolution (1998) Proc. Natl. Acad. Sci. USA, 95, pp. 3437-3442 Liu, Y., Gotte, G., Libonati, M., Eisenberg, D., A domain-swapped RNase A dimer with implications for amyloid formation (2001) Nat. Struct. Biol., 8, pp. 211-214 Cozza, G., Moro, S., Gotte, G., Elucidation of the ribonuclease A aggregation process mediated by 3D domain swapping: A computational approach reveals possible new multimeric structures (2008) Biopolymers, 89, pp. 26-39 Mazzarella, L., Vitagliano, L., Zagari, A., Swapping structural determinants of ribonucleases: An energetic analysis of the hinge peptide 16-22 (1995) Proc. Natl. Acad. Sci. USA, 92, pp. 3799-3803 Di Donato, A., Cafaro, V., D'Alessio, G., Ribonuclease A can be transformed into a dimeric ribonuclease with antitumor activity (1994) J. Biol. Chem., 269, pp. 17394-17396 Picone, D., Di Fiore, A., Ercole, C., Franzese, M., Sica, F., The role of the hinge loop in domain swapping. The special case of bovine seminal ribonuclease (2005) J. Biol. Chem., 280, pp. 13771-13778 Ercole, C., Avitabile, F., Del Vecchio, P., Crescenzi, O., Tancredi, T., Role of the hinge peptide and the intersubunit interface in the swapping of N-termini in dimeric bovine seminal RNase (2003) Eur. J. Biochem., 270, pp. 4729-4735 Merlino, A., Picone, D., Ercole, C., Balsamo, A., Sica, F., Chain termini cross-talk in the swapping process of bovine pancreatic ribonuclease (2012) Biochimie, 94, pp. 1108-1118 Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., pp. 307-326. , Charles W. Carter Jr. Academic Press Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., PHENIX: A comprehensive Python-based system for macromolecular structure solution (2010) Acta Crystallogr. Vagin, A.A., Steiner, R.A., Lebedev, A.A., Potterton, L., McNicholas, S., REFMAC5 dictionary: Organization of prior chemical knowledge and guidelines for its use (2004) Acta Crystallogr. Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta Crystallogr. Laskowski, R.A., Macarthur, M.W., Moss, D.S., Thornton, J.M., PROCHECK: A program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallogr., 26, pp. 283-291 (2010) The Pymol Molecular Graphics System, Version 1.3r1. Pymol, , http://wwwpymolorg, Schrodinger, LLC Gotte, G., Bertoldi, M., Libonati, M., Structural versatility of bovine ribonuclease A. Distinct conformers of trimeric and tetrameric aggregates of the enzyme (1999) Eur. J. Biochem., 265, pp. 680-687 Merlino, A., Avella, G., Di Gaetano, S., Arciello, A., Piccoli, R., Structural features for the mechanism of antitumor action of a dimeric human pancreatic ribonuclease variant (2009) Protein Sci., 18, pp. 50-57 Pica, A., Merlino, A., Buell, A.K., Knowles, T.P.J., Pizzo, E., Three-dimensional domain swapping and supramolecular protein assembly: Insights from the X-ray structure of a dimeric swapped variant of human pancreatic RNase. Acta Crystallogr (2013) D, 69, pp. 2116-2123 Youle R., . J., D'Alessio, G., (1997) Antitumor RNases In: Ribonucleases: Structures and Functions, pp. 491-514. , (G. D'Alessio and J. F. Riordan Eds.), Academic Press, New York Bennett, M. J., Sawaya, M. R., Eisenberg, D., Deposition diseases and 3D domain swapping (2006) Structure, 14, pp. 811-824 Koharudin, L. M., Liu, L., Gronenborn, A. M., Different 3D domain-swapped oligomeric cyanovirin-N structures suggest trapped folding intermediates (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 7702-7707 Crestfield, A. M., Stein, W. H., Moore, S., On the preparation of bovine pancreatic ribonuclease A (1963) J. Biol. Chem., 238, pp. 618-621 Kim, J. S., Soucek, J., Matousek, J., Raines, R. T., Structural basis for the biological activities of bovine seminal ribonuclease (1995) J. Biol. Chem., 270, pp. 10525-10530 Liu, Y., Hart, P. J., Schlunegger, M. P., Eisenberg, D., The crystal structure of a 3D domain-swapped dimer of RNase A at a 2. 1-A resolution (1998) Proc. Natl. Acad. Sci. USA, 95, pp. 3437-3442 Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., PHENIX: A comprehensive Python-based system for macromolecular structure solution (2010) Acta Crystallogr. Vagin, A. A., Steiner, R. A., Lebedev, A. A., Potterton, L., McNicholas, S., REFMAC5 dictionary: Organization of prior chemical knowledge and guidelines for its use (2004) Acta Crystallogr. Laskowski, R. A., Macarthur, M. W., Moss, D. S., Thornton, J. M., PROCHECK: A program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallogr., 26, pp. 283-291 (2010) The Pymol Molecular Graphics System, Version 1. 3r1. Pymol, , http: //wwwpymolorg, Schrodinger, LLC}, document_type={Journal Article, }, affiliation={Department of Chemical Sciences, University of Naples 'Federico II', via Cintia, 80126 Naples, Italy Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy National Institute Biostructures and Biosystems, Inter-University Consortium, Viale Medaglie d'Oro 305, I-00136 Rome, Italy}, ibbaffiliation={1}, } @article{IBB_ID_12438, author={Vergara A, Russo Krauss I, Montesarchio D, Paduano L, Merlino A}, title={Investigating the Ruthenium Metalation of Proteins: X-ray Structure and Raman Microspectroscopy of the Complex between RNase A and AziRu}, date={2013 Oct 7}, journal={Inorg Chem (ISSN: 0020-1669, 1520-510x, 1520-510xelectronic)}, year={2013}, fullvolume={307}, volume={307}, pages={10714--10716}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84885157077&partnerID=40&md5=e4877193b33ab5d1ca7c09a9db438965}, abstract={A Raman-assisted crystallographic study on the adduct between AziRu, a Ru(III) complex with high antiproliferative activity, and RNase A is presented. The protein structure is not perturbed significantly by the Ru label. The metal coordinates to ND atoms of His105 or of His119 imidazole rings, losing all of its original ligands but retaining octahedral, although distorted, coordination geometry. The AziRu binding inactivates the enzyme, suggesting that its antitumor action can be exerted by a mechanism of competitive inhibition.}, keywords={Antineoplastic Agent, Coordination Compound, Pancreatic Ribonuclease, Protein, Ruthenium, Article, Chemical Structure, Chemistry, Raman Spectrometry, X Ray Crystallography, Coordination Complexes, X-Ray, Molecular Structure, Spectrum Analysis, Coordination Complexes Chemistry, Proteins Chemistry, Pancreatic Chemistry, Ruthenium Chemistry, }, references={Ang, W.H., Casini, A., Sava, G., Dyson, P.J., (2011) J. Org. Chem., 696, p. 98 Komeda, S., Casini, A., (2012) Curr. Top. Med. Chem., 12, p. 219 Levina, A., Mitra, A., Lay, P.A., (2009) Metallomics, 1, p. 458 Levina, A., Lay, P.A., (2011) Dalton Trans., 40, p. 11675 Bergamo, A., Gaiddon, C., Schellens, J.H.M., Beijnen, J.H., Sava, G., (2012) J. Inorg. Biochem., 106, p. 90 Bergamo, A., Gava, B., Alessio, E., Mestroni, G., Serli, B., Cocchietto, M., Zorzet, S., Sava, G., (2002) Int. J. Oncol., 21, p. 1331 Casini, A., Temperini, C., Gabbiani, C., Supuran, C.T., Messori, L., (2010) ChemMedChem, 5, p. 1989 Smith, C.A., Sutherland-Smith, A.J., Keppler, B.K., Kratz, F., Baker, E.N., (1996) J. Biol. Inorg. Chem., 2, p. 424 Ascone, I., Messori, L., Casini, A., Gabbiani, C., Balerna, A., Dell'Unto, F., Castellano, A.C., (2008) Inorg. Chem., 47, p. 8629 Liu, M., Lim, Z.J., Gwee, Y.Y., Levina, A., Lay, P.A., (2010) Angew. Chem., 122, p. 1705 Levina, A., Aitken, J.B., Gwee, Y.Y., Lim, Z.J., Liu, M., Singharay, A.M., Wong, P.F., Lay, P.A., (2013) Chemistry, 19, p. 3609 Vergara, A., D'Errico, G., Montesarchio, D., Mangiapia, G., Paduano, L., Merlino, A., (2013) Inorg. Chem., 52, p. 4157 Mangiapia, G., D'Errico, G., Simeone, L., Irace, C., Radulescu, A., Di Pascale, A., Colonna, A., Paduano, L., (2012) Biomaterials, 33, p. 3770 Simeone, L., Mangiapia, G., Vitiello, G., Irace, C., Colonna, A., Ortona, O., Montesarchio, D., Paduano, L., (2012) Bioconjugate Chem., 23, p. 758 Balakrishnan, A.R., Ramasubbu, N., Varughese, K.I., Parthasarathy, R., (1997) Proc. Natl. Acad. Sci. U.S.A., 94, p. 9620 Merlino, A., Sica, F., Mazzarella, L., (2007) J. Phys. Chem. B, 111, p. 5483 Vitagliano, L., Merlino, A., Zagari, A., Mazzarella, L., (2000) Protein Sci., 9, p. 1217 Borkakoti, N., Moss, D.A., Palmer, R.A., (1982) Acta Crystallogr., Sect. B, 38, p. 2210 George, G.N., Pickering, I.J., Pushie, M.J., Nienaber, K., Hackett, M.J., Ascone, I., Hedman, B., Lay, P.A., (2012) J. Synchrotron Radiat., 19, p. 875 Vergara, A., Merlino, A., Pizzo, E., D'Alessio, G., Mazzarella, L., (2008) Acta Crystallogr., Sect. D, 64, p. 167 Bouma, M., Nuijen, B., Jansen, M.T., Sava, G., Flaibani, A., Bult, A., Beijnen, J.H., (2002) Int. J. Pharm., 248, p. 239 Merlino, A., Fuchs, M.R., Pica, A., Balsamo, A., Dworkowski, F.S., Pompidor, G., Mazzarella, L., Vergara, A., (2013) Acta Crystallogr., Sect. D, 69, p. 137 Vergara, A., Vitagliano, L., Merlino, A., Sica, F., Marino, K., Verde, C., Di Prisco, G., Mazzarella, L., (2010) J. Biol. Chem., 285, p. 32568 Ang, W. H., Casini, A., Sava, G., Dyson, P. J., (2011) J. Org. Chem., 696, p. 98 Smith, C. A., Sutherland-Smith, A. J., Keppler, B. K., Kratz, F., Baker, E. N., (1996) J. Biol. Inorg. Chem., 2, p. 424 Liu, M., Lim, Z. J., Gwee, Y. Y., Levina, A., Lay, P. A., (2010) Angew. Chem., 122, p. 1705 Balakrishnan, A. R., Ramasubbu, N., Varughese, K. I., Parthasarathy, R., (1997) Proc. Natl. Acad. Sci. U. S. A., 94, p. 9620 George, G. N., Pickering, I. J., Pushie, M. J., Nienaber, K., Hackett, M. J., Ascone, I., Hedman, B., Lay, P. A., (2012) J. Synchrotron Radiat., 19, p. 875}, document_type={Journal Article, Research Support, Non-U. S. Gov'T, }, affiliation={Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy CNR Institute of Biostructures and Bioimages, Napoli, Italy CSGI (Consorzio per Lo Sviluppo Dei Sistemi A Grande Interfase), Florence, Italy}, ibbaffiliation={1}, } @article{IBB_ID_10754, author={Russo Krauss I, Merlino A, Vergara A, Sica F}, title={An overview of biological macromolecule crystallization}, date={2013 May 31}, journal={Int J Mol Sc (ISSN: 1422-0067, 1661-6596, 1422-0067electronic)}, year={2013}, fullvolume={1010}, volume={1010}, pages={11643--11691}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84879013039&partnerID=40&md5=17d40cda9df6f6067d1021ce8aa1886c}, abstract={The elucidation of the three dimensional structure of biological macromolecules has provided an important contribution to our current understanding of many basic mechanisms involved in life processes. This enormous impact largely results from the ability of X-ray crystallography to provide accurate structural details at atomic resolution that are a prerequisite for a deeper insight on the way in which bio-macromolecules interact with each other to build up supramolecular nano-machines capable of performing specialized biological functions. With the advent of high-energy synchrotron sources and the development of sophisticated software to solve X-ray and neutron crystal structures of large molecules, the crystallization step has become even more the bottleneck of a successful structure determination. This review introduces the general aspects of protein crystallization, summarizes conventional and innovative crystallization methods and focuses on the new strategies utilized to improve the success rate of experiments and increase crystal diffraction quality.}, keywords={Crystallization, Membrane, New Methodologies, Nucleic Acid, Protein, Antibody, Fv Antibody, Guanine Quadruplex, Immunoglobulin F(ab) Fragment, Membrane Protein, Unclassified Drug, Batch Process, Chemical Reaction Kinetics, Complex Formation, Crystallography, Density Gradient, Electric Field, Free Interface Diffusion, Gel Counter Diffusion, Gel Crystallization, Lipid Bilayer, Macromolecule, Magnetic Field, Microdialysis, Nucleic Acid Structure, Precipitation, Protein Nucleic Acid Interaction, Review, Temperature Sensitivity, Thermostability, Water Vapor, X Ray Diffraction, Immunoglobulin F (ab) Fragment, }, references={McPherson, A., Protein crystallization in the structural genomics era (2004) J. Struct. Funct. Genomics, 5, pp. 3-1 Hoffman, I.D., Protein crystallization for structure-based drug design (2012) Methods Mol. Biol, 841, pp. 67-91 Deschamps, J.R., The role of crystallography in drug design (2005) AAPS J, 7, pp. E813-E819 Cachau, R.E., Podjarny, A.D., High-resolution crystallography and drug design (2005) J. Mol. Recognit, 18, pp. 196-202 Blundell, T.L., Patel, S., High-throughput X-ray crystallography for drug discovery (2004) Curr. Opin. Pharmacol, 4, pp. 490-496 Heinemann, U., Bussow, K., Mueller, U., Umbach, P., Facilities and methods for the high-throughput crystal structural analysis of human proteins (2003) Acc. Chem. Res, 36, pp. 157-163 Abola, E., Kuhn, P., Earnest, T., Stevens, R.C., Automation of X-ray crystallography (2000) Nat. Struct. Biol, 7, pp. 973-977 Jaskolski, M., From atomic resolution to molecular giants: An overview of crystallographic studies of biological macromolecules with synchrotron radiation (2010) Synchrotron. Radiat. Nat. Sci, 9, pp. 1-2 Bergfors, T.M., (1999) Protein Crystallization: Techniques, Strategies and Tips, , International University Line: La Jolla, CA, USA Ducruix, A., Giege, R., (2000) Crystallization of Nucleic Acids and Proteins, a Practical Approach, , 2nd ed. Oxford University Press: New York, NY, USA Sauter, C., Lorber, B., McPherson, A., Giege, R., Crystallization. General methods (2012) International Tables For Crystallography: Crystallography of Biological Macromolecules, pp. 99-121. , 2nd ed. Arnold, E., Himmel, D.M., Rossmann, M.G., Eds. Wiley: Chichester, NH, USA Rupp, B., (2010) Biomolecular Crystallography: Principles, Practice, and Application to Structural Biology, , Garland Publishing: New York, NY Amorphous precipitate is the result of a disordered aggregation of folded molecules, it is usually white and could still give crystals, differently from precipitate of denaturated proteins, which forms in conditions where the native state is not stable. Moreover some precipitates are actually formed by submicroscopic crystals (microcrystalline precipitate)McPherson, A., (1999) Crystallization of Biological Macromolecules, , Cold Spring Harbor Laboratory Press: Cold Spring Harbor: New York, NY, USA McPherson, A., Introduction to protein crystallization (2004) Methods, 34, pp. 254-265 Kelly, S.M., Price, N.C., The use of circular dichroism in the investigation of protein structure and function (2000) Curr. Protein Pept. Sci, 1, pp. 349-384 George, A., Chiang, Y., Guo, B., Arabshahi, A., Cai, Z., Wilson, W.W., Second virial coefficient as predictor in protein crystal growth (1997) Methods Enzymol, 276, pp. 100-110 George, A., Wilson, W.W., Predicting protein crystallization from a dilute solution property (1994) Acta Crystallogr. D, 50, pp. 361-365 Bonnete, F., Vivares, D., Interest of the normalized second virial coefficient and interaction potentials for crystallizing large macromolecules (2002) Acta Crystallogr. D, 58, pp. 1571-1575 Deszczynski, M., Harding, S.E., Winzor, D.J., Negative second virial coefficients as predictors of protein crystal growth: Evidence from sedimentation equilibrium studies that refutes the designation of those light scattering parameters as osmotic virial coefficients (2006) Biophys. Chem, 120, pp. 106-113 Berne, B.J., Pecora, R., (2000) Dynamic Light Scattering With Applications to Chemistry, Biology, and Physics, , John Wiley & Sons: New York, NY, USA Pecora, R., (1985) Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy, , Plenum Press: New York, NY, USA Saridakis, E., Dierks, K., Moreno, A., Dieckmann, M.W., Chayen, N.E., Separating nucleation and growth in protein crystallization using dynamic light scattering (2002) Acta Crystallogr. D, 58, pp. 1597-1600 Rosenberger, F., Howard, S.B., Sowers, J.W., Nyce, T.A., Temperature dependence of protein solubility: Determination and application to crystallization in X-ray capillaries (1993) J. Cryst. Growth, 129, pp. 1-12 Chernov, A.A., Komatsu, H., Principles of Crystal Growth in Protein Crystallization (1995) Science and Technology of Crystal Growth, , van der Eerden, J.P., Bruinsma, O.S.L., Eds. Kluwer Academic Publishers: Dordrecht, The Netherlands Dumetz, A.C., Chockla, A.M., Kaler, E.W., Lenhoff, A.M., Effects of pH on protein-protein interactions and implications for protein phase behavior (2008) Biochim. Biophys. Acta, 1784, pp. 600-610 Kantardjieff, K.A., Rupp, B., Protein isoelectric point as a predictor for increased crystallization screening efficiency (2004) Bioinformatics, 20, pp. 2162-2168 Dupeux, F., Rower, M., Seroul, G., Blot, D., Marquez, J.A., A thermal stability assay can help to estimate the crystallization likelihood of biological samples (2011) Acta Crystallogr. D, 67, pp. 915-919 Malawski, G.A., Hillig, R.C., Monteclaro, F., Eberspaecher, U., Schmitz, A.A., Crusius, K., Huber, M., Muller-Tiemann, B., Identifying protein construct variants with increased crystallization propensity-a case study (2006) Protein Sci, 15, pp. 2718-2728 Ericsson, U.B., Hallberg, B.M., Detitta, G.T., Dekker, N., Nordlund, P., Thermofluor-based high-throughput stability optimization of proteins for structural studies (2006) Anal. BioChem, 357, pp. 289-298 Doerr, A., Widening the protein crystallization bottleneck (2006) Nat. Methods, 3, p. 961 Hofmeister, F., Zur Lehre von der Wirkung der Salze (About the science of the effect of salts) (1888) Arch. Exp. Pathol. Pharmakol, 24, pp. 247-260 McPherson, A., Crystallization of proteins from polyethylene glycol (1976) J. Biol. Chem, 251, pp. 6300-6303 Majeed, S., Ofek, G., Belachew, A., Huang, C.C., Zhou, T., Kwong, P.D., Enhancing protein crystallization through precipitant synergy (2003) Structure, 11, pp. 1061-1070 McPherson, A., Nguyen, C., Cudney, R., Larson, S.B., The role of small molecule additives and chemical modification in protein crystallization (2011) Cryst. Growth Des, 11, pp. 1469-1474 McPherson, A., (1982) The Preparation and Analysis of Protein Crystals, , John Wiley and Sons: New York, NY, USA Piazza, R., Pierno, M., Protein interactions near crystallization: A microscopic approach to the Hofmeister series (2000) J. Phys. Condens. Matter, 12, pp. A443-A449 Zhang, Y., Cremer, P.S., Interactions between macromolecules and ions: The Hofmeister series (2006) Curr. Opin. Chem. Biol, 10, pp. 658-663 Hekmat, D., Hebel, D., Joswig, S., Schmidt, M., Weuster-Botz, D., Advanced protein crystallization using water-soluble ionic liquids as crystallization additives (2007) Biotechnol. Lett, 29, pp. 1703-1711 Judge, R.A., Takahashi, S., Longenecker, K.L., Fry, E.H., Abad-Zapatero, C., Chiu, M.L., The effect of ionic liquids on protein crystallization and X-ray diffraction resolution (2009) Cryst. Growth Des, 9, pp. 3463-3469 Larson, S.B., Day, J.S., Cudney, R., McPherson, A., A novel strategy for the crystallization of proteins: X-ray diffraction validation (2007) Acta Crystallogr. D, 63, pp. 310-318 Sauter, C., Ng, J.D., Lorber, B., Keith, G., Brion, P., Hosseini, M.W., Lehn, J.-M., Giege, R., Additives for the crystallization of proteins and nucleic acids (1999) J. Cryst. Growth, 196, pp. 365-376 Shim, J.U., Cristobal, G., Link, D.R., Thorsen, T., Fraden, S., Using microfluidics to decouple nucleation and growth of protein crystals (2007) Cryst. Growth Des, 7, pp. 2192-2194 Tanaka, S., Ataka, M., Ito, K., Pattern formation and coarsening during metastable phase separation in lysozyme solutions (2002) Phys. Rev. E, 65, p. 051804 Sica, F., Adinolfi, S., Berisio, R., de Lorenzo, C., Mazzarella, L., Piccoli, R., Vitagliano, L., Zagari, A., Crystallization of multiple forms of bovine seminal ribonuclease in the liganded and unliganded state (1999) J. Cryst. Growth, 196, pp. 305-312 Sousa, R., Use of glycerol, polyols and other protein structure stabilizing agents in protein crystallization (1995) Acta Crystallogr. D, 51, pp. 271-277 Tomčová, I., Branca, R.M., Bodo, G., Bagyinka, C., Smatanová, I.K., Cross-crystallization method used for the crystallization and preliminary diffraction analysis of a novel di-haem cytochrome c4 (2006) Acta Crystallogr. Sect. F, 62, pp. 820-824 Tomčová, I., Smatanová, I.K., Copper co-crystallization and divalent metal salts cross-influence effect: A new optimization tool improving crystal morphology and diffraction quality (2007) J. Cryst. Growth, 306, pp. 383-389 Kundrot, C.E., Judge, R.A., Pusey, M.L., Snell, E.H., Microgravity and macromolecular crystallography (2001) Cryst. Growth Des, 1, pp. 87-99 Otalora, F., Novella, M.L., Gavira, J.A., Thomas, B.R., Garcia, R.J.M., Experimental evidence for the stability of the depletion zone around a growing protein crystal under microgravity (2001) Acta Crystallogr. D, 57, pp. 412-417 Wakayama, N.I., Yin, D.C., Harata, K., Kiyoshi, T., Fujiwara, M., Tanimoto, Y., Macromolecular crystallization in microgravity generated by a superconducting magnet (2006) Ann. N. Y. Acad. Sci, 1077, pp. 184-193 Vergara, A., Lorber, B., Sauter, C., Giege, R., Zagari, A., Lessons from crystals grown in the advanced protein crystallisation facility for conventional crystallisation applied to structural biology (2005) Biophys. Chem, 118, pp. 102-112 Sazaki, G., Crystal quality enhancement by magnetic fields (2009) Prog. Biophys. Mol. Biol, 101, pp. 45-55 Yin, D.C., Wakayama, N.I., Harata, K., Fujiwara, M., Kiyoshi, T., Wada, H., Niimura, N., Tanimoto, Y., Formation of protein crystals (orthorhombic lysozyme) in quasi-microgravity environment obtained by superconducting magnet (2004) J. Cryst. Growth, 270, pp. 184-191 Okada, H., Hirota, N., Matsumoto, S., Wada, H., Simulation of fluid flow during protein crystal growth in magnetic fields (2011) J. Appl. Phys, 110, pp. 043903-043906 Ataka, M., Katoh, E., Wakayama, N.I., Magnetic orientation as a tool to study the initial stage of crystallization of lysozyme (1997) J. Cryst. Growth, 173, pp. 592-596 Gavira, J.A., Garcia-Ruiz, J.M., Effects of a magnetic field on lysozyme crystal nucleation and growth in a diffusive environment (2009) Cryst. Growth Design, 9, pp. 2610-2615 Penkova, A., Pan, W., Hodjaoglu, F., Vekilov, P.G., Nucleation of protein crystals under the influence of solution shear flow (2006) Ann. N. Y. Acad. Sci, 1077, pp. 214-231 Koizumi, H., Uda, S., Fujiwara, K., Nozawa, J., Control of effect on the nucleation rate for hen egg white lysozyme crystals under application of an external ac electric field (2011) Langmuir, 27, pp. 8333-8338 Koizumi, H., Fujiwara, K., Uda, S., Control of nucleation rate for tetragonal hen-egg white lysozyme crystals by application of an electric field with variable frequencies (2009) Cryst. Growth Des, 9, pp. 2420-2424 Taleb, M., Didierjean, C., Jelsch, C., Mangeot, J.P., Aubry, A., Equilibrium kinetics of lysozyme crystallization under an external electric field (2001) J. Cryst. Growth, 232, pp. 250-255 Nanev, C.N., Penkova, A., Nucleation of lysozyme crystals under external electric and ultrasonic fields (2001) J. Cryst. Growth, 232, pp. 285-293 Charron, C., Didierjean, C., Mangeot, J.P., Aubry, A., The "Octopus" plate for protein crystallization under an electric field (2003) J. Appl. Crystallogr, 36, pp. 1482-1483 Mirkin, N., Frontana-Uribe, B.A., Rodriguez-Romero, A., Hernandez-Santoyo, A., Moreno, A., The influence of an internal electric field upon protein crystallization using the gel-acupunture method (2003) Acta Crystallogr. D, D59, pp. 1533-1538 Al-Haq, M.I., Lebrasseur, E., Choi, W.-K., Tsuchiya, H., Torii, T., Yamazaki, H., Shinohara, E., An apparatus for electric-field-induced protein crystallization (2007) J. Appl. Crystallogr, 40, pp. 199-201 Sazaki, G., Moreno, A., Nakajima, K., Novel coupling effects of the magnetic and electric fields on protein crystallization (2004) J. Cryst. Growth, 262, pp. 499-502 Hammadi, Z., Veesler, S., New approaches on crystallization under electric fields (2009) Progr. Biophys. Mol. Biol, 101, pp. 38-44 Gutiérrez-Quezada, A.E., Arreguín-Espinosa, R., Moreno, A., Natarajan, S., Kalkura, S.N., Celestian, A.J., Parise, J.B., Vedda, A., Special Topics in Crystal Growth (2010) Springer Handbook of Crystal Growth, pp. 1583-1736. , Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M., Eds. Springer: New York, NY, USA Adachi, H., Takano, K., Niino, A., Matsumura, H., Kinoshita, T., Warizaya, M., Inoue, T., Sasaki, T., Solution stirring initiates nucleation and improves the quality of adenosine deaminase crystals (2005) Acta Crystallogr. D, 61, pp. 759-762 Yaoi, M., Adachi, H., Takano, K., Matsumura, H., Inoue, T., Mori, Y., Sasaki, T., The effects of solution stirring on protein crystal growth (2004) Jpn. J. Appl. Phys, 43, pp. L686-L688 Adachi, H., Niino, A., Kinoshita, T., Warizaya, M., Maruki, R., Takano, K., Matsumura, H., Mori, Y., Solution-stirring method improves crystal quality of human triosephosphate isomerase (2006) J. BioSci. Bioeng, 101, pp. 83-86 Nagata, A., Ohnishi, H., Yoshimura, M., Ogawa, A., Ujita, S., Adachi, H., Okada, M., Nakagawa, A., Crystallization and preliminary X-ray analysis of rat SHPS-1 (2006) Acta Crystallogr. Sect. F, 62, pp. 189-191 Chayen, N.E., Comparative studies of protein crystallization by vapour-diffusion and microbatch techniques (1998) Acta Crystallogr. D, 1, pp. 8-15 Benvenuti, M., Mangani, S., Crystallization of soluble proteins in vapor diffusion for X-ray crystallography (2007) Nat. Prot, 2, pp. 1633-1651 Korczynska, J., Hu, T.C., Smith, D.K., Jenkins, J., Lewis, R., Edwards, T., Brzozowski, A.M., Microscale vapour diffusion for protein crystallization (2007) Acta Crystallogr. D, 63, pp. 1009-1015 Whon, T.W., Lee, Y.H., An, D.S., Song, H.K., Kim, S.G., A simple technique to convert sitting-drop vapor diffusion into hanging-drop vapor diffusion by solidifying the reservoir solution with agarose (2009) J. Appl. Crystallogr, 42, pp. 975-976 Lu, Q.Q., Yin, D.C., Xie, S.X., Liu, Y.M., Chen, R.Q., The effect of diluting crystallization droplets on protein crystallization in vapor diffusion method (2011) Cryst. Res. Technol, 46, pp. 917-925 Chayen, N.E., A novel technique to control the rate of vapor diffusion, giving larger protein crystals (1997) J. Appl. Crystallogr, 30, pp. 198-201 Chayen, N.E., Crystallization with oils: A new dimension in macromolecular crystal growth (1999) J. Cryst. Growth, 196, pp. 434-441 Chayen, N.E., Shaw, S.P.D., Maeder, D.L., Blow, D.M., An automated system for micro-batch protein crystallization and screening (1990) J. Appl. Crystallogr, 23, pp. 297-302 Brumshtein, B., Greenblatt, H.M., Futerman, A.H., Silman, I., Sussman, J.L., Control of the rate of evaporation in protein crystallization by the "microbatch under oil" method (2008) J. Appl. Crystallogr, 41, pp. 969-971 D'Arcy, A., Elmore, C., Stihle, M., Johnston, J.E., A novel approach to crystallising proteins under oil (1996) J. Cryst. Growth, 168, pp. 175-180 D'Arcy, A., Mac, S.A., Stihle, M., Haber, A., The advantages of using a modified microbatch method for rapid screening of protein crystallization conditions (2003) Acta Crystallogr. D, 59, pp. 396-399 Merlino, A., Russo, K.I., Albino, A., Pica, A., Vergara, A., Masullo, M., de Vendittis, E., Sica, F., Improving protein crystal quality by the without-oil microbatch method: Crystallization and preliminary X-ray diffraction analysis of glutathione synthetase from Pseudoalteromonas haloplanktis (2011) Int. J. Mol. Sci, 12, pp. 6312-6319 Reid, B.R., Koch, G.L., Boulanger, Y., Hartley, B.S., Blow, D.M., Letter: Crystallization and preliminary X-ray diffraction studies on tyrosyl-transfer RNA synthetase from Bacillus stearothermophilus (1973) J. Mol. Biol, 80, pp. 199-201 Thomas, D.H., Rob, A., Rice, D.W., A novel dialysis procedure for the crystallization of proteins (1989) Protein Eng, 2, pp. 489-491 Salemme, F.R., A free interface diffusion technique for the crystallization of proteins for X-ray crystallography (1972) Arch. BioChem. Biophys, 151, pp. 533-539 Berisio, R., Lamzin, V.S., Sica, F., Wilson, K.S., Zagari, A., Mazzarella, L., Protein titration in the crystal state (1999) J. Mol. Biol, 292, pp. 845-854 Vitagliano, L., Merlino, A., Zagari, A., Mazzarella, L., Productive and nonproductive binding to ribonuclease A: X-ray structure of two complexes with uridylyl(2',5')guanosine (2000) Protein Sci, 9, pp. 1217-1225 Garcia-Ruiz, J.M., Counter-diffusion methods for macromolecular crystallization (2003) Methods Enzymol, 368, pp. 130-154 Li, L., Du, W., Ismagilov, R.F., Multiparameter screening on SlipChip used for nanoliter protein crystallization combining free interface diffusion and microbatch methods (2010) J. Am. Chem. Soc, 132, pp. 112-119 McPherson, A., (1992) Effects of a Microgravity Environment On the Crystallization of Biological Macromolecules, 2, pp. 619-626. , Presented at VIII European Symposium on Materials and Fluid Sciences in Microgravity, Free University of Brussels, Brussels, Belgium, 12-16 April, Legros, J.C., ed Bernard, Y., Degoy, S., Lefaucheux, F., Robert, M.C., A gel-mediated feeding technique for protein crystal growth from hanging drops (1994) Acta Crystallogr. D, 50, pp. 504-507 Robert, M.C., Lefaucheux, F., Crystal growth in gels: Principle and applications (1988) J. Cryst. Growth, 90, pp. 358-367 Lorber, B., Giege, R., Nucleation and growth of thaumatin crystals within a gel under microgravity on STS-95 mission vs. under Earth's gravity (2001) J. Cryst. Growth, 231, pp. 252-261 Zhu, D.W., Lorber, B., Sauter, C., Ng, J.D., Benas, P., Le Grimellec, C., Giege, R., Growth kinetics, diffraction properties and effect of agarose on the stability of a novel crystal form of Thermus thermophilus aspartyl-tRNA synthetase-1 (2001) Acta Crystallogr. D, 57, pp. 552-558 Moreno, A., Yokaichiya, F., Dimasi, E., Stojanoff, V., Growth and characterization of high-quality protein crystals for X-ray crystallography (2009) Ann. N. Y. Acad. Sci, 1161, pp. 429-436 Chayen, N.E., Turning protein crystallisation from an art into a science (2004) Curr. Opin. Struct. Biol, 14, pp. 577-583 Biertumpfel, C., Basquin, J., Suck, D., Sauter, C., Crystallization of biological macromolecules using agarose gel (2002) Acta Crystallogr. D, 58, pp. 1657-1659 Sugiyama, S., Maruyama, M., Sazaki, G., Hirose, M., Adachi, H., Takano, K., Murakami, S., Matsumura, H., Growth of protein crystals in hydrogels prevents osmotic shock (2012) J. Am. Chem. Soc, 134, pp. 5786-5789 Hasenaka, H., Sugiyama, S., Hirose, M., Shimizu, N., Kitatani, T., Takahashi, Y., Adachi, H., Inoue, T., Femtosecond laser processing of protein crystals grown in agarose gel (2010) J. Cryst. Growth, 312, pp. 73-78 van Driessche, A.E.S., Otalora, F., Gavira, J.A., Sazaki, G., Is agarose an impurity or an impurity filter? In situ observation of the joint gel/impurity effect on protein crystal growth kinetics (2008) Cryst. Growth Design, 8, pp. 3623-3629 Garcia, R.J.M., The uses of crystal growth in gels and other diffusing-reacting systems (1991) Key Eng. Mater, 58, pp. 87-106 Garcia, R.J.M., Moreno, A., Viedma, C., Coll, M., Crystal quality of lysozyme single crystals grown by the gel acupuncture method (1993) Mater. Res. Bull, 28, pp. 541-546 Oberthuer, D., Melero-Garcia, E., Dierks, K., Meyer, A., Betzel, C., Garcia-Caballero, A., Gavira, J.A., Monitoring and scoring counter-diffusion protein crystallization experiments in capillaries by In situ dynamic light scattering (2012) PLoS One, 7, pp. e33545 Ng, J.D., Gavira, J.A., Garcia-Ruiz, J.M., Protein crystallization by capillary counter-diffusion for applied crystallographic structure determination (2003) J. Struct. Biol, 142, pp. 218-231 Garcia, R.J.M., Gonzales-Ramirez, J.A., Gavira, J.A., Otalora, F., Granada Crystallisation Box: A new device for protein crystallisation by counter-diffusion techniques (2002) Acta Crystallogr. D, D58, pp. 1638-1642 Vergara, A., Castagnolo, D., Carotenuto, L., Vitagliano, L., Berisio, R., Sorrentino, G., Gonzalez-Ramirez, L., Zagari, A., Phase behavior and crystallogenesis under counter-diffusion conditions of the collagen-model peptide (Pro-Pro-Gly)(10) (2009) J. Cryst. Growth, 311, pp. 304-309 Malecki, P.H., Rypniewski, W., Szymanski, M., Barciszewski, J., Meyer, A., Binding of the plant hormone kinetin in the active site of Mistletoe Lectin I from Viscum album (2012) Biochim. Biophys. Acta, 1824, pp. 334-338 Meyer, A., Rypniewski, W., Szymanski, M., Voelter, W., Barciszewski, J., Betzel, C., Structure of mistletoe lectin I from Viscum album in complex with the phytohormone zeatin (2008) Biochim. Biophys. Acta, 1784, pp. 1590-1595 Shieh, H.S., Stallings, W.C., Stevens, A.M., Stegeman, R.A., Using sampling techniques in protein crystallization (1995) Acta Crystallogr. D, 51, pp. 305-310 Kingston, R.L., Baker, H.M., Baker, E.N., Search designs for protein crystallization based on orthogonal arrays (1994) Acta Crystallogr. D, 50, pp. 429-440 Jancarik, J., Kim, S.-H., Sparse matrix sampling: A screening method for crystallization of proteins (1991) J. Appl. Crystallogr, 24, pp. 409-411 Carter Jr., C.W., Carter, C.W., Protein crystallization using incomplete factorial experiments (1979) J. Biol. Chem, 254, pp. 12219-12223 Cudney, R., Patel, S., Weisgraber, K., Newhouse, Y., McPherson, A., Screening and optimization strategies for macromolecular crystal growth (1994) Acta Crystallogr. D, 50, pp. 414-423 Stura, E.A., Wilson, I.A., Applications of the streak seeding technique in protein crystallization (1991) J. Cryst. Growth, 110, pp. 270-282 Stewart, P.D.S., Kolek, S.A., Briggs, R.A., Chayen, N.E., Baldock, P.F.M., Random microseeding: A theoretical and practical exploration of seed stability and seeding techniques for successful protein crystallization (2011) Cryst. Growth Design, 11, pp. 3432-3441 Khurshid, S., Haire, L.F., Chayen, N.E., Automated seeding for the optimization of crystal quality (2010) J. Appl. Crystallogr, 43, pp. 752-756 Georgiev, A., Vorobiev, S., Edstrom, W., Song, T., Laine, A., Hunt, J., Allen, P., Automated streak-seeding with micromachined silicon tools (2006) Acta Crystallogr. D, D62, pp. 1039-1045 McPherson, A., Shlichta, P., Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces (1988) Science, 239, pp. 385-387 Falini, G., Fermani, S., Conforti, G., Ripamonti, A., Protein crystallisation on chemically modified mica surfaces (2002) Acta Crystallogr. D, 58, pp. 1649-1652 Tang, L., Huang, Y.B., Liu, D.Q., Li, J.L., Mao, K., Liu, L., Cheng, Z.J., He, J.H., Effects of the silanized mica surface on protein crystallization (2005) Acta Crystallogr. D, 61, pp. 53-59 Tosi, G., Fermani, S., Falini, G., Gavira Gallardo, J.A., Garcia, R.J.M., Crystallization of proteins on functionalized surfaces (2008) Acta Crystallogr. D, 64, pp. 1054-1061 Rong, L., Komatsu, H., Natsuisaka, M., Yoda, S., Epitaxial nucleation of protein crystal on poly-L-lysine modified surface (2001) Jpn. J. Appl. Phys, 40, pp. 6677-6678 Sanjoh, A., Tsukihara, T., Spatiotemporal protein crystal growth studies using microfluidic silicon devices (1999) J. Cryst. Growth, 196, pp. 691-702 Di Profio, G., Curcio, E., Drioli, E., Trypsin crystallization by membrane-based techniques (2005) J. Struct. Biol, 150, pp. 41-49 Curcio, E., Fontananova, E., di Profio, G., Drioli, E., Influence of the structural properties of poly(vinylidene fluoride) membranes on the heterogeneous nucleation rate of protein crystals (2006) J. Phys. Chem. B, 110, pp. 12438-12445 Chayen, N.E., Saridakis, E., El-Bahar, R., Nemirovsky, Y., Porous silicon: An effective nucleation-inducing material for protein crystallization (2001) J. Mol. Biol, 312, pp. 591-595 Stolyarova, S., Saridakis, E., Chayen, N.E., Nemirovsky, Y., A model for enhanced nucleation of protein crystals on a fractal porous substrate (2006) Biophys. J, 91, pp. 3857-3863 Asanithi, P., Saridakis, E., Govada, L., Jurewicz, I., Brunner, E.W., Ponnusamy, R., Cleaver, J.A., Sear, R.P., Carbon-nanotube-based materials for protein crystallization (2009) ACS Appl. Mater. Interfaces, 1, pp. 1203-1210 Sugahara, M., Asada, Y., Morikawa, Y., Kageyama, Y., Kunishima, N., Nucleant-mediated protein crystallization with the application of microporous synthetic zeolites (2008) Acta Crystallogr. D, 64, pp. 686-695 Georgieva, D.G., Kuil, M.E., Oosterkamp, T.H., Zandbergen, H.W., Abrahams, J.P., Heterogeneous nucleation of three-dimensional protein nanocrystals (2007) Acta Crystallogr. D, 63, pp. 564-570 Takehara, M., Ino, K., Takakusagi, Y., Oshikane, H., Nureki, O., Ebina, T., Mizukami, F., Sakaguchi, K., Use of layer silicate for protein crystallization: Effects of micromica and chlorite powders in hanging drops (2008) Anal. BioChem, 373, pp. 322-329 Saridakis, E., Khurshid, S., Govada, L., Phan, Q., Hawkins, D., Crichlow, G.V., Lolis, E., Chayen, N.E., Protein crystallization facilitated by molecularly imprinted polymers (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 11081-11086 Thakur, A.S., Robin, G., Guncar, G., Saunders, N.F., Newman, J., Martin, J.L., Kobe, B., Improved success of sparse matrix protein crystallization screening with heterogeneous nucleating agents (2007) PLoS One, 2, pp. e1091 Nederlof, I., Hosseini, R., Georgieva, D., Luo, J., Li, D., Abrahams, J.P., A straightforward and robust method for introducing human hair as a nucleant into high throughput crystallization trials (2011) Cryst. Growth Des, 11, pp. 1170-1176 Munshi, P., Chung, S.L., Blakeley, M.P., Weiss, K.L., Myles, D.A., Meilleur, F., Rapid visualization of hydrogen positions in protein neutron crystallographic structures (2012) Acta Crystallogr. D, 68, pp. 35-41 Budayova-Spano, M., Dauvergne, F., Audiffren, M., Bactivelane, T., Cusack, S., A methodology and an instrument for the temperature-controlled optimization of crystal growth (2007) Acta Crystallogr. D, 63, pp. 339-347 Matsumura, H., Kakiniuchi, K., Nakamura, T., Sugiyama, S., Maruyama, M., Adachi, H., Takano, K., Mori, Y., Growth of protein crystals by syringe-type top-seeded solution growth (2011) Cryst. Growth Des, 11, pp. 1486-1492 Matsumura, H., Sugiyama, S., Hirose, M., Kakinouchi, K., Maruyama, M., Murai, R., Adachi, H., Mori, Y., Approach for growth of high-quality and large protein crystals (2011) J. Synchrotron. Rad, 18, pp. 16-19 Sugiyama, S., Hasenaka, H., Hirose, M., Shimizu, N., Kitatani, T., Takahashi, Y., Adachi, H., Inoue, T., Femtosecond laser processing of agarose gel surrounding protein crystals for development of an automated crystal capturing system (2009) Jpn. J. Appl. Phys, 48, pp. 105502-105506 Murai, R., Yoshikawa, H.Y., Takahashi, Y., Maruyama, M., Sugiyama, S., Sazaki, G., Adachi, H., Murakami, S., Enhancement of femtosecond laser-induced nucleation of protein in a gel solution (2010) Appl. Phys. Lett, 96, pp. 043702-043704 Sherlin, L.D., Bullock, T.L., Nissan, T.A., Perona, J.J., Lariviere, F.J., Uhlenbeck, O.C., Scaringe, S.A., Chemical and enzymatic synthesis of tRNAs for high-throughput crystallization (2001) RNA, 7, pp. 1671-1678 Choi, J., Majima, T., Conformational changes of non-B DNA (2011) Chem. Soc. Rev, 40, pp. 5893-5909 Mooers, B.H., Crystallographic studies of DNA and RNA (2009) Methods, 47, pp. 168-176 Batey, R.T., Rambo, R.P., Lucast, L., Rha, B., Doudna, J.A., Crystal structure of the ribonucleoprotein core of the signal recognition particle (2000) Science, 287, pp. 1232-1239 Ferre-D'Amare, A.R., Zhou, K., Doudna, J.A., A general module for RNA crystallization (1998) J. Mol. Biol, 279, pp. 621-631 Rupert, P.B., Ferre-D'Amare, A.R., Crystallization of the hairpin ribozyme: Illustrative protocols (2004) Methods Mol. Biol, 252, pp. 303-311 Patel, D.J., Phan, A.T., Kuryavyi, V., Human telomere, oncogenic promoter and 5'-UTR G-quadruplexes: Diverse higher order DNA and RNA targets for cancer therapeutics (2007) Nucleic Acids Res, 35, pp. 7429-7455 Lech, C.J., Heddi, B., Phan, A.T., Guanine base stacking in G-quadruplex nucleic acids (2013) Nucleic Acids Res, 41, pp. 2034-2046 Xu, Y., Komiyama, M., Structure, function and targeting of human telomere RNA (2012) Methods, 57, pp. 100-105 Neidle, S., Human telomeric G-quadruplex: The current status of telomeric G-quadruplexes as therapeutic targets in human cancer (2010) FEBS J, 277, pp. 1118-1125 Haider, S.M., Neidle, S., Parkinson, G.N., A structural analysis of G-quadruplex/ligand interactions (2011) Biochimie, 93, pp. 1239-1251 Lane, A.N., Chaires, J.B., Gray, R.D., Trent, J.O., Stability and kinetics of G-quadruplex structures (2008) Nucleic Acids Res, 36, pp. 5482-5515 Bugaut, A., Balasubramanian, S., A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes (2008) BioChemistry, 47, pp. 689-697 Hud, N.V., Smith, F.W., Anet, F.A., Feigon, J., The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration: A thermodynamic analysis by 1H NMR (1996) BioChemistry, 35, pp. 15383-15390 Campbell, N.H., Parkinson, G.N., Crystallographic studies of quadruplex nucleic acids (2007) Methods, 43, pp. 252-263 Perederina, A., Krasilnikov, A.S., Crystallization of RNA-protein complexes: From synthesis and purification of individual components to crystals (2012) Methods Mol. Biol, 905, pp. 123-143 Tan, S., Hunziker, Y., Pellegrini, L., Richmond, T.J., Crystallization of the yeast MATalpha2/MCM1/DNA ternary complex: General methods and principles for protein/DNA cocrystallization (2000) J. Mol. Biol, 297, pp. 947-959 Jordan, S.R., Whitcombe, T.V., Berg, J.M., Pabo, C.O., Systematic variation in DNA length yields highly ordered repressor-operator cocrystals (1985) Science, 230, pp. 1383-1385 Ke, A., Doudna, J.A., Crystallization of RNA and RNA-protein complexes (2004) Methods, 34, pp. 408-414 Brown, D.G., Freemont, P.S., Crystallography in the study of protein-DNA interactions (1996) Methods Mol. Biol, 56, pp. 293-318 Hollis, T., Crystallization of Protein-DNA Complexes (2007) Macromolecular Crystallography Protocols: Preparation and Crystallization of Macromolecules, 363. , Springer: New York, NY, USA Conlin, R.M., Brown, R.S., Reconstitution of Protein-DNA Complexes for Crystallization (1994) DNA-Protein Interactions: Principles and Protocols, 30. , Springer: New York, NY, USA Nadassy, K., Wodak, S.J., Janin, J., Structural features of protein-nucleic acid recognition sites (1999) BioChemistry, 38, pp. 1999-2017 Yang, X.L., Otero, F.J., Ewalt, K.L., Liu, J., Swairjo, M.A., Kohrer, C., Rajbhandary, U.L., Schimmel, P., Two conformations of a crystalline human tRNA synthetase-tRNA complex: Implications for protein synthesis (2006) EMBO J, 25, pp. 2919-2929 Rice, P.A., Yang, S., Mizuuchi, K., Nash, H.A., Crystal structure of an IHF-DNA complex: A protein-induced DNA U-turn (1996) Cell, 87, pp. 1295-1306 Wedekind, J.E., McKay, D.B., Crystal structure of a lead-dependent ribozyme revealing metal binding sites relevant to catalysis (1999) Nat. Struct. Biol, 6, pp. 261-268 Russo, K.I., Merlino, A., Randazzo, A., Mazzarella, L., Sica, F., Crystallization and preliminary X-ray analysis of the complex of human alpha-thrombin with a modified thrombin-binding aptamer (2010) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 66, pp. 961-963 Garavito, R.M., Rosenbusch, J.P., Three-dimensional crystals of an integral membrane protein: An initial x-ray analysis (1980) J. Cell Biol, 86, pp. 327-329 Bill, R.M., Henderson, P.J., Iwata, S., Kunji, E.R., Michel, H., Neutze, R., Newstead, S., Vogel, H., Overcoming barriers to membrane protein structure determination (2011) Nat. Biotechnol, 29, pp. 335-340 Prive, G.G., Detergents for the stabilization and crystallization of membrane proteins (2007) Methods, 41, pp. 388-397 Newstead, S., Ferrandon, S., Iwata, S., Rationalizing alpha-helical membrane protein crystallization (2008) Protein Sci, 17, pp. 466-472 Hunte, C., Michel, H., Crystallisation of membrane proteins mediated by antibody fragments (2002) Curr. Opin. Struct. Biol, 12, pp. 503-508 Landau, E.M., Rosenbusch, J.P., Lipidic cubic phases: A novel concept for the crystallization of membrane proteins (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 14532-14535 Wadsten, P., Wohri, A.B., Snijder, A., Katona, G., Gardiner, A.T., Cogdell, R.J., Neutze, R., Engstrom, S., Lipidic sponge phase crystallization of membrane proteins (2006) J. Mol. Biol, 364, pp. 44-53 Faham, S., Bowie, J.U., Bicelle crystallization: A new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure (2002) J. Mol. Biol, 316, pp. 1-6 Wiener, M.C., A pedestrian guide to membrane protein crystallization (2004) Methods, 34, pp. 364-372 Ujwal, R., Bowie, J.U., Crystallizing membrane proteins using lipidic bicelles (2011) Methods, 55, pp. 337-341 Luecke, H., Schobert, B., Richter, H.T., Cartailler, J.P., Lanyi, J.K., Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution (1999) Science, 286, pp. 255-261 Katona, G., Snijder, A., Gourdon, P., Andreasson, U., Hansson, O., Andreasson, L.E., Neutze, R., Conformational regulation of charge recombination reactions in a photosynthetic bacterial reaction center (2005) Nat. Struct. Mol. Biol, 12, pp. 630-631 Caffrey, M., Cherezov, V., Crystallizing membrane proteins using lipidic mesophases (2009) Nat. Protocols, 4, pp. 706-731 Caffrey, M., Crystallizing membrane proteins for structure-function studies using lipidic mesophases (2011) BioChem. Soc. Trans, 39, pp. 725-732 Cherezov, V., Lipidic cubic phase technologies for membrane protein structural studies (2011) Curr. Opin. Struct. Biol, 21, pp. 559-566 Li, D., Caffrey, M., Lipid cubic phase as a membrane mimetic for integral membrane protein enzymes (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 8639-8644 Aherne, M., Lyons, J.A., Caffrey, M., A fast, simple and robust protocol for growing crystals in the lipidic cubic phase (2012) J. Appl. Crystallogr, 45, pp. 1330-1333 Pebay-Peyroula, E., Rummel, G., Rosenbusch, J.P., Landau, E.M., X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases (1997) Science, 277, pp. 1676-1681 Royant, A., Nollert, P., Edman, K., Neutze, R., Landau, E.M., Pebay-Peyroula, E., Navarro, J., X-ray structure of sensory rhodopsin II at 2.1-A resolution (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 10131-10136 Gordeliy, V.I., Labahn, J., Moukhametzianov, R., Efremov, R., Granzin, J., Schlesinger, R., Buldt, G., Klare, J.P., Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex (2002) Nature, 419, pp. 484-487 Vogeley, L., Sineshchekov, O.A., Trivedi, V.D., Sasaki, J., Spudich, J.L., Luecke, H., Anabaena sensory rhodopsin: A photochromic color sensor at 2.0 A (2004) Science, 306, pp. 1390-1393 Kato, H.E., Zhang, F., Yizhar, O., Ramakrishnan, C., Nishizawa, T., Hirata, K., Ito, J., Hayashi, S., Crystal structure of the channelrhodopsin light-gated cation channel (2012) Nature, 482, pp. 369-374 Katona, G., Andreasson, U., Landau, E.M., Andreasson, L.E., Neutze, R., Lipidic cubic phase crystal structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.35A resolution (2003) J. Mol. Biol, 331, pp. 681-692 Cherezov, V., Rosenbaum, D.M., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Kobilka, B.K., High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor (2007) Science, 318, pp. 1258-1265 Jaakola, V.P., Griffith, M.T., Hanson, M.A., Cherezov, V., Chien, E.Y., Lane, J.R., Ijzerman, A.P., Stevens, R.C., The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist (2008) Science, 322, pp. 1211-1217 Shimamura, T., Shiroishi, M., Weyand, S., Tsujimoto, H., Winter, G., Katritch, V., Abagyan, R., Han, G.W., Structure of the human histamine H1 receptor complex with doxepin (2011) Nature, 475, pp. 65-70 Haga, K., Kruse, A.C., Asada, H., Yurugi-Kobayashi, T., Shiroishi, M., Zhang, C., Weis, W.I., Haga, T., Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist (2012) Nature, 482, pp. 547-551 Liu, W., Cherezov, V., Crystallization of membrane proteins in lipidic mesophases (2011) J. Visual. Exp. JoVE, 49, pp. 1259-1270 Li, D., Boland, C., Walsh, K., Caffrey, M., Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases (2012) J. Visual. Exp. JoVE, 67, pp. e4000 Xu, F., Liu, W., Hanson, M.A., Stevens, R.C., Cherezov, V., Development of an automated high throughput LCP-FRAP assay to guide membrane protein crystallization in lipid mesophases (2011) Cryst. Growth Des, 11, pp. 1193-1201 Kubicek, J., Schlesinger, R., Baeken, C., Buldt, G., Schafer, F., Labahn, J., Controlled in meso phase crystallization-a method for the structural investigation of membrane proteins (2012) PLoS One, 7, pp. e35458 Nollert, P., Navarro, J., Landau, E.M., Crystallization of membrane proteins in cubo (2002) Methods Enzymol, 343, pp. 183-199 Johansson, L.C., Wohri, A.B., Katona, G., Engstrom, S., Neutze, R., Membrane protein crystallization from lipidic phases (2009) Curr. Opin. Struct. Biol, 19, pp. 372-378 Fellouse, F.A., Esaki, K., Birtalan, S., Raptis, D., Cancasci, V.J., Koide, A., Jhurani, P., Kossiakoff, A.A., High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries (2007) J. Mol. Biol, 373, pp. 924-940 Lim, H.H., Fang, Y., Williams, C., High-efficiency screening of monoclonal antibodies for membrane protein crystallography (2011) PLoS One, 6, pp. e24653 Sennhauser, G., Grutter, M.G., Chaperone-assisted crystallography with DARPins (2008) Structure, 16, pp. 1443-1453 Ostermeier, C., Michel, H., Crystallization of membrane proteins (1997) Curr. Opin. Struct. Biol, 7, pp. 697-701 Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., An, X., Chang, W., Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution (2004) Nature, 428, pp. 287-292 Newman, J., Bolton, E.E., Muller-Dieckmann, J., Fazio, V.J., Gallagher, D.T., Lovell, D., Luft, J.R., Sayle, R.A., On the need for an international effort to capture, share and use crystallization screening data (2012) Acta Crystallogr. Sect. F, 68, pp. 253-258 Sazaki, G., van Driessche, A.E., Dai, G., Okada, M., Matsui, T., Otalora, F., Tsukamoto, K., Nakajima, K., In situ observation of elementary growth processes of protein crystals by advanced optical microscopy (2012) Protein Peptide Lett, 19, pp. 743-760 Wiencek, J.M., New strategies for protein crystal growth (1999) Ann. Rev. Biomed. Eng, 1, pp. 505-534 Qutub, Y., Reviakine, I., Maxwell, C., Navarro, J., Landau, E.M., Vekilov, P.G., Crystallization of transmembrane proteins in cubo: Mechanisms of crystal growth and defect formation (2004) J. Mol. Biol, 343, pp. 1243-1254 Glassford, S.E., Govada, L., Chayen, N.E., Byrne, B., Kazarian, S.G., Micro ATR FTIR imaging of hanging drop protein crystallisation (2012) Vib. Spectrosc, 63, pp. 492-498 Echalier, A., Glazer, R.L., Fulop, V., Geday, M.A., Assessing crystallization droplets using birefringence (2004) Acta Crystallogr. D, 60, pp. 696-702 Wilson, W.W., Light scattering as a diagnostic for protein crystal growth-A practical approach (2003) J. Struct. Biol, 142, pp. 56-65 Gliko, O., Pan, W., Katsonis, P., Neumaier, N., Galkin, O., Weinkauf, S., Vekilov, P.G., Metastable liquid clusters in super- and undersaturated protein solutions (2007) J. Phys. Chem. B, 111, pp. 3106-3114 Watts, D., Muller-Dieckmann, J., Tsakanova, G., Lamzin, V.S., Groves, M.R., Quantitive evaluation of macromolecular crystallization experiments using 1,8-ANS fluorescence (2010) Acta Crystallogr. D, 66, pp. 901-908 Fiedler, S., Müller-Dieckmann, J., Watts, D., Lamzin, V.S., Groves, M.R., In situ Protein Crystal Diffraction Screening' (2012) Crystallography, Research Technology and Applications, pp. 31-44. , Nova Science Publishers: Hamburg, Germany Trache, A., Meininger, G.A., Total internal reflection fluorescence (TIRF) microscopy (2008) Curr. Protocols Microbiol, , doi:10.1002/9780471729259.mc02a02s10 Boudjemline, A., Saridakis, E., Swann, M.J., Govada, L., Mavridis, I.M., Chayen, N.E., Use of dual polarization interferometry as a diagnostic tool for protein crystallization (2011) Anal. Chem, 83, pp. 7881-7887 Merlino, A., Vitagliano, L., Balsamo, A., Nicoletti, F.P., Howes, B.D., Giordano, D., Coppola, D., Smulevich, G., Crystallization, preliminary X-ray diffraction studies and Raman microscopy of the major haemoglobin from the sub-Antarctic fish Eleginops maclovinus in the carbomonoxy form (2011) Acta Crystallogr. Sect. F, 66, pp. 1536-1540 Vergara, A., Merlino, A., Pizzo, E., D'Alessio, G., Mazzarella, L., A novel method for detection of selenomethionine incorporation in protein crystals via Raman microscopy (2008) Acta Crystallogr. D, 64, pp. 167-171 Merlino, A., Sica, F., Vergara, A., Monitoring Preparation of Derivative Protein Crystals via Raman Microscopy (2011) Current Trends In X-Ray Crystallography, pp. 393-408. , Chandrasekaran, D.A., Ed. InTech: Rijeka, Croatia Dewalt, E.L., Begue, V.J., Ronau, J.A., Sullivan, S.Z., Das, C., Simpson, G.J., Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains (2013) Acta Crystallogr. D, 69, pp. 74-81 Wampler, R.D., Kissick, D.J., Dehen, C.J., Gualtieri, E.J., Grey, J.L., Wang, H.F., Thompson, D.H., Simpson, G.J., Selective detection of protein crystals by second harmonic microscopy (2008) J. Am. Chem. Soc, 130, pp. 14076-14077 Stradner, A., Sedgwick, H., Cardinaux, F., Poon, W.C., Egelhaaf, S.U., Schurtenberger, P., Equilibrium cluster formation in concentrated protein solutions and colloids (2004) Nature, 432, pp. 492-495 Cardinaux, F., Zaccarelli, E., Stradner, A., Bucciarelli, S., Farago, B., Egelhaaf, S.U., Sciortino, F., Schurtenberger, P., Cluster-driven dynamical arrest in concentrated lysozyme solutions (2011) J. Phys. Chem. B, 115, pp. 7227-7237 Devaud, G., Furcinitti, P.S., Fleming, J.C., Lyon, M.K., Douglas, K., Direct observation of defect structure in protein crystals by atomic force and transmission electron microscopy (1992) Biophys. J, 63, pp. 630-638 Gomery, K., Humphrey, E.C., Herring, R., Imaging and diffraction of protein crystallization using TEM (2012) J. Electron. Microsc, , doi:10.1093/jmicro/dfs088 Desbois, S., Seabrook, S.A., Newman, J., Some practical guidelines for UV imaging in the protein crystallization laboratory (2013) Acta Crystallogr. Sect. F, 69, pp. 201-208 Hu, Z.W., Thomas, B.R., Chernov, A.A., Laboratory multiple-crystal X-ray topography and reciprocal-space mapping of protein crystals: Influence of impurities on crystal perfection (2001) Acta Crystallogr. D, 57, pp. 840-846 Capelle, B., Epelboin, Y., Hartwig, J., Moraleda, A.B., Otalora, F., Stojanoff, V., Characterization of dislocations in protein crystals by means of synchrotron double-crystal topography (2004) J. Appl. Cryst, 37, pp. 67-71 Gill, H.S., Evaluating the efficacy of tryptophan fluorescence and absorbance as a selection tool for identifying protein crystals (2010) Acta Crystallogr. Sect. F, 66, pp. 364-372 Madden, J.T., Dewalt, E.L., Simpson, G.J., Two-photon excited UV fluorescence for protein crystal detection (2011) Acta Crystallogr. D, 67, pp. 839-846 Carpentier, P., Royant, A., Ohana, J., Bourgeois, D., Advances in spectroscopic methods for biological crystals. 2. Raman spectroscopy (2007) J. Appl. Crystallogr, 40, pp. 1113-1122 Vergara, A., Vitagliano, L., Merlino, A., Sica, F., Marino, K., Verde, C., di Prisco, G., Mazzarella, L., An order-disorder transition plays a role in switching off the Root effect in fish hemoglobins (2010) J. Biol. Chem, 285, pp. 32568-32575 Katona, G., Carpentier, P., Niviere, V., Amara, P., Adam, V., Ohana, J., Tsanov, N., Bourgeois, D., Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme (2007) Science, 316, pp. 449-453 Derewenda, Z.S., Rational protein crystallization by mutational surface engineering (2004) Structure, 12, pp. 529-535 Kobayashi, M., Kubota, M., Matsuura, Y., Crystallization and improvement of crystal quality for x-ray diffraction of maltooligosyl trehalose synthase by reductive methylation of lysine residues (1999) Acta Crystallogr. D, 55, pp. 931-933 Walter, T.S., Meier, C., Assenberg, R., Au, K.F., Ren, J., Verma, A., Nettleship, J.E., Grimes, J.M., Lysine methylation as a routine rescue strategy for protein crystallization (2006) Structure, 14, pp. 1617-1622 Heras, B., Martin, J.L., Post-crystallization treatments for improving diffraction quality of protein crystals (2005) Acta Crystallogr. D, 61, pp. 1173-1180 Derewenda, Z.S., Vekilov, P.G., Entropy and surface engineering in protein crystallization (2006) Acta Crystallogr. D, 62, pp. 116-124 Harp, J.M., Hanson, B.L., Timm, D.E., Bunick, G.J., Macromolecular crystal annealing: Evaluation of techniques and variables (1999) Acta Crystallogr. D, 55, pp. 1329-1334 Kriminski, S., Caylor, C.L., Nonato, M.C., Finkelstein, K.D., Thorne, R.E., Flash-cooling and annealing of protein crystals (2002) Acta Crystallogr. D, 58, pp. 459-471 Russo, K.I., Sica, F., Mattia, C.A., Merlino, A., Increasing the X-ray diffraction power of protein crystals by dehydration: The case of bovine serum albumin and a survey of literature data (2012) Int. J. Mol. Sci, 13, pp. 3782-3800 Newman, J., A review of techniques for maximizing diffraction from a protein crystal in stilla (2006) Acta Crystallogr. D, 62, pp. 27-31 Wine, Y., Cohen-Hadar, N., Freeman, A., Frolow, F., Elucidation of the mechanism and end products of glutaraldehyde crosslinking reaction by X-ray structure analysis (2007) Biotechnol. Bioeng, 98, pp. 711-718 Harp, J.M., Timm, D.E., Bunick, G.J., Macromolecular crystal annealing: Overcoming increased mosaicity associated with cryocrystallography (1998) Acta Crystallogr. D, 54, pp. 622-628 Einstein, J.R., Humidity control device for the Buerger precession camera (1961) J. Sci. Instrum, 38, p. 449 Huxley, H.E., Kendrew, J.C., Discontinuous lattice changes in haemoglobin crystals (1953) Acta Cryst, 6, pp. 76-80 Pickford, M.G., Garman, E.F., Jones, E.Y., Stuart, D.I., A design of crystal mounting cell that allows the controlled variation of humidity at the protein crystal during X-ray diffraction (1993) J. Appl. Crystallogr, 26, pp. 465-466 Sjögren, T., Carlsson, G., Larsson, G., Hajdu, A., Andersson, C., Pettersson, H., Hajdu, J., Protein crystallography in a vapour stream: Data collection, reaction initiation and intermediate trapping in naked hydrated protein crystals (2002) J. Appl. Crystallogr, 35, pp. 113-116 Kiefersauer, R., Stetefeld, J., Gomis-Rüth, F.X., Romão, M.J., Lottspeich, F., Huber, R., Protein-crystal density by volume measurement and amino-acid analysis (1996) J. Appl. Crystallogr, 29, pp. 311-317 Kiefersauer, R., Than, M.E., Dobbek, H., Gremer, L., Melero, M., Strobl, S., Dias, J.M., Huber, R., A novel free-mounting system for protein crystals: Transformation and improvement of diffraction power by accurately controlled humidity changes (2000) J. Appl. Crystallogr, 33, pp. 1223-1230 Collins, M.D., Kim, C.U., Gruner, S.M., High-pressure protein crystallography and NMR to explore protein conformations (2011) Ann. Rev. Biophys, 40, pp. 81-98 Suzuki, Y., Sazaki, G., Miyashita, S., Sawada, T., Tamura, K., Komatsu, H., Protein crystallization under high pressure (2002) Biochim. Biophys. Acta, 1595, pp. 345-356 Suzuki, Y., Protein Crystal Growth under High Pressure (2012) Modern Aspects of Bulk Crystal and Thin Film Preparation, pp. 439-462. , InTech: Rijeka, Croatia Li, L., Ismagilov, R.F., Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip (2010) Ann. Rev. Biophys, 39, pp. 139-518 Yamaguchi, H., Maeki, M., Yamashita, K., Nakamura, H., Miyazaki, M., Maeda, H., Controlling one protein crystal growth by droplet-based microfluidic system (2013) J. BioChem, 153, pp. 339-346 Guha, S., Perry, S.L., Pawate, A.S., Kenis, P.J.A., Fabrication of X-ray compatible microfluidic platforms for protein crystallization (2012) Sensor Actuat. B, 174, pp. 1-9 Hoffman, I. D., Protein crystallization for structure-based drug design (2012) Methods Mol. Biol, 841, pp. 67-91 Deschamps, J. R., The role of crystallography in drug design (2005) AAPS J, 7, pp. E813-E819 Cachau, R. E., Podjarny, A. D., High-resolution crystallography and drug design (2005) J. Mol. Recognit, 18, pp. 196-202 Blundell, T. L., Patel, S., High-throughput X-ray crystallography for drug discovery (2004) Curr. Opin. Pharmacol, 4, pp. 490-496 Bergfors, T. M., (1999) Protein Crystallization: Techniques, Strategies and Tips, , International University Line: La Jolla, CA, USA Kelly, S. M., Price, N. C., The use of circular dichroism in the investigation of protein structure and function (2000) Curr. Protein Pept. Sci, 1, pp. 349-384 Berne, B. J., Pecora, R., (2000) Dynamic Light Scattering With Applications to Chemistry, Biology, and Physics, , John Wiley & Sons: New York, NY, USA Chernov, A. A., Komatsu, H., Principles of Crystal Growth in Protein Crystallization (1995) Science and Technology of Crystal Growth, , van der Eerden, J. P., Bruinsma, O. S. L., Eds. Dumetz, A. C., Chockla, A. M., Kaler, E. W., Lenhoff, A. M., Effects of pH on protein-protein interactions and implications for protein phase behavior (2008) Biochim. Biophys. Acta, 1784, pp. 600-610 Kantardjieff, K. A., Rupp, B., Protein isoelectric point as a predictor for increased crystallization screening efficiency (2004) Bioinformatics, 20, pp. 2162-2168 Malawski, G. A., Hillig, R. C., Monteclaro, F., Eberspaecher, U., Schmitz, A. A., Crusius, K., Huber, M., Muller-Tiemann, B., Identifying protein construct variants with increased crystallization propensity-a case study (2006) Protein Sci, 15, pp. 2718-2728 Ericsson, U. B., Hallberg, B. M., Detitta, G. T., Dekker, N., Nordlund, P., Thermofluor-based high-throughput stability optimization of proteins for structural studies (2006) Anal. BioChem, 357, pp. 289-298 Judge, R. A., Takahashi, S., Longenecker, K. L., Fry, E. H., Abad-Zapatero, C., Chiu, M. L., The effect of ionic liquids on protein crystallization and X-ray diffraction resolution (2009) Cryst. Growth Des, 9, pp. 3463-3469 Larson, S. B., Day, J. S., Cudney, R., McPherson, A., A novel strategy for the crystallization of proteins: X-ray diffraction validation (2007) Acta Crystallogr. D, 63, pp. 310-318 Sauter, C., Ng, J. D., Lorber, B., Keith, G., Brion, P., Hosseini, M. W., Lehn, J. -M., Giege, R., Additives for the crystallization of proteins and nucleic acids (1999) J. Cryst. Growth, 196, pp. 365-376 Shim, J. U., Cristobal, G., Link, D. R., Thorsen, T., Fraden, S., Using microfluidics to decouple nucleation and growth of protein crystals (2007) Cryst. Growth Des, 7, pp. 2192-2194 Tom ov, I., Branca, R. M., Bodo, G., Bagyinka, C., Smatanov, I. K., Cross-crystallization method used for the crystallization and preliminary diffraction analysis of a novel di-haem cytochrome c4 (2006) Acta Crystallogr. Sect. F, 62, pp. 820-824 Tom ov, I., Smatanov, I. K., Copper co-crystallization and divalent metal salts cross-influence effect: A new optimization tool improving crystal morphology and diffraction quality (2007) J. Cryst. Growth, 306, pp. 383-389 Kundrot, C. E., Judge, R. A., Pusey, M. L., Snell, E. H., Microgravity and macromolecular crystallography (2001) Cryst. Growth Des, 1, pp. 87-99 Wakayama, N. I., Yin, D. C., Harata, K., Kiyoshi, T., Fujiwara, M., Tanimoto, Y., Macromolecular crystallization in microgravity generated by a superconducting magnet (2006) Ann. N. Y. Acad. Sci, 1077, pp. 184-193 Yin, D. C., Wakayama, N. I., Harata, K., Fujiwara, M., Kiyoshi, T., Wada, H., Niimura, N., Tanimoto, Y., Formation of protein crystals (orthorhombic lysozyme) in quasi-microgravity environment obtained by superconducting magnet (2004) J. Cryst. Growth, 270, pp. 184-191 Gavira, J. A., Garcia-Ruiz, J. M., Effects of a magnetic field on lysozyme crystal nucleation and growth in a diffusive environment (2009) Cryst. Growth Design, 9, pp. 2610-2615 Nanev, C. N., Penkova, A., Nucleation of lysozyme crystals under external electric and ultrasonic fields (2001) J. Cryst. Growth, 232, pp. 285-293 Al-Haq, M. I., Lebrasseur, E., Choi, W. -K., Tsuchiya, H., Torii, T., Yamazaki, H., Shinohara, E., An apparatus for electric-field-induced protein crystallization (2007) J. Appl. Crystallogr, 40, pp. 199-201 Guti rrez-Quezada, A. E., Arregu n-Espinosa, R., Moreno, A., Natarajan, S., Kalkura, S. N., Celestian, A. J., Parise, J. B., Vedda, A., Special Topics in Crystal Growth (2010) Springer Handbook of Crystal Growth, pp. 1583-1736. , Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M., Eds. Chayen, N. E., Comparative studies of protein crystallization by vapour-diffusion and microbatch techniques (1998) Acta Crystallogr. D, 1, pp. 8-15 Whon, T. W., Lee, Y. H., An, D. S., Song, H. K., Kim, S. G., A simple technique to convert sitting-drop vapor diffusion into hanging-drop vapor diffusion by solidifying the reservoir solution with agarose (2009) J. Appl. Crystallogr, 42, pp. 975-976 Lu, Q. Q., Yin, D. C., Xie, S. X., Liu, Y. M., Chen, R. Q., The effect of diluting crystallization droplets on protein crystallization in vapor diffusion method (2011) Cryst. Res. Technol, 46, pp. 917-925 Chayen, N. E., A novel technique to control the rate of vapor diffusion, giving larger protein crystals (1997) J. Appl. Crystallogr, 30, pp. 198-201 Chayen, N. E., Crystallization with oils: A new dimension in macromolecular crystal growth (1999) J. Cryst. Growth, 196, pp. 434-441 Chayen, N. E., Shaw, S. P. D., Maeder, D. L., Blow, D. M., An automated system for micro-batch protein crystallization and screening (1990) J. Appl. Crystallogr, 23, pp. 297-302 Reid, B. R., Koch, G. L., Boulanger, Y., Hartley, B. S., Blow, D. M., Letter: Crystallization and preliminary X-ray diffraction studies on tyrosyl-transfer RNA synthetase from Bacillus stearothermophilus (1973) J. Mol. Biol, 80, pp. 199-201 Thomas, D. H., Rob, A., Rice, D. W., A novel dialysis procedure for the crystallization of proteins (1989) Protein Eng, 2, pp. 489-491 Salemme, F. R., A free interface diffusion technique for the crystallization of proteins for X-ray crystallography (1972) Arch. BioChem. Biophys, 151, pp. 533-539 Robert, M. C., Lefaucheux, F., Crystal growth in gels: Principle and applications (1988) J. Cryst. Growth, 90, pp. 358-367 Zhu, D. W., Lorber, B., Sauter, C., Ng, J. D., Benas, P., Le Grimellec, C., Giege, R., Growth kinetics, diffraction properties and effect of agarose on the stability of a novel crystal form of Thermus thermophilus aspartyl-tRNA synthetase-1 (2001) Acta Crystallogr. D, 57, pp. 552-558 Chayen, N. E., Turning protein crystallisation from an art into a science (2004) Curr. Opin. Struct. Biol, 14, pp. 577-583 van Driessche, A. E. S., Otalora, F., Gavira, J. A., Sazaki, G., Is agarose an impurity or an impurity filter? In situ observation of the joint gel/impurity effect on protein crystal growth kinetics (2008) Cryst. Growth Design, 8, pp. 3623-3629 Garcia, R. J. M., The uses of crystal growth in gels and other diffusing-reacting systems (1991) Key Eng. Mater, 58, pp. 87-106 Garcia, R. J. M., Moreno, A., Viedma, C., Coll, M., Crystal quality of lysozyme single crystals grown by the gel acupuncture method (1993) Mater. Res. Bull, 28, pp. 541-546 Ng, J. D., Gavira, J. A., Garcia-Ruiz, J. M., Protein crystallization by capillary counter-diffusion for applied crystallographic structure determination (2003) J. Struct. Biol, 142, pp. 218-231 Garcia, R. J. M., Gonzales-Ramirez, J. A., Gavira, J. A., Otalora, F., Granada Crystallisation Box: A new device for protein crystallisation by counter-diffusion techniques (2002) Acta Crystallogr. D, D58, pp. 1638-1642 Malecki, P. H., Rypniewski, W., Szymanski, M., Barciszewski, J., Meyer, A., Binding of the plant hormone kinetin in the active site of Mistletoe Lectin I from Viscum album (2012) Biochim. Biophys. Acta, 1824, pp. 334-338 Shieh, H. S., Stallings, W. C., Stevens, A. M., Stegeman, R. A., Using sampling techniques in protein crystallization (1995) Acta Crystallogr. D, 51, pp. 305-310 Kingston, R. L., Baker, H. M., Baker, E. N., Search designs for protein crystallization based on orthogonal arrays (1994) Acta Crystallogr. D, 50, pp. 429-440 Carter Jr., C. W., Carter, C. W., Protein crystallization using incomplete factorial experiments (1979) J. Biol. Chem, 254, pp. 12219-12223 Stura, E. A., Wilson, I. A., Applications of the streak seeding technique in protein crystallization (1991) J. Cryst. Growth, 110, pp. 270-282 Stewart, P. D. S., Kolek, S. A., Briggs, R. A., Chayen, N. E., Baldock, P. F. M., Random microseeding: A theoretical and practical exploration of seed stability and seeding techniques for successful protein crystallization (2011) Cryst. Growth Design, 11, pp. 3432-3441 Chayen, N. E., Saridakis, E., El-Bahar, R., Nemirovsky, Y., Porous silicon: An effective nucleation-inducing material for protein crystallization (2001) J. Mol. Biol, 312, pp. 591-595 Georgieva, D. G., Kuil, M. E., Oosterkamp, T. H., Zandbergen, H. W., Abrahams, J. P., Heterogeneous nucleation of three-dimensional protein nanocrystals (2007) Acta Crystallogr. D, 63, pp. 564-570 Thakur, A. S., Robin, G., Guncar, G., Saunders, N. F., Newman, J., Martin, J. L., Kobe, B., Improved success of sparse matrix protein crystallization screening with heterogeneous nucleating agents (2007) PLoS One, 2, pp. e1091 Sherlin, L. D., Bullock, T. L., Nissan, T. A., Perona, J. J., Lariviere, F. J., Uhlenbeck, O. C., Scaringe, S. A., Chemical and enzymatic synthesis of tRNAs for high-throughput crystallization (2001) RNA, 7, pp. 1671-1678 Mooers, B. H., Crystallographic studies of DNA and RNA (2009) Methods, 47, pp. 168-176 Batey, R. T., Rambo, R. P., Lucast, L., Rha, B., Doudna, J. A., Crystal structure of the ribonucleoprotein core of the signal recognition particle (2000) Science, 287, pp. 1232-1239 Rupert, P. B., Ferre-D'Amare, A. R., Crystallization of the hairpin ribozyme: Illustrative protocols (2004) Methods Mol. Biol, 252, pp. 303-311 Patel, D. J., Phan, A. T., Kuryavyi, V., Human telomere, oncogenic promoter and 5'-UTR G-quadruplexes: Diverse higher order DNA and RNA targets for cancer therapeutics (2007) Nucleic Acids Res, 35, pp. 7429-7455 Lech, C. J., Heddi, B., Phan, A. T., Guanine base stacking in G-quadruplex nucleic acids (2013) Nucleic Acids Res, 41, pp. 2034-2046 Haider, S. M., Neidle, S., Parkinson, G. N., A structural analysis of G-quadruplex/ligand interactions (2011) Biochimie, 93, pp. 1239-1251 Lane, A. N., Chaires, J. B., Gray, R. D., Trent, J. O., Stability and kinetics of G-quadruplex structures (2008) Nucleic Acids Res, 36, pp. 5482-5515 Hud, N. V., Smith, F. W., Anet, F. A., Feigon, J., The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration: A thermodynamic analysis by 1H NMR (1996) BioChemistry, 35, pp. 15383-15390 Campbell, N. H., Parkinson, G. N., Crystallographic studies of quadruplex nucleic acids (2007) Methods, 43, pp. 252-263 Jordan, S. R., Whitcombe, T. V., Berg, J. M., Pabo, C. O., Systematic variation in DNA length yields highly ordered repressor-operator cocrystals (1985) Science, 230, pp. 1383-1385 Ke, A., Doudna, J. A., Crystallization of RNA and RNA-protein complexes (2004) Methods, 34, pp. 408-414 Brown, D. G., Freemont, P. S., Crystallography in the study of protein-DNA interactions (1996) Methods Mol. Biol, 56, pp. 293-318 Conlin, R. M., Brown, R. S., Reconstitution of Protein-DNA Complexes for Crystallization (1994) DNA-Protein Interactions: Principles and Protocols, 30. , Springer: New York, NY, USA Yang, X. L., Otero, F. J., Ewalt, K. L., Liu, J., Swairjo, M. A., Kohrer, C., Rajbhandary, U. L., Schimmel, P., Two conformations of a crystalline human tRNA synthetase-tRNA complex: Implications for protein synthesis (2006) EMBO J, 25, pp. 2919-2929 Rice, P. A., Yang, S., Mizuuchi, K., Nash, H. A., Crystal structure of an IHF-DNA complex: A protein-induced DNA U-turn (1996) Cell, 87, pp. 1295-1306 Wedekind, J. E., McKay, D. B., Crystal structure of a lead-dependent ribozyme revealing metal binding sites relevant to catalysis (1999) Nat. Struct. Biol, 6, pp. 261-268 Russo, K. I., Merlino, A., Randazzo, A., Mazzarella, L., Sica, F., Crystallization and preliminary X-ray analysis of the complex of human alpha-thrombin with a modified thrombin-binding aptamer (2010) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 66, pp. 961-963 Garavito, R. M., Rosenbusch, J. P., Three-dimensional crystals of an integral membrane protein: An initial x-ray analysis (1980) J. Cell Biol, 86, pp. 327-329 Bill, R. M., Henderson, P. J., Iwata, S., Kunji, E. R., Michel, H., Neutze, R., Newstead, S., Vogel, H., Overcoming barriers to membrane protein structure determination (2011) Nat. Biotechnol, 29, pp. 335-340 Prive, G. G., Detergents for the stabilization and crystallization of membrane proteins (2007) Methods, 41, pp. 388-397 Landau, E. M., Rosenbusch, J. P., Lipidic cubic phases: A novel concept for the crystallization of membrane proteins (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 14532-14535 Wiener, M. C., A pedestrian guide to membrane protein crystallization (2004) Methods, 34, pp. 364-372 Gordeliy, V. I., Labahn, J., Moukhametzianov, R., Efremov, R., Granzin, J., Schlesinger, R., Buldt, G., Klare, J. P., Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex (2002) Nature, 419, pp. 484-487 Kato, H. E., Zhang, F., Yizhar, O., Ramakrishnan, C., Nishizawa, T., Hirata, K., Ito, J., Hayashi, S., Crystal structure of the channelrhodopsin light-gated cation channel (2012) Nature, 482, pp. 369-374 Jaakola, V. P., Griffith, M. T., Hanson, M. A., Cherezov, V., Chien, E. Y., Lane, J. R., Ijzerman, A. P., Stevens, R. C., The 2. 6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist (2008) Science, 322, pp. 1211-1217 Johansson, L. C., Wohri, A. B., Katona, G., Engstrom, S., Neutze, R., Membrane protein crystallization from lipidic phases (2009) Curr. Opin. Struct. Biol, 19, pp. 372-378 Fellouse, F. A., Esaki, K., Birtalan, S., Raptis, D., Cancasci, V. J., Koide, A., Jhurani, P., Kossiakoff, A. A., High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries (2007) J. Mol. Biol, 373, pp. 924-940 Lim, H. H., Fang, Y., Williams, C., High-efficiency screening of monoclonal antibodies for membrane protein crystallography (2011) PLoS One, 6, pp. e24653 Wiencek, J. M., New strategies for protein crystal growth (1999) Ann. Rev. Biomed. Eng, 1, pp. 505-534 Glassford, S. E., Govada, L., Chayen, N. E., Byrne, B., Kazarian, S. G., Micro ATR FTIR imaging of hanging drop protein crystallisation (2012) Vib. Spectrosc, 63, pp. 492-498 Wilson, W. W., Light scattering as a diagnostic for protein crystal growth-A practical approach (2003) J. Struct. Biol, 142, pp. 56-65 Fiedler, S., M ller-Dieckmann, J., Watts, D., Lamzin, V. S., Groves, M. R., In situ Protein Crystal Diffraction Screening' (2012) Crystallography, Research Technology and Applications, pp. 31-44. , Nova Science Publishers: Hamburg, Germany Dewalt, E. L., Begue, V. J., Ronau, J. A., Sullivan, S. Z., Das, C., Simpson, G. J., Polarization-resolved second-harmonic generation microsc}, document_type={Journal Article, }, affiliation={Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, Napoli I-80126, Italy Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy}, ibbaffiliation={1}, } @article{IBB_ID_51895, author={Pica A, Russo Krauss I, Castellano I, La Cara F, Graziano G, Sica F, Merlino A}, title={Effect Of Nacl On The Conformational Stability Of The Thermophilic Gamma-Glutamyltranspeptidase From Geobacillus Thermodenitrificans: Implication For Globular Protein Halotolerance}, date={2013 Jan}, journal={Bba-Gen Subjects (ISSN: 1570-9639, 0006-3002, 0925-4439)}, year={2013}, fullvolume={334}, volume={334}, pages={149--157}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84870170311&partnerID=40&md5=c5e8899857de733b34befc5883cc442c}, abstract={The transpeptidation activity of gamma-glutamyltranspeptidase from Geobacillus thermodenitrificans (GthGT) is negligible and the enzyme is highly thermostable. Here we have examined the effect of concentrated NaCl solutions on structure, stability, dynamics and enzymatic activity of GthGT. The protein exhibited hydrolytic activity over a broad range of NaCl concentrations. Even at 4. 0 M NaCl, GthGT retained more than 90% of the initial activity and showed unaltered fluorescence emission, secondary structure and acrylamide quenching on tryptophan fluorescence. Furthermore, at 2. 8 M and 4. 0 M NaCl the temperature-induced unfolding profiles are dramatically changed with large (>20 degrees C) positive shifts in the denaturation temperature. These features make GthGT an ideal system to be used in industrial processes that require high temperatures and high-salt environments. A general explanation of the NaCl effect by means of a statistical thermodynamic model is also provided, together with an analysis of residue distribution between protein surface and interior in 15 non-redundant families of halophilic and non-halophilic proteins. The results are in line with a comparative sequence and structural analysis between halophilic and non-halophilic gamma-glutamyltranspeptidases which revealed that a major role in halotolerance should be played by solvent exposed negatively charged residues. (C) 2012 Elsevier B. V. All rights reserved}, keywords={Circular Dichroism, Fluorescence, Gamma-Glutamyl Transferase, Gamma-Glutamyl Transpeptidase, Nacl, Protein Stabilization, Acrylamide, Gamma Glutamyltransferase, Globular Protein, Sodium Chloride, Solvent, Tryptophan, Amino Acid Sequence, Article, Conformation, Denaturation, Geobacillus, Nonhuman, Priority Journal, Protein Family, Protein Unfolding, Salt Tolerance, Temperature, Thermodynamics, Bacterial Proteins, Enzyme Stability, Gamma-Glutamyltransferase, Protein Structure, Secondary, Geobacillus Thermodenitrificans, }, references={Meister, A., On the enzymology of amino acid transport (1973) Science, 180, pp. 33-3 Meister, A., Anderson, M.E., Glutathione (1983) Annu. Rev. Biochem., 52, pp. 711-760 Anderson, M.E., Meister, A., Inhibition of gamma-glutamyl transpeptidase and induction of glutathionuria by γ-glutamyl amino acids (1986) Proc. Natl. Acad. Sci. U. S. A., 83, pp. 5029-5032 Zhang, H., Forman, H.J., Choi, J., γ-Glutamyl transpeptidase in glutathione biosynthesis (2005) Methods Enzymol., 401, pp. 468-483 Owen, A.D., Schapira, A.H., Jenner, P., Marsden, C.D., Oxidative stress and Parkinson's disease (1996) Ann. N. Y. Acad. Sci., 786, pp. 217-223 Paolicchi, A., Minotti, G., Tonarelli, P., Tongiani, R., De Cesare, D., Mezzetti, A., Dominici, S., Pompella, A., γ-Glutamyl transpeptidase-dependent iron reduction and LDL oxidation - A potential mechanism in atherosclerosis (1999) J. Investig. Med., 47, pp. 151-160 Ruttmann, E., Brant, L.J., Concin, H., Diem, G., Rapp, K., Ulmer, H., γ-Glutamyltransferase as a risk factor for cardiovascular disease mortality: An epidemiological investigation in a cohort of 163,944 Austrian adults (2005) Circulation, 112, pp. 2130-2137 Castellano, I., Merlino, A., γ-Glutamyltranspeptidases: Sequence, structure, biochemical properties, and biotechnological applications (2012) Cell. Mol. Life Sci., 69, pp. 3381-3394 Minami, H., Suzuki, H., Kumagai, H., A mutant Bacillus subtilis gamma-glutamyltranspeptidase specialized in hydrolysis activity (2003) FEMS Microbiol. Lett., 224, pp. 169-173 Pica, A., Russo Krauss, I., Castellano, I., Rossi, M., La Cara, F., Graziano, G., Sica, F., Merlino, A., Exploring the unfolding mechanism of γ-glutamyltranspeptidases: The case of the thermophilic enzyme from Geobacillus thermodenitrificans (2012) Biochim. Biophys. Acta, 1824, pp. 571-577 Castellano, I., Di Salle, A., Merlino, A., Rossi, M., La Cara, F., Gene cloning and protein expression of gamma-glutamyltranspeptidases from Thermus thermophilus and Deinococcus radiodurans: Comparison of molecular and structural properties with mesophilic counterparts (2011) Extremophiles, 15, pp. 259-270 Hwang, S.Y., Ryang, J.H., Lim, W.J., Yoo, I.D., Oishi, K., Purification and properties of gamma-glutamyl transpeptidase from Bacillus sp. KUN-17 (1996) J. Microbiol. Biotechnol., 6, pp. 238-244 Xu, K., Strauch, M.A., Identification, sequence, and expression of the gene encoding gamma-glutamyltranspeptidase in Bacillus subtilis (1996) J. Bacteriol., 178, pp. 4319-4322 Imaoka, M., Yano, S., Okumura, M., Hibi, T., Wakayama, M., Molecular cloning and characterization of γ-glutamyltranspeptidase from Pseudomonas nitroreducens IFO12694 (2010) Biosci. Biotechnol. Biochem., 74, pp. 1936-1939 Boanca, G., Sand, A., Barycki, J.J., Uncoupling the enzymatic and autoprocessing activities of Helicobacter pylori γ-glutamyltranspeptidase (2006) J. Biol. Chem., 281, pp. 19029-19037 Morrow, A.L., Williams, K., Sand, A., Boanca, G., Barycki, J.J., Characterization of Helicobacter pylori γ-glutamyltranspeptidase reveals the molecular basis for substrate specificity and a critical role for the tyrosine 433-containing loop in catalysis (2007) Biochemistry, 46, pp. 13407-13414 Wada, K., Irie, M., Suzuki, H., Fukuyama, K., Crystal structure of the halotolerant γ-glutamyltranspeptidase from Bacillus subtilis in complex with glutamate reveals a unique architecture of the solvent-exposed catalytic pocket (2010) FEBS J., 277, pp. 1000-1009 Tiwary, E., Gupta, R., Improved catalytic efficiency of a monomeric γ-glutamyl transpeptidase from Bacillus licheniformis in presence of subtilisin (2010) Biotechnol. Lett., 32, pp. 1137-1141 Yang, J.C., Liang, W.C., Chen, Y.Y., Chi, M.C., Lo, H.F., Chen, H.L., Lin, L.L., Biophysical characterization of Bacillus licheniformis and Escherichia coli γ-glutamyltranspeptidases: A comparative analysis (2011) Int. J. Biol. Macromol., 48, pp. 414-422 Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254 Eftink, M.R., Ghiron, C.A., Fluorescence quenching studies with proteins (1981) Anal. Biochem., 114, pp. 199-227 Tate, S.S., Meister, A., Interaction of γ-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione (1974) J. Biol. Chem., 249, pp. 7593-7602 Wright, D.B., Banks, D.D., Lohman, J.R., Hilsenbeck, J.L., Gloss, L.M., The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases (2002) J. Mol. Biol., 323, pp. 327-344 Ishibashi, M., Arakawa, T., Philo, J.S., Sakashita, K., Yonezawa, Y., Tokunaga, H., Tokunaga, M., Secondary and quaternary structural transition of the halophilic archaeon nucleoside diphosphate kinase under high- and low-salt conditions (2002) FEMS Microbiol. Lett., 216, pp. 235-241 Waldron, T.T., Schrift, G.L., Murphy, K.P., The salt-dependence of a protein-ligand interaction: Ion-protein binding energetics (2005) J. Mol. Biol., 346, pp. 895-905 Dragan, A.I., Li, Z., Makeyeva, E.N., Milgotina, E.I., Liu, Y., Crane-Robinson, C., Privalov, P.L., Forces driving the binding of homeodomains to DNA (2006) Biochemistry, 45, pp. 141-151 Tokunaga, H., Arakawa, T., Fukada, H., Tokunaga, M., Opposing effects of NaCl on reversibility and thermal stability of halophilic beta-lactamase from a moderate halophile, Chromohalobacter sp. 560 (2006) Biophys. Chem., 119, pp. 316-320 Srimathi, S., Jayaraman, G., Feller, G., Danielsson, B., Narayanan, P.R., Intrinsic halotolerance of the psychrophilic α-amylase from Pseudoalteromonas haloplanktis (2007) Extremophiles, 11, pp. 505-515 Niiranen, L., Altermark, B., Brandsdal, B.O., Leiros, H.K., Helland, R., Smalas, A.O., Willassen, N.P., Effects of salt on the kinetics and thermodynamic stability of endonuclease i from Vibrio salmonicida and Vibrio cholerae (2008) FEBS J., 275, pp. 1593-1605 Graziano, G., On the molecular origin of cold denaturation of globular proteins (2010) Phys. Chem. Chem. Phys., 12, pp. 14245-14252 Graziano, G., How does trimethylamine N-oxide counteract the denaturing activity of urea? (2011) Phys. Chem. Chem. Phys., 13, pp. 17689-17695 Graziano, G., Contrasting the denaturing effect of guanidinium chloride with the stabilizing effect of guanidinium sulfate (2011) Phys. Chem. Chem. Phys., 13, pp. 12008-12014 Riccio, A., Graziano, G., Cold unfolding of beta-hairpins: A molecular-level rationalization (2011) Proteins, 79, pp. 1739-1746 Graziano, G., Salting out of methane by sodium chloride: A scaled particle theory study (2008) J. Chem. Phys., 129, p. 084506 Graziano, G., Dimerization thermodynamics of large hydrophobic plates: A scaled particle theory study (2009) J. Phys. Chem. B, 113, pp. 11232-11239 Ashbaugh, H.S., Pratt, L.R., Scaled-particle theory and the length scales of hydrophobicity (2006) Rev. Mod. Phys., 78, pp. 159-178 Rees, D.C., Robertson, A.D., Some thermodynamic implications for the thermostability of proteins (2001) Protein Sci., 10, pp. 1187-1194 Pace, C.N., Hebert, E.J., Shaw, K.L., Schell, D., Both, V., Krajcikova, D., Sevcik, J., Grimsley, G.R., Conformational stability and thermodynamics of folding of ribonucleases Sa, Sa2 and Sa3 (1998) J. Mol. Biol., 279, pp. 271-286 Nandi, P.K., Leclerc, E., Marc, D., Unusual property of prion protein unfolding in neutral salt solution (2002) Biochemistry, 41, pp. 11017-11024 Contessi, S., Tanfani, F., Scire, A., Mavelli, I., Lippe, G., Effects of Fe(III) binding to the nucleotide-independent site of F1-ATPase: Enzyme thermostability and response to activating anions (2001) FEBS Lett., 506, pp. 221-224 Antalík, M., Fedunová, D., Bágelová, J., Conformational transition of cytochrome c (2010) Open Macromol. J., 4, pp. 53-55 Madern, D., Ebel, C., Zaccai, G., Halophilic adaptation of enzymes (2000) Extremophiles, 4, pp. 91-98 Fukuchi, S., Yoshimune, K., Wakayama, M., Moriguchi, M., Nishikawa, K., Unique amino acid composition of proteins in halophilic bacteria (2003) J. Mol. Biol., 327, pp. 347-357 Siglioccolo, A., Paiardini, A., Piscitelli, M., Pascarella, S., Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface (2011) BMC Struct. Biol., 11, p. 50 Anderson, M. E., Meister, A., Inhibition of gamma-glutamyl transpeptidase and induction of glutathionuria by -glutamyl amino acids (1986) Proc. Natl. Acad. Sci. U. S. A., 83, pp. 5029-5032 Owen, A. D., Schapira, A. H., Jenner, P., Marsden, C. D., Oxidative stress and Parkinson's disease (1996) Ann. N. Y. Acad. Sci., 786, pp. 217-223 Hwang, S. Y., Ryang, J. H., Lim, W. J., Yoo, I. D., Oishi, K., Purification and properties of gamma-glutamyl transpeptidase from Bacillus sp. KUN-17 (1996) J. Microbiol. Biotechnol., 6, pp. 238-244 Morrow, A. L., Williams, K., Sand, A., Boanca, G., Barycki, J. J., Characterization of Helicobacter pylori -glutamyltranspeptidase reveals the molecular basis for substrate specificity and a critical role for the tyrosine 433-containing loop in catalysis (2007) Biochemistry, 46, pp. 13407-13414 Yang, J. C., Liang, W. C., Chen, Y. Y., Chi, M. C., Lo, H. F., Chen, H. L., Lin, L. L., Biophysical characterization of Bacillus licheniformis and Escherichia coli -glutamyltranspeptidases: A comparative analysis (2011) Int. J. Biol. Macromol., 48, pp. 414-422 Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254 Eftink, M. R., Ghiron, C. A., Fluorescence quenching studies with proteins (1981) Anal. Biochem., 114, pp. 199-227 Tate, S. S., Meister, A., Interaction of -glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione (1974) J. Biol. Chem., 249, pp. 7593-7602 Wright, D. B., Banks, D. D., Lohman, J. R., Hilsenbeck, J. L., Gloss, L. M., The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases (2002) J. Mol. Biol., 323, pp. 327-344 Waldron, T. T., Schrift, G. L., Murphy, K. P., The salt-dependence of a protein-ligand interaction: Ion-protein binding energetics (2005) J. Mol. Biol., 346, pp. 895-905 Dragan, A. I., Li, Z., Makeyeva, E. N., Milgotina, E. I., Liu, Y., Crane-Robinson, C., Privalov, P. L., Forces driving the binding of homeodomains to DNA (2006) Biochemistry, 45, pp. 141-151 Ashbaugh, H. S., Pratt, L. R., Scaled-particle theory and the length scales of hydrophobicity (2006) Rev. Mod. Phys., 78, pp. 159-178 Rees, D. C., Robertson, A. D., Some thermodynamic implications for the thermostability of proteins (2001) Protein Sci., 10, pp. 1187-1194 Pace, C. N., Hebert, E. J., Shaw, K. L., Schell, D., Both, V., Krajcikova, D., Sevcik, J., Grimsley, G. R., Conformational stability and thermodynamics of folding of ribonucleases Sa, Sa2 and Sa3 (1998) J. Mol. Biol., 279, pp. 271-286 Nandi, P. K., Leclerc, E., Marc, D., Unusual property of prion protein unfolding in neutral salt solution (2002) Biochemistry, 41, pp. 11017-11024 Antal k, M., Fedunov, D., B gelov, J., Conformational transition of cytochrome c (2010) Open Macromol. J., 4, pp. 53-55}, document_type={Journal Article, }, affiliation={Department of Chemical Sciences, Università di Napoli Federico II, Complesso di Monte S. Angelo, Via Cinthia, I-80126 Napoli, Italy Institute of Protein Biochemistry, CNR, Naples, Italy Dipartimento di Scienze per la Biologia, la Geologia e l'Ambiente, Università Del Sannio, Benevento, Italy Istituto di Biostrutture e Bioimmagini, CNR, Naples, Italy}, ibbaffiliation={1}, } @article{IBB_ID_10761, author={Russo Krauss I, Pica A, Merlino A, Mazzarella L, Sica F}, title={Duplex-Quadruplex Motifs In A Novel Structural Organization Cooperatively Contribute To Thrombin Binding Of Hd22-27mer}, date={2013}, journal={Acta Crystallogr D Biol Crystallogr (ISSN: 0907-4449, 0907-4449linking)}, year={2013}, fullvolume={267}, volume={267}, pages={2403--2411}, url={}, abstract={}, keywords={, }, references={}, document_type={Journal Article, }, affiliation={}, ibbaffiliation={1}, } @article{IBB_ID_10760, author={Vergara A, Montesarchio D, Russo Krauss I, Paduano L, Merlino A}, title={Investigating The Ruthenium Metallation Of Proteins: X-Ray Structure And Raman Microspectroscopy Of The Complex Between Rnase A And Aziru}, date={2013}, journal={Inorg Chem (ISSN: 0020-1669, 1520-510xe, 1520-510xelectronic)}, year={2013}, fullvolume={293}, volume={293}, pages={10714--10716}, url={}, abstract={}, keywords={, }, references={}, document_type={Journal Article, }, affiliation={}, ibbaffiliation={1}, } @article{IBB_ID_52306, author={Russo Krauss I, Merlino A, Randazzo A, Novellino E, Mazzarella L, Sica F}, title={High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity}, date={2012 Sep}, journal={Nucleic Acids Res (ISSN: 0305-1048, 1362-4962, 1362-4962electronic)}, year={2012}, fullvolume={556}, volume={556}, pages={8119--8128}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84870535712&partnerID=40&md5=9d7b4dd51a4851550419d9da18feb223}, abstract={The G-quadruplex architecture is a peculiar structure adopted by guanine-rich oligonucleotidic sequences, and, in particular, by several aptamers, including the thrombin-binding aptamer (TBA) that has the highest inhibitory activity against human alpha-thrombin. A crucial role in determining structure, stability and biological properties of G-quadruplexes is played by ions. In the case of TBA, K(+) ions cause an enhancement of the aptamer clotting inhibitory activity. A detailed picture of the interactions of TBA with the protein and with the ions is still lacking, despite the importance of this aptamer in biomedical field for detection and inhibition of alpha-thrombin. Here, we fill this gap by presenting a high-resolution crystallographic structural characterization of the thrombin-TBA complex formed in the presence of Na(+) or K(+) and a circular dichroism study of the structural stability of the aptamer both free and complexed with alpha-thrombin, in the presence of the two ionic species. The results indicate that the different effects exerted by Na(+) and K(+) on the inhibitory activity of TBA are related to a subtle perturbation of a few key interactions at the protein-aptamer interface. The present data, in combination with those previously obtained on the complex between alpha-thrombin and a modified aptamer, may allow the design of new TBA variants with a pharmacological performance enhancement.}, keywords={Aptamer, Calcium Ion, Cation, Potassium Ion, Thrombin, Thrombin Binding Aptamer, Unclassified Drug, Article, Circular Dichroism, Crystallography, Human, Priority Journal, Protein Analysis, Protein Function, Protein Protein Interaction, Protein Stability, Protein Structure, Nucleotide, X-Ray, Models, Molecular, Sodium, }, references={Gellert, M., Lipsett, M.N., Davies, D.R., Helix formation by guanylic acid (1962) Proc. Natl. Acad. Sci. USA, 48, pp. 2013-201 Williamson, J.R., G-quartet structures in telomeric DNA (1994) Annu. Rev. Biophys. Biomol. Struct., 23, pp. 703-730 Burge, S., Parkinson, G.N., Hazel, P., Todd, A.K., Neidle, S., Quadruplex DNA: Sequence, topology and structure (2006) Nucleic Acids Res., 34, pp. 5402-5415 Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H., Toole, J.J., Selection of single-stranded DNA molecules that bind and inhibit human thrombin (1992) Nature, 355, pp. 564-566 Burke, J.M., Berzal-Herranz, A., In vitro selection and evolution of RNA: Applications for catalytic RNA, molecular recognition, and drug discovery (1993) FASEB J., 7, pp. 106-112 Huntington, J.A., Molecular recognition mechanisms of thrombin (2005) J. Thromb. Haemost., 3, pp. 1861-1872 MacAya, R.F., Schultze, P., Smith, F.W., Roe, J.A., Feigon, J., Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 3745-3749 Wang, K.Y., McCurdy, S., Shea, R.G., Swaminathan, S., Bolton, P.H., A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA (1993) Biochemistry, 32, pp. 1899-1904 Mao, X., Marky, L.A., Gmeiner, W.H., NMR structure of the thrombin-binding DNA aptamer stabilized by Sr2+ (2004) J. Biomol. Struct. Dyn., 22, pp. 25-33 Martino, L., Virno, A., Randazzo, A., Virgilio, A., Esposito, V., Giancola, C., Bucci, M., Mayol, L., A new modified thrombin binding aptamer containing a 50-50 inversion of polarity site (2006) Nucleic Acids Res., 34, pp. 6653-6662 Nallagatla, S.R., Heuberger, B., Haque, A., Switzer, C., Combinatorial synthesis of thrombin-binding aptamers containing iso-guanine (2009) J. Comb. Chem., 11, pp. 364-369 Pagano, B., Martino, L., Randazzo, A., Giancola, C., Stability and binding properties of a modified thrombin binding aptamer (2008) Biophys. J., 94, pp. 562-569 Nagatoishi, S., Isono, N., Tsumoto, K., Sugimoto, N., Loop residues of thrombin-binding DNA aptamer impact G-quadruplex stability and thrombin binding (2011) Biochimie, 93, pp. 1231-1238 Pasternak, A., Hernandez, F.J., Rasmussen, L.M., Vester, B., Wengel, J., Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer (2011) Nucleic Acids Res., 39, pp. 1155-1164 Zaitseva, M., Kaluzhny, D., Shchyolkina, A., Borisova, O., Smirnov, I., Pozmogova, G., Conformation and thermostability of oligonucleotide d(GGTTGGTGTGGTTGG) containing thiophosphoryl internucleotide bonds at different positions (2010) Biophys. Chem., 146, pp. 1-6 Saneyoshi, H., Mazzini, S., Avino, A., Portella, G., Gonzalez, C., Orozco, M., Marquez, V.E., Eritja, R., Conformationally rigid nucleoside probes help understand the role of sugar pucker and nucleobase orientation in the thrombin-binding aptamer (2009) Nucleic Acids Res., 37, pp. 5589-5601 Bonifacio, L., Church, F.C., Jarstfer, M.B., Effect of locked-nucleic acid on a biologically active G-quadruplex. A structure-activity relationship of the thrombin aptamer (2008) Int. J. Mol. Sci., 9, pp. 422-433 Kankia, B.I., Marky, L.A., Folding of the thrombin aptamer into a G-quadruplex with Sr(2+): Stability, heat, and hydration (2001) J. Am. Chem. Soc., 123, pp. 10799-10804 Mao, X.A., Gmeiner, W.H., NMR study of the folding-unfolding mechanism for the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG) (2005) Biophys. Chem., 113, pp. 155-160 Mayer, G., Muller, J., MacK, T., Freitag, D.F., Hover, T., Potzsch, B., Heckel, A., Differential regulation of protein subdomain activity with caged bivalent ligands (2009) ChemBioChem, 10, pp. 654-657 Smirnov, I., Shafer, R.H., Effect of loop sequence and size on DNA aptamer stability (2000) Biochemistry, 39, pp. 1462-1468 Tang, C.F., Shafer, R.H., Engineering the quadruplex fold: Nucleoside conformation determines both folding topology and molecularity in guanine quadruplexes (2006) J. Am. Chem. Soc., 128, pp. 5966-5973 Marathias, V.M., Wang, K.Y., Kumar, S., Pham, T.Q., Swaminathan, S., Bolton, P.H., Determination of the number and location of the manganese binding sites of DNA quadruplexes in solution by EPR and NMR in the presence and absence of thrombin (1996) J. Mol. Biol., 260, pp. 378-394 Nimjee, S.M., Rusconi, C.P., Harrington, R.A., Sullenger, B.A., The potential of aptamers as anticoagulants (2005) Trends Cardiovasc. Med., 15, pp. 41-45 Griffin, L.C., Tidmarsh, G.F., Bock, L.C., Toole, J.J., Leung, L.L., In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits (1993) Blood, 81, pp. 3271-3276 Li, W.X., Kaplan, A.V., Grant, G.W., Toole, J.J., Leung, L.L., A novel nucleotide-based thrombin inhibitor inhibits clot-bound thrombin and reduces arterial platelet thrombus formation (1994) Blood, 83, pp. 677-682 Gatto, B., Palumbo, M., Sissi, C., Nucleic acid aptamers based on the G-quadruplex structure: Therapeutic and diagnostic potential (2009) Curr. Med. Chem., 16, pp. 1248-1265 Tennico, Y.H., Hutanu, D., Koesdjojo, M.T., Bartel, C.M., Remcho, V.T., On-chip aptamer-based sandwich assay for thrombin detection employing magnetic beads and quantum dots (2010) Anal. Chem., 82, pp. 5591-5597 Liang, G., Cai, S., Zhang, P., Peng, Y., Chen, H., Zhang, S., Kong, J., Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles (2011) Anal. Chim. Acta, 689, pp. 243-249 Platt, M., Rowe, W., Wedge, D.C., Kell, D.B., Knowles, J., Day, P.J., Aptamer evolution for array-based diagnostics (2009) Anal. Biochem., 390, pp. 203-205 Padmanabhan, K., Padmanabhan, K.P., Ferrara, J.D., Sadler, J.E., Tulinsky, A., The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer (1993) J. Biol. Chem., 268, pp. 17651-17654 Padmanabhan, K., Tulinsky, A., An ambiguous structure of a DNA 15-mer thrombin complex (1996) Acta Crystallogr. D Biol. Crystallogr., 52, pp. 272-282 Kelly, J.A., Feigon, J., Yeates, T.O., Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d(G GTTGGTGTGGTTGG) (1996) J. Mol. Biol., 256, pp. 417-422 Tsiang, M., Gibbs, C.S., Griffin, L.C., Dunn, K.E., Leung, L.L., Selection of a suppressor mutation that restores affinity of an oligonucleotide inhibitor for thrombin using in vitro genetics (1995) J. Biol. Chem., 270, pp. 19370-19376 Tasset, D.M., Kubik, M.F., Steiner, W., Oligonucleotide inhibitors of human thrombin that bind distinct epitopes (1997) J. Mol. Biol., 272, pp. 688-698 Baldrich, E., O'sullivan, C.K., Ability of thrombin to act as molecular chaperone inducing formation of quadruplex structure of thrombin-binding aptamer (2005) Anal. Biochem., 341, pp. 194-197 Russo Krauss, I., Merlino, A., Giancola, C., Randazzo, A., Mazzarella, L., Sica, F., Thrombin-aptamer recognition: A revealed ambiguity (2011) Nucleic Acids Res., 39, pp. 7858-7867 Otwinowsky, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., 276, pp. 307-326 McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C., Read, R.J., Likelihood-enhanced fast translation functions (2005) Acta Crystallogr. D Biol. Crystallogr., 61, pp. 458-464 Brunger, A.T., Adams, P.D., Clore, G.M., Delano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Pannu, N.S., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr. D Biol. Crystallogr., 54 (PART 5), pp. 905-921 Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47 (PART 1 2), pp. 110-119 The CCP4 suite: Programs for protein crystallography (1994) Acta Crystallogr. D Biol. Crystallogr., 50, pp. 760-763. , Collaborative Computational Project Laskowski, R.A., MacArthur, M.W., Moss, M.D., Thorton, J.M., PROCHECK: A program to check the stereochemical quality of protein structure (1993) J. Appl. Crystallogr., 26, pp. 283-291 Hooft, R.W., Vriend, G., Sander, C., Abola, E.E., Errors in protein structures (1996) Nature, 381, p. 272 Lawrence, M.C., Colman, P.M., Shape complementarity at protein/protein interfaces (1993) J. Mol. Biol., 234, pp. 946-950 Wei, D., Parkinson, G., Reszka, A.P., Neidle, S., Crystal structure of a c-kit promoter quadruplex reveals the structural role of metal ions and water molecules in maintaining loop conformation (2012) Nucleic Acids Res., 40, pp. 4691-4700 Becker, R.C., Povsic, T., Cohen, M.G., Rusconi, C.P., Sullenger, B., Nucleic acid aptamers as antithrombotic agents: Opportunities in extracellular therapeutics (2010) Thromb. Haemost., 103, pp. 586-595 Hud, N.V., Smith, F.W., Anet, F.A., Feigon, J., The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration: A thermodynamic analysis by 1H NMR (1996) Biochemistry, 35, pp. 15383-15390 Lane, A.N., Chaires, J.B., Gray, R.D., Trent, J.O., Stability and kinetics of G-quadruplex structures (2008) Nucleic Acids Res., 36, pp. 5482-5515 Kim, S.Y., Hwang, K.Y., Kim, S.H., Sung, H.C., Han, Y.S., Cho, Y., Structural basis for cold adaptation. Sequence biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum (1999) J. Biol. Chem., 274, pp. 11761-11767 Hong, E.S., Yoon, H.J., Kim, B., Yim, Y.H., So, H.Y., Shin, S.K., Mass spectrometric studies of alkali metal ion binding on thrombin-binding aptamer DNA (2010) J. Am. Soc. Mass Spectrom., 21, pp. 1245-1255 Marathias, V.M., Bolton, P.H., Determinants of DNA quadruplex structural type: Sequence and potassium binding (1999) Biochemistry, 38, pp. 4355-4364 Reshetnikov, R.V., Golovin, A.V., Spiridonova, V., Kopylov, A.M., Sponer, J., Structural dynamics of thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG) quadruplex DNA studied by large-scale explicit solvent simulations (2010) J. Chem. Theory Comput., 6, pp. 3003-3014 Trajkovski, M., Sket, P., Plavec, J., Cation localization and movement within DNA thrombin binding aptamer in solution (2009) Org. Biomol. Chem., 7, pp. 4677-4684}, document_type={Journal Article, }, affiliation={Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, I-80126 Napoli, Italy Istituto di Biostrutture e Bioimmagini, C.N.R., Via Mezzocannone 16, I-80134 Napoli, Italy Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy}, ibbaffiliation={1}, } @article{IBB_ID_50395, author={Pica A, Russo Krauss I, Castellano I, Rossi M, La Cara F, Graziano G, Sica F, Merlino A}, title={Exploring The Unfolding Mechanism Of Gamma-Glutamyltranspeptidases: The Case Of The Thermophilic Enzyme From Geobacillus Thermodenitrificans}, date={2012 Apr}, journal={Bba-Gen Subjects (ISSN: 1570-9639, 0006-3002, 0925-4439)}, year={2012}, fullvolume={381}, volume={381}, pages={571--577}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84857350575&partnerID=40&md5=d5272471456f5ca8da76a33763b84090}, abstract={γ-glutamyltranspeptidases (γ-GTs) are ubiquitous enzymes that catalyze the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. These enzymes are generally synthesized as precursor proteins, which undergo an intra-molecular autocatalytic cleavage yielding a large and a small subunit. In this study, circular dichroism and intrinsic fluorescence measurements have been used to investigate the structural features and the temperature- and guanidinium hydrochloride (GdnHCl)-induced unfolding of the mature form of the γ-GT from Geobacillus thermodenitrificans (GthGT) and that of its T353A mutant, which represents a mimic of the precursor protein. Data indicate that a) the mutant and the mature GthGT have a different secondary structure content and a slightly different exposure of hydrophobic regions, b) the thermal unfolding processes of both GthGT forms occur through a three-state model, characterized by a stable intermediate species, whereas chemical denaturations proceed through a single transition, c) both GthGT forms exhibit remarkable stability against temperature, but they do not display a strong resistance to the denaturing action of GdnHCl. These findings suggest that electrostatic interactions significantly contribute to the protein stability and that both the precursor and the mature form of GthGT assume compact and stable conformations to resist to the extreme temperatures where G. thermodenidrificans lives. Owing to its thermostability and unique catalytic properties, GthGT is an excellent candidate to be used as a glutaminase in food industry. © 2012 Elsevier B.V. All rights reserved.}, keywords={γ-Glutamyltranspeptidases, Chemical Denaturation, Circular Dichroism, Intermediate State, Protein Stability, Thermal Unfolding, Gamma Glutamyltransferase, Guanidine, Article, Enzyme Stability, Enzyme Structure, Fluorescence, Geobacillus, Geobacillus Thermodenitrifican, Nonhuman, Priority Journal, Protein Unfolding, Spectroscopy, Temperature, Amino Acid Substitution, Anilino Naphthalenesulfonates, Bacterial Proteins, Fluorescent Dyes, Gamma-Glutamyltransferase, Hydrogen-Ion Concentration, Hydrophobic And Hydrophilic Interactions, Mutagenesis, Site-Directed, Protein Structure, Secondary, Spectrometry, Transition Temperature, Chemistry, Bacterial Proteins Chemistry, Genetics, Geobacillus Enzymology, Gamma-Glutamyltransferase Chemistry, Anilino Naphthalenesulfonates Chemistry, Bacterial Proteins Chemistry Genetics, Fluorescent Dyes Chemistry, Guanidine Chemistry, Gamma-Glutamyltransferase Chemistry Genetics, }, references={Tate, S.S., Meister, A., γ-glutamyltranspeptidase: Catalytic, structural and functional aspects (1981) Mol. Cell. Biochem., 39, pp. 357-36 Lieberman, M.W., Wiseman, A.L., Shi, Z.Z., Carter, B.Z., Barrios, R., Ou, C.N., Chevez-Barrios, P., Matzuk, M.M., Growth retardation and cysteine deficiency in γ- glutamyltranspeptidase-deficient mice (1996) Proc. Natl. Acad. Sci. U. S. A., 93, pp. 7923-7926 Lee, D.H., Jacobs, Jr.D.R., Gross, M., Kiefe, C.I., Roseman, J., Lewis, C.E., Steffes, M., γ-glutamyltransferase is a predictor of incident diabetes and hypertension: The Coronary Artery Risk Development in Young Adults (CARDIA) Study (2003) Clin. Chem., 49, pp. 1358-1366 Pompella, A., Corti, A., Paolicchi, A., Giommarelli, C., Zunino, F., γ-glutamyltransferase, redox regulation and cancer drug resistance (2007) Curr. Opin. Pharmacol., 7, pp. 360-366 Barrios, R., Shi, Z.Z., Kala, S.V., Wiseman, A.L., Welty, S.E., Kala, G., Bahler, A.A., Lieberman, M.W., Oxygen-induced pulmonary injury in γ-glutamyltranspeptidase- deficient mice (2001) Lung, 179, pp. 319-330 Jean, J.C., Liu, Y., Brown, L.A., Marc, R.E., Klings, E., Joyce-Brady, M., γ-glutamyltransferase deficiency results in lung oxidant stress in normoxia (2002) Am. J. Physiol. Lung Cell. Mol. Physiol., 283, pp. 766-L776 Emdin, M., Pompella, A., Paolicchi, A., γ-glutamyltransferase, atherosclerosis, and cardiovascular disease: Triggering oxidative stress within the plaque (2005) Circulation, 112, pp. 2078-2080 Zhang, H., Forman, H.J., Redox regulation of γ-glutamyltranspeptidase (2009) Am. J. Respir. Cell Mol. Biol., 41, pp. 509-515 Sian, J., Dexter, D.T., Lees, A.J., Daniel, S., Jenner, P., Marsden, C.D., Glutathione-related enzymes in brain in Parkinson's disease (1994) Ann. Neurol., 36, pp. 356-361 Del Bello, B., Paolicchi, A., Comporti, M., Pompella, A., Maellaro, E., Hydrogen peroxide produced during γ-glutamyltranspeptidase activity is involved in prevention of apoptosis and maintainance of proliferation in U937 cells (1999) FASEB J., 13, pp. 69-79 Djavaheri-Mergny, M., Accaoui, M.J., Rouillard, D., Wietzerbin, J., γ-glutamyltranspeptidase activity mediates NF-kappaB activation through lipid peroxidation in human leukemia U937 cells (2002) Mol. Cell. Biochem., 232, pp. 103-111 Suzuki, H., Kumagai, H., Autocatalytic processing of γ-glutamyltranspeptidase (2002) J. Biol. Chem., 277, pp. 43536-43543 Boanca, G., Sand, A., Barycki, J.J., Uncoupling the enzymatic and autoprocessing activities of Helicobacter pylori γ-glutamyltranspeptidase (2006) J. Biol. Chem., 281, pp. 19029-19037 Kinlough, C.L., Poland, P.A., Bruns, J.B., Hughey, R.P., γ-glutamyltranspeptidase: Disulfide bridges, propeptide cleavage, and activation in the endoplasmic reticulum (2005) Methods Enzymol., 401, pp. 426-449 Suzuki, H., Izuka, S., Minami, H., Miyakawa, N., Ishihara, S., Kumagai, H., Use of bacterial γ-glutamyltranspeptidase for enzymatic synthesis of gamma-d-glutamyl compounds (2003) Appl. Environ. Microbiol., 69, pp. 6399-6404 Okada, T., Suzuki, H., Wada, K., Kumagai, H., Fukuyama, K., Crystal structures of γ-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 6471-6476 Wada, K., Hiratake, J., Irie, M., Okada, T., Yamada, C., Kumagai, H., Suzuki, H., Fukuyama, K., Crystal structures of Escherichia coli γ-glutamyltranspeptidase in complex with azaserine and acivicin: Novel mechanistic implication for inhibition by glutamine antagonists (2008) J. Mol. Biol., 380, pp. 361-372 Wada, K., Irie, M., Suzuki, H., Fukuyama, K., Crystal structure of the halotolerant γ-glutamyltranspeptidase from Bacillus subtilis in complex with glutamate reveals a unique architecture of the solvent-exposed catalytic pocket (2010) FEBS J, 277, pp. 1000-1009 Lyu, R.C., Hu, H.Y., Kuo, L.Y., Lo, H.F., Ong, P.L., Chang, H.P., Lin, L.L., Role of the conserved Thr399 and Thr417 residues of Bacillus licheniformis γ-glutamyltranspeptidase as evaluated by mutational analysis (2009) Curr. Microbiol., 59, pp. 101-106 Yang, J.C., Liang, W.C., Chen, Y.Y., Chi, M.C., Lo, H.F., Chen, H.L., Lin, L.L., Biophysical characterization of Bacillus licheniformis and Escherichia coli γ-glutamyltranspeptidases: A comparative analysis (2011) Int J Biol Macromol, 48, pp. 414-422 Castellano, I., Merlino, A., Rossi, M., La Cara, F., Biochemical and structural properties of gamma-glutamyl transpeptidase from Geobacillus thermodenitrificans: An enzyme specialized in hydrolase activity (2010) Biochimie, 92, pp. 464-474 Minami, H., Suzuki, H., Kumagai, H., A mutant Bacillus subtilis γ-glutamyltranspeptidase specialized in hydrolysis activity (2003) FEMS Microbiol. Lett., 224, pp. 169-173 Ong, P.L., Yao, Y.F., Weng, Y.M., Hsu, W.H., Lin, L.L., Residues Arg114 and Arg337 are critical for the proper function of Escherichia coli γ-glutamyltranspeptidase (2008) Biochem. Biophys. Res. Commun., 366, pp. 294-300 Castellano, I., Di Salle, A., Merlino, A., Rossi, M., La Cara, F., Gene cloning and protein expression of γ-glutamyltranspeptidases from Thermus thermophilus and Deinococcus radiodurans: Comparison of molecular and structural properties with mesophilic counterparts (2011) Extremophiles, 15, pp. 259-270 Chang, H.P., Liang, W.C., Lyu, R.C., Chi, M.C., Wang, T.F., Su, K.L., Hung, H.C., Lin, L.L., Effects of C-terminal truncation on autocatalytic processing of Bacillus licheniformis γ-glutamyltranspeptidase (2010) Biochemistry (Mosc), 75, pp. 919-929 Hsu, W.H., Ong, P.L., Chen, S.C., Lin, L.L., Contribution of Ser463 residue to the enzymatic and autoprocessing activities of Escherichia coli γ-glutamyltranspeptidase (2009) Indian J. Biochem. Biophys., 46, pp. 281-288 Hung, C.P., Yang, J.C., Chen, J.H., Chi, M.C., Lin, L.L., Unfolding analysis of the mature and unprocessed forms of Bacillus licheniformis γ-glutamyltranspeptidase (2011) J. Biol. Phys., 37, pp. 463-475 Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254 Whitmore, L., Wallace, B.A., DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data (2004) Nucleic Acids Res., 32, pp. 668-W673 Merlino, A., Russo Krauss, I., Castellano, I., De Vendittis, E., Rossi, B., Conte, M., Vergara, A., Sica, F., Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis (2010) J Struct Biol, 172, pp. 343-352 Rumfeldt, J.A., Galvagnion, C., Vassall, K.A., Meiering, E.M., Conformational stability and folding mechanisms of dimeric proteins (2008) Prog. Biophys. Mol. Biol., 98, pp. 61-84 D'Amico, S., Marx, J.C., Gerday, C., Feller, G., Activity-stability relationships in extremophilic enzymes (2003) J. Biol. Chem., 278, pp. 7891-7896 Del Vecchio, P., Graziano, G., Granata, V., Barone, G., Mandrich, L., Rossi, M., Manco, G., Denaturing action of urea and guanidine hydrochloride towards two thermophilic esterases (2002) Biochem. J., 367, pp. 857-863 Mayo, S.L., Baldwin, R.L., Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A (1993) Science, 262, pp. 873-876 Nandi, P.K., Robinson, D.R., Effects of urea and guanidine hydrochloride on peptide and nonpolar groups (1984) Biochemistry, 23, pp. 6661-6668 Graziano, G., Contrasting the denaturing effect of guanidinium chloride with the stabilizing effect of guanidinium sulfate (2011) Phys. Chem. Chem. Phys., 13, pp. 12008-12014 Tate, S. S., Meister, A., -glutamyltranspeptidase: Catalytic, structural and functional aspects (1981) Mol. Cell. Biochem., 39, pp. 357-36 Lieberman, M. W., Wiseman, A. L., Shi, Z. Z., Carter, B. Z., Barrios, R., Ou, C. N., Chevez-Barrios, P., Matzuk, M. M., Growth retardation and cysteine deficiency in - glutamyltranspeptidase-deficient mice (1996) Proc. Natl. Acad. Sci. U. S. A., 93, pp. 7923-7926 Lee, D. H., Jacobs, Jr. D. R., Gross, M., Kiefe, C. I., Roseman, J., Lewis, C. E., Steffes, M., -glutamyltransferase is a predictor of incident diabetes and hypertension: The Coronary Artery Risk Development in Young Adults (CARDIA) Study (2003) Clin. Chem., 49, pp. 1358-1366 Jean, J. C., Liu, Y., Brown, L. A., Marc, R. E., Klings, E., Joyce-Brady, M., -glutamyltransferase deficiency results in lung oxidant stress in normoxia (2002) Am. J. Physiol. Lung Cell. Mol. Physiol., 283, pp. 766-L776 Kinlough, C. L., Poland, P. A., Bruns, J. B., Hughey, R. P., -glutamyltranspeptidase: Disulfide bridges, propeptide cleavage, and activation in the endoplasmic reticulum (2005) Methods Enzymol., 401, pp. 426-449 Lyu, R. C., Hu, H. Y., Kuo, L. Y., Lo, H. F., Ong, P. L., Chang, H. P., Lin, L. L., Role of the conserved Thr399 and Thr417 residues of Bacillus licheniformis -glutamyltranspeptidase as evaluated by mutational analysis (2009) Curr. Microbiol., 59, pp. 101-106 Yang, J. C., Liang, W. C., Chen, Y. Y., Chi, M. C., Lo, H. F., Chen, H. L., Lin, L. L., Biophysical characterization of Bacillus licheniformis and Escherichia coli -glutamyltranspeptidases: A comparative analysis (2011) Int J Biol Macromol, 48, pp. 414-422 Ong, P. L., Yao, Y. F., Weng, Y. M., Hsu, W. H., Lin, L. L., Residues Arg114 and Arg337 are critical for the proper function of Escherichia coli -glutamyltranspeptidase (2008) Biochem. Biophys. Res. Commun., 366, pp. 294-300 Chang, H. P., Liang, W. C., Lyu, R. C., Chi, M. C., Wang, T. F., Su, K. L., Hung, H. C., Lin, L. L., Effects of C-terminal truncation on autocatalytic processing of Bacillus licheniformis -glutamyltranspeptidase (2010) Biochemistry (Mosc), 75, pp. 919-929 Hsu, W. H., Ong, P. L., Chen, S. C., Lin, L. L., Contribution of Ser463 residue to the enzymatic and autoprocessing activities of Escherichia coli -glutamyltranspeptidase (2009) Indian J. Biochem. Biophys., 46, pp. 281-288 Hung, C. P., Yang, J. C., Chen, J. H., Chi, M. C., Lin, L. L., Unfolding analysis of the mature and unprocessed forms of Bacillus licheniformis -glutamyltranspeptidase (2011) J. Biol. Phys., 37, pp. 463-475 Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254 Rumfeldt, J. A., Galvagnion, C., Vassall, K. A., Meiering, E. M., Conformational stability and folding mechanisms of dimeric proteins (2008) Prog. Biophys. Mol. Biol., 98, pp. 61-84 Mayo, S. L., Baldwin, R. L., Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A (1993) Science, 262, pp. 873-876 Nandi, P. K., Robinson, D. R., Effects of urea and guanidine hydrochloride on peptide and nonpolar groups (1984) Biochemistry, 23, pp. 6661-6668}, document_type={Journal Article, }, affiliation={Department of Chemical Sciences, University of Naples Federico II, Complesso di Monte S. Angelo, Via Cinthia, I-80126 Napoli, Italy Istituto di Biochimica Delle Proteine, CNR, Naples, Italy Dipartimento di Scienze Biologiche Ed Ambientali, Università Del Sannio, Benevento, Italy Istituto di Biostrutture e Bioimmagini, CNR, Naples, Italy}, ibbaffiliation={1}, } @article{IBB_ID_10742, author={Merlino A, Russo Krauss I, Rossi B, De Vendittis A, Marco S, De Vendittis E, Vergara A, Sica F}, title={Identification of an active dimeric intermediate populated during the unfolding process of the cambialistic superoxide dismutase from Streptococcus mutans}, date={2012 Mar}, journal={Biochimie (ISSN: 0300-9084, 1638-6183, 1638-6183electronic)}, year={2012}, fullvolume={342}, volume={342}, pages={768--775}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84857051056&partnerID=40&md5=08a1aee43a84b31a20c1136b81ec0b01}, abstract={Superoxide dismutases are enzymes that protect biological systems against oxidative damage caused by superoxide radicals. In this paper, a detailed characterization is presented on the stability of SmSOD, the dimeric cambialistic superoxide dismutase from the dental pathogenic microorganism Streptococcus mutans, towards temperature and guanidine hydrochloride. Thermal and chemical denaturations were investigated by means of circular dichroism, fourth-derivative UV spectroscopy and fluorescence measurements. Data indicate that SmSOD is endowed with a significant thermostability and that both its thermal and guanidine hydrochloride-induced unfolding processes occur through a three-state model, characterized by a catalytically active dimeric intermediate species. To our knowledge, SmSOD is the smallest known dimeric protein that populates a well-structured active dimeric rather than a monomeric intermediate during unfolding processes. (C) 2011 Elsevier Masson SAS. All rights reserved.}, keywords={Chemical Stability, Dimeric Intermediate, Superoxide Dismutase, Thermal Stability, Unfolding, Guanidine, Article, Circular Dichroism, Enzyme Active Site, Enzyme Activity, Enzyme Denaturation, Enzyme Stability, Enzyme Structure, Fluorescence Analysis, Molecular Model, Nonhuman, Protein Unfolding, Streptococcus Mutans, Structure Analysis, Thermostability, Ultraviolet Spectroscopy, Bacterial Proteins, Protein Folding, Chemistry Metabolism, Streptococcus Mutans Enzymology, }, references={Matthews, C.R., Pathway of protein folding (1993) Annu. Rev. Biochem., 62, pp. 653-68 Neet, K.E., Timm, D.E., Conformational stability of dimeric proteins: Quantitative studies by equilibrium denaturation (1994) Protein Sci., 3, pp. 2167-2174 Rumfeldt, J.A., Galvagnion, C., Vassall, K.A., Meiering, E.M., Conformational stability and folding mechanisms of dimeric proteins (2008) Prog. Biophys. Mol. Biol., 98, pp. 61-84 Kim, P.S., Baldwin, R.L., Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding (1982) Annu. Rev. Biochem., 51, pp. 459-489 Doyle, S.M., Braswell, E.H., Teschke, C.M., SecA folds via a dimeric intermediate (2000) Biochemistry, 39, pp. 11667-11676 Bose, K., Clark, A.C., Dimeric procaspase-3 unfolds via a four-state equilibrium process (2001) Biochemistry, 40 (47), pp. 14236-14242. , DOI 10.1021/bi0110387 Chanez-Cardenas, M.E., Perez-Hernandez, G., Sanchez-Rebollar, B.G., Costas, M., Vazquez-Contreras, E., Reversible equilibrium unfolding of triosephosphate isomerase from Trypanosoma cruzi in guanidinium hydrochloride involves stable dimeric and monomeric intermediates (2005) Biochemistry, 44 (32), pp. 10883-10892. , DOI 10.1021/bi047687a Gildenhuys, S., Wallace, L.A., Burke, J.P., Balchin, D., Sayed, Y., Dirr, H.W., Class Pi glutathione transferase unfolds via a dimeric and not monomeric intermediate: Functional implications for an unstable monomer (2010) Biochemistry, 49, pp. 5074-5081 McCord, J.M., Fridovich, I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) (1969) J. Biol. Chem., 244, pp. 6049-6055 Culotta, V.C., Yang, M., O'Halloran, T.V., Activation of superoxide dismutases: Putting the metal to the pedal (2006) Biochimica et Biophysica Acta - Molecular Cell Research, 1763 (7), pp. 747-758. , DOI 10.1016/j.bbamcr.2006.05.003, PII S0167488906001108 Miller, A.F., Superoxide dismutases: Active sites that save, but a protein that kills (2004) Curr. Opin. Chem. Biol., 8, pp. 162-168 Stallings, W.C., Pattridge, K.A., Strong, R.K., Ludwig, M.L., Manganese and iron superoxide dismutases are structural homologs (1984) Journal of Biological Chemistry, 259 (17), pp. 10695-10699 Rumfeldt, J.A.O., Stathopulos, P.B., Chakrabarrty, A., Lepock, J.R., Meiering, E.M., Mechanism and thermodynamics of guanidinium chloride-induced denaturation of ALS-associated mutant Cu,Zn superoxide dismutases (2006) Journal of Molecular Biology, 355 (1), pp. 106-123. , DOI 10.1016/j.jmb.2005.10.042, PII S0022283605012866 Mei, G., Rosato, N., Silva, Jr.N., Rusch, R., Gratton, E., Savini, I., Finazzi-Agro, A., Denaturation of human Cu/Zn superoxide dismutase by guanidine hydrochloride: A dynamic fluorescence study (1992) Biochemistry, 31, pp. 7224-7230 Stroppolo, M.E., Malvezzi-Campeggi, F., Mei, G., Rosato, N., Desideri, A., Role of the tertiary and quaternary structures in the stability of dimeric copper,zinc superoxide dismutases (2000) Archives of Biochemistry and Biophysics, 377 (2), pp. 215-218. , DOI 10.1006/abbi.2000.1780 Miller, A.F., (2001) Handbook of Metalloproteins, , A. Messerschimdt, R. Huber, K. Wieghardt, T. Paulos, Wiley and Sons Chicester Stroupe, M.E., Di Donato, M., Tainer, J.A., (2001) Handbook of Metalloproteins, , A. Messerschimdt, R. Huber, K. Wieghardt, T. Paulos, Wiley and Sons Chicester Wang, S., Liu, W.F., He, Y.Z., Zhang, A., Huang, L., Dong, Z.Y., Yan, Y.B., Multistate folding of a hyperthermostable Fe-superoxide dismutase (TcSOD) in guanidinium hydrochloride: The importance of the quaternary structure (2008) Biochim. Biophys. Acta, 1784, pp. 445-454 Pedersen, H.L., Willassen, N.P., Leiros, I., The first structure of a cold-adapted superoxide dismutase (SOD): Biochemical and structural characterization of iron SOD from Aliivibrio salmonicida (2009) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 65, pp. 84-92 Merlino, A., Russo Krauss, I., Castellano, I., De Vendittis, E., Rossi, B., Conte, M., Vergara, A., Sica, F., Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis (2010) J. Struct. Biol., 172, pp. 343-352 De Vendittis, A., Amato, M., Mickniewicz, A., Parlato, G., De Angelis, A., Castellano, I., Rullo, R., De Vendittis, E., Regulation of the properties of superoxide dismutase from the dental pathogenic microorganism Streptococcus mutans by iron- and manganese-bound co-factor (2010) Mol. Biosyst., 6, pp. 1973-1982 Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254 Dello Russo, A., Rullo, R., Nitti, G., Masullo, M., Bocchini, V., Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: Average hydrophobicity and amino acid weight are involved in the adaptation of proteins to extreme environments (1997) Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1343 (1), pp. 23-30. , DOI 10.1016/S0167-4838(97)00105-2, PII S0167483897001052 Whitmore, L., Wallace, B.A., DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data (2004) Nucleic Acids Research, 32, pp. W668-W673. , DOI 10.1093/nar/gkh371 Liu, P., Ewis, H.E., Huang, Y.-J., Lu, C.-D., Tai, P.C., Weber, I.T., Structure of Bacillus subtilis superoxide dismutase (2007) Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 63 (12), pp. 1003-1007. , DOI 10.1107/S1744309107054127, PII S1744309107054127 Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47 (PART 2), pp. 110-119 Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C., GROMACS: Fast, flexible, and free (2005) Journal of Computational Chemistry, 26 (16), pp. 1701-1718. , DOI 10.1002/jcc.20291 Merlino, A., Esposito, L., Vitagliano, L., Polyglutamine repeats and β-helix structure: Molecular dynamics study (2006) Proteins: Structure, Function and Genetics, 63 (4), pp. 918-927. , DOI 10.1002/prot.20941 Porcelli, M., Moretti, M.A., Concilio, L., Forte, S., Merlino, A., Graziano, G., Cacciapuoti, G., S-adenosylhomocysteine hydrolase from the archaeon Pyrococcus furiosus: Biochemical characterization and analysis of protein structure by comparative molecular modeling (2005) Proteins: Structure, Function and Genetics, 58 (4), pp. 815-825. , DOI 10.1002/prot.20381 Pizzo, E., Merlino, A., Turano, M., Russo Krauss, I., Coscia, F., Zanfardino, A., Varcamonti, M., D'Alessio, G., A new RNase sheds light on the RNase/angiogenin subfamily from zebrafish (2011) Biochem. J., 433, pp. 345-355 Castellano, I., Merlino, A., Rossi, M., La Cara, F., Biochemical and structural properties of gamma-glutamyl transpeptidase from Geobacillus thermodenitrificans: An enzyme specialized in hydrolase activity (2010) Biochimie, 92, pp. 464-474 Castellano, I., Di Salle, A., Merlino, A., Rossi, M., La Cara, F., Gene cloning and protein expression of gamma-glutamyltranspeptidases from Thermus thermophilus and Deinococcus radiodurans: Comparison of molecular and structural properties with mesophilic counterparts (2011) Extremophiles, 15, pp. 259-270 Wiederstein, M., Sippl, M.J., ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins (2007) Nucleic Acids Res., 35, pp. W407-W410 Padros, E., Morros, A., Manosa, J., Dunach, M., The state of tyrosine and phenylalanine residues in proteins analyzed by fourth-derivative spectrophotometry. Histone H1 and ribonuclease A (1982) Eur. J. Biochem., 127, pp. 117-122 Dunach, M., Sabes, M., Padros, E., Fourth-derivative spectrophotometry analysis of tryptophan environment in proteins. Application to melittin, cytochrome c and bacteriorhodopsin (1983) Eur. J. Biochem., 134, pp. 123-128 Wang, S., Yan, Y., Dong, Z., Contributions of the C-terminal helix to the structural stability of a hyperthermophilic Fe-superoxide dismutase (TcSOD) (2009) Int. J. Mol. Sci., 10, pp. 5498-5512 Cooper, J.B., Saward, S., Erskine, P.T., Badasso, M.O., Wood, S.P., Zhang, Y., Young, D., X-ray structure analysis of an engineered Fe-superoxide dismutase Gly-Ala mutant with significantly reduced stability to denaturant (1996) FEBS Letters, 387 (2-3), pp. 105-108. , DOI 10.1016/0014-5793(96)00490-5 Hsieh, H.C.K., Chiu, C.C., Yu, C., Equilibrium unfolding of a oligomeric protein involved the formation of multimeric intermediate state (2005) Biochem. Biophys. Res. Commun., 326, pp. 108-114 Liujiao, B., Than, Z., Xiaoyani, Y., Li, L., Xiaohui, Z., Unfolding of bovine heart cytochrome c induced by urea and guanidine hydrochloride (2011) Chin. J. Chem., 29, pp. 813-821 Matthews, C. R., Pathway of protein folding (1993) Annu. Rev. Biochem., 62, pp. 653-68 Neet, K. E., Timm, D. E., Conformational stability of dimeric proteins: Quantitative studies by equilibrium denaturation (1994) Protein Sci., 3, pp. 2167-2174 Rumfeldt, J. A., Galvagnion, C., Vassall, K. A., Meiering, E. M., Conformational stability and folding mechanisms of dimeric proteins (2008) Prog. Biophys. Mol. Biol., 98, pp. 61-84 Kim, P. S., Baldwin, R. L., Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding (1982) Annu. Rev. Biochem., 51, pp. 459-489 Doyle, S. M., Braswell, E. H., Teschke, C. M., SecA folds via a dimeric intermediate (2000) Biochemistry, 39, pp. 11667-11676 McCord, J. M., Fridovich, I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) (1969) J. Biol. Chem., 244, pp. 6049-6055 Culotta, V. C., Yang, M., O'Halloran, T. V., Activation of superoxide dismutases: Putting the metal to the pedal (2006) Biochimica et Biophysica Acta - Molecular Cell Research, 1763 (7), pp. 747-758. , DOI 10. 1016/j. bbamcr. 2006. 05. 003, PII S0167488906001108 Miller, A. F., Superoxide dismutases: Active sites that save, but a protein that kills (2004) Curr. Opin. Chem. Biol., 8, pp. 162-168 Stallings, W. C., Pattridge, K. A., Strong, R. K., Ludwig, M. L., Manganese and iron superoxide dismutases are structural homologs (1984) Journal of Biological Chemistry, 259 (17), pp. 10695-10699 Rumfeldt, J. A. O., Stathopulos, P. B., Chakrabarrty, A., Lepock, J. R., Meiering, E. M., Mechanism and thermodynamics of guanidinium chloride-induced denaturation of ALS-associated mutant Cu, Zn superoxide dismutases (2006) Journal of Molecular Biology, 355 (1), pp. 106-123. , DOI 10. 1016/j. jmb. 2005. 10. 042, PII S0022283605012866 Stroppolo, M. E., Malvezzi-Campeggi, F., Mei, G., Rosato, N., Desideri, A., Role of the tertiary and quaternary structures in the stability of dimeric copper, zinc superoxide dismutases (2000) Archives of Biochemistry and Biophysics, 377 (2), pp. 215-218. , DOI 10. 1006/abbi. 2000. 1780 Miller, A. F., (2001) Handbook of Metalloproteins, , A. Messerschimdt, R. Huber, K. Wieghardt, T. Paulos, Wiley and Sons Chicester Stroupe, M. E., Di Donato, M., Tainer, J. A., (2001) Handbook of Metalloproteins, , A. Messerschimdt, R. Huber, K. Wieghardt, T. Paulos, Wiley and Sons Chicester Wang, S., Liu, W. F., He, Y. Z., Zhang, A., Huang, L., Dong, Z. Y., Yan, Y. B., Multistate folding of a hyperthermostable Fe-superoxide dismutase (TcSOD) in guanidinium hydrochloride: The importance of the quaternary structure (2008) Biochim. Biophys. Acta, 1784, pp. 445-454 Pedersen, H. L., Willassen, N. P., Leiros, I., The first structure of a cold-adapted superoxide dismutase (SOD): Biochemical and structural characterization of iron SOD from Aliivibrio salmonicida (2009) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 65, pp. 84-92 Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254 Liu, P., Ewis, H. E., Huang, Y. -J., Lu, C. -D., Tai, P. C., Weber, I. T., Structure of Bacillus subtilis superoxide dismutase (2007) Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 63 (12), pp. 1003-1007. , DOI 10. 1107/S1744309107054127, PII S1744309107054127 Jones, T. A., Zou, J. Y., Cowan, S. W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47 (PART 2), pp. 110-119 Cooper, J. B., Saward, S., Erskine, P. T., Badasso, M. O., Wood, S. P., Zhang, Y., Young, D., X-ray structure analysis of an engineered Fe-superoxide dismutase Gly-Ala mutant with significantly reduced stability to denaturant (1996) FEBS Letters, 387 (2-3), pp. 105-108. , DOI 10. 1016/0014-5793 (96) 00490-5 Hsieh, H. C. K., Chiu, C. C., Yu, C., Equilibrium unfolding of a oligomeric protein involved the formation of multimeric intermediate state (2005) Biochem. Biophys. Res. Commun., 326, pp. 108-114}, document_type={Journal Article, }, affiliation={Dipartimento di Chimica, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini 5, I-80131 Napoli, Italy}, ibbaffiliation={1}, } @article{IBB_ID_10746, author={Russo Krauss I, Sica F, Mattia CA, Merlino A}, title={Increasing the X-ray diffraction power of protein crystals by dehydration: the case of bovine serum albumin and a survey of literature data}, date={2012 Mar}, journal={Int J Mol Sc (ISSN: 1422-0067, 1661-6596, 1422-0067electronic)}, year={2012}, fullvolume={457}, volume={457}, pages={3782--3800}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84858964808&partnerID=40&md5=09a3a8a6828305342d630265f6ff2de3}, abstract={Serum albumin is one of the most widely studied proteins. It is the most abundant protein in plasma with a typical concentration of 5 g/100 mL and the principal transporter of fatty acids in plasma. While the crystal structures of human serum albumin (HSA) free and in complex with fatty acids, hemin, and local anesthetics have been characterized, no crystallographic models are available on bovine serum albumin (BSA), presumably because of the poor diffraction power of existing hexagonal BSA crystals. Here, the crystallization and diffraction data of a new BSA crystal form, obtained by the hanging drop method using MPEG 5K as precipitating agent, are presented. The crystals belong to space group C2, with unit-cell parameters a = 216.45 A, b = 44.72 A, c = 140.18 A, beta = 114.5°. Dehydration was found to increase the diffraction limit of BSA crystals from ~8 A to 3.2 A, probably by improving the packing of protein molecules in the crystal lattice. These results, together with a survey of more than 60 successful cases of protein crystal dehydration, confirm that it can be a useful procedure to be used in initial screening as a method of improving the diffraction limits of existing crystals.}, keywords={Crystal Dehydration, Crystal Quality, Post-Crystallization Treatment, Protein Crystallization, Serum Albumin, X-Ray Crystallography, Apolipoprotein A4, Bovine Serum Albumin, Cytochrome C Oxidase, Dipeptidyl Peptidase, Fatty Acid, Fatty Acid Synthase, Fatty Acid Transporter, Ferredoxin, Ferredoxin Reductase, Glutaryl 7 Aminocephalosporanic Acid Acylase, Hemin, Human Serum Albumin, Lipase Foldase Complex, Local Anesthetic Agent, Maoc Like Dehydratase, Monoclinic Lysozyme, N Acetylglucosamine 1 Phosphate Uridyltransferase, Nectin 1 Ec Complex, Penicillin Amidase, Peptide Deformylase, Phosphoglycerate Kinase, Plasma Protein, Porphobilinogen Synthase, Pyruvate Dehydrogenase, Stat1 Protein, Tetragonal Lysozyme, Thioredoxin, Trehalose Phosphorylase, Tricom Interacting Factor F3, Unclassified Drug, Article, Complex Formation, Crystal Structure, Desiccation, Hanging Drop Vapor Diffusion Method, X Ray Diffraction, }, references={Carter, D.C., Ho, J.X., Structure of serum albumin (1994) Adv. Protein Chem, 45, pp. 153-20 Carter, D.C., He, X.M., Munson, S.H., Twigg, P.D., Gernert, K.M., Broom, M.B., Miller, T.Y., Three-dimensional structure of human serum albumin (1989) Science, 244, pp. 1195-1198 Figge, J., Rossing, T.H., Fencl, V., The role of serum proteins in acid-base equilibria (1991) J. Lab. Clin. Med, 117, pp. 453-467 Sjoholm, I., Ekman, B., Kober, A., Ljungstedt-Pahlman, I., Seiving, B., Sjodin, T., Binding of drugs to human serum albumin:XI. The specificity of three binding sites as studied with albumin immobilized in microparticles (1979) Mol. Pharmacol, 16, pp. 767-777 He, X.M., Carter, D.C., Atomic structure and chemistry of human serum albumin (1992) Nature, 358, pp. 209-215 Chakraborty, T., Chakraborty, I., Moulik, S.P., Ghosh, S., Physicochemical and conformational studies on BSA-surfactant interaction in aqueous medium (2009) Langmuir, 25, pp. 3062-3074 Abou-Zied, O.K., Al-Shihi, O.I., Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes (2008) J. Am. Chem. Soc, 130, pp. 10793-10801 Sadler, P.J., Tucker, A., PH-induced structural transitions of bovine serum albumin. Histidine pKa values and unfolding of the N-terminus during the N to F transition (1993) Eur. J. Biochem, 212, pp. 811-817 Peters Jr., T., Serum albumin (1985) Adv. Protein Chem, 37, pp. 161-245 Riley, D.P., Arndt, U.W., New type of x-ray evidence on the molecular structure of globular proteins (1952) Nature, 169, pp. 138-139 Doherty, P., Benedek, G.B., The effect of electric charge on the diffusion of macromolecules (1974) J. Chem. Phys, 61, pp. 5426-5435 Hughes, W.L., (1954) The Proteins, 2 b, pp. 663-755. , Neurath, H., Biley, K., Eds. Academic Press: New York, NY, USA Bendedouch, D., Chen, S.H., Structure and interparticle interactions of bovine serum albumin in solution studied by small-angle neutron scattering (1983) J. Phys. Chem, 87, pp. 1473-1477 Bos, O.J., Labro, J.F., Fischer, M.J., Wilting, J., Janssen, L.H., The molecular mechanism of the neutral-to-base transition of human serum albumin. Acid/base titration and proton nuclear magnetic resonance studies on a large peptic and a large tryptic fragment of albumin (1989) J. Biol. Chem, 264, pp. 953-959 Thome, D.M., (2001) X-ray Crystallographic Studies of Thiomolybdates and Bovine Serum Albumin, , Ph.D. thesis. Department of Chemistry, University of Saskatchewan, Saskatchewan, Canada Tai, H.C., (2004) X-ray Crystallographic Studies of Bovine Serum Albumin and Helicobacter Pylori Thioredoxin-2, , Ph.D. Thesis, Department of Chemistry, University of Saskatchewan, Saskatchewan, Canada Asanov, A.N., Delucas, L.J., Oldham, P.B., Wilson, W.W., Interfacial aggregation of bovine serum albumin related to crystallization conditions studied by total internal reflection fluorescence (1997) J. Colloid Interface Sci, 196, pp. 62-73 Heras, B., Martin, J.L., Post-crystallization treatments for improving diffraction quality of protein crystals (2005) Acta Crystallogr. D Biol. Crystallogr, 61, pp. 1173-1180 Newman, J., A review of techniques for maximizing diffraction from a protein crystal in stilla (2006) Acta Crystallogr. D Biol. Crystallogr, 62, pp. 27-31 Merlino, A., Russo, K.I., Albino, A., Pica, A., Vergara, A., Masullo, M., de Vendittis, E., Sica, F., Improving protein crystal quality by the without-oil microbatch method: Crystallization and preliminary x-ray diffraction analysis of glutathione synthetase from pseudoalteromonas haloplanktis (2011) Int. J. Mol. Sci, 12, pp. 6312-6319 Arp, J.M., Timm, D.E., Bunick, G.J., Macromolecular crystal annealing: Overcoming increased mosaicity associated with cryocrystallography (1998) Acta Crystallogr. D Biol. Crystallogr, 54, pp. 622-628 Kriminski, S., Caylor, C.L., Nonato, M.C., Finkelstein, K.D., Thorne, R.E., Flash-cooling and annealing of protein crystals (2002) Acta Crystallogr. D Biol. Crystallogr, 58, pp. 459-471 Cramer, P., Bushnell, D.A., Fu, J., Gnatt, A.L., Maier-Davis, B., Thompson, N.E., Burgess, R.R., Kornberg, R.D., Architecture of RNA polymerase II and implications for the transcription mechanism (2000) Science, 288, pp. 640-649 Heras, B., Edeling, M.A., Byriel, K.A., Jones, A., Raina, S., Martin, J.L., Dehydration converts DsbG crystal diffraction from low to high resolution (2003) Structure, 11, pp. 139-145 Abergel, C., Spectacular improvement of X-ray diffraction through fast desiccation of protein crystals (2004) Acta Crystallogr. D Biol. Crystallogr, 60, pp. 1413-1416 Russi, S., Juers, D.H., Sanchez-Weatherby, J., Pellegrini, E., Mossou, E., Forsyth, V.T., Huet, J., Moya, R., Inducing phase changes in crystals of macromolecules: Status and perspectives for controlled crystal dehydration (2011) J. Struct. Biol, 175, pp. 236-243 van Hoorebeke, A., Stout, J., van der Meeren, R., Kyndt, J., van Beeumen, J., Savvides, S.N., Crystallization and X-ray diffraction studies of inverting trehalose phosphorylase from Thermoanaerobacter sp (2010) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 66, pp. 442-447 Pang, S.S., Guddat, L.W., Duggleby, R.G., Crystallization of the FAD-independent acetolactate synthase of Klebsiella pneumoniae (2002) Acta Crystallogr. D Biol. Crystallogr, 58, pp. 1237-1239 Sam, M.D., Abbani, M.A., Cascio, D., Johnson, R.C., Clubb, R.T., Crystallization, dehydration and preliminary X-ray analysis of excisionase (Xis) proteins cooperatively bound to DNA (2006) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 62, pp. 825-828 Arakaki, T.L., Pezza, J.A., Cronin, M.A., Hopkins, C.E., Zimmer, D.B., Tolan, D.R., Allen, K.N., Structure of human brain fructose 1,6-(bis)phosphate aldolase: Linking isozyme structure with function (2004) Protein Sci, 13, pp. 3077-3084 Malay, A.D., Allen, K.N., Tolan, D.R., Structure of the thermolabile mutant aldolase B, A149P: Molecular basis of hereditary fructose intolerance (2005) J. Mol. Biol, 347, pp. 135-144 Igura, M., Ose, T., Obita, T., Sato, C., Maenaka, K., Endo, T., Kohda, D., Crystallization and preliminary X-ray analysis of mitochondrial presequence receptor Tom20 in complexes with a presequence from aldehyde dehydrogenase (2005) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 61, pp. 514-517 Bailly, M., Blaise, M., Lorber, B., Thirup, S., Kern, D., Isolation, crystallization and preliminary X-ray analysis of the transamidosome, a ribonucleoprotein involved in asparagine formation (2009) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 65, pp. 577-581 Wojdyla, J.A., Manolaridis, I., Snijder, E.J., Gorbalenya, A.E., Coutard, B., Piotrowski, Y., Hilgenfeld, R., Tucker, P.A., Structure of the X (ADRP) domain of nsp3 from feline coronavirus (2009) Acta Crystallogr. D Biol. Crystallogr, 65, pp. 1292-1300 Tsukazaki, T., Mori, H., Fukai, S., Numata, T., Perederina, A., Adachi, H., Matsumura, H., Inoue, T., Purification, crystallization and preliminary X-ray diffraction of SecDF, a translocon-associated membrane protein, from Thermus thermophilus (2006) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 62, pp. 376-380 Haebel, P.W., Wichman, S., Goldstone, D., Metcalf, P., Crystallization and initial crystallographic analysis of the disulfide bond isomerase DsbC in complex with the alpha domain of the electron transporter DsbD (2001) J. Struct. Biol, 136, pp. 162-166 Izard, T., Sarfaty, S., Westphal, A., de Kok, A., Hol, W.G., Improvement of diffraction quality upon rehydration of dehydrated icosahedral Enterococcus faecalis pyruvate dehydrogenase core crystals (1997) Protein Sci, 6, pp. 913-915 Yang, J.K., Yoon, H.J., Ahn, H.J., Lee, B.I., Cho, S.H., Waldo, G.S., Park, M.S., Suh, S.W., Crystallization and preliminary X-ray crystallographic analysis of the Rv2002 gene product from Mycobacterium tuberculosis, a beta-ketoacyl carrier protein reductase homologue (2002) Acta Crystallogr. D Biol. Crystallogr, 58, pp. 303-305 Kim, H.W., Han, B.W., Yoon, H.J., Yang, J.K., Lee, B.I., Lee, H.H., Ahn, H.J., Suh, S.W., Crystallization and preliminary X-ray crystallographic analysis of peptide deformylase from Pseudomonas aeruginosa (2002) Acta Crystallogr. D Biol. Crystallogr, 58, pp. 1874-1875 Kuo, A., Bowler, M.W., Zimmer, J., Antcliff, J.F., Doyle, D.A., Increasing the diffraction limit and internal order of a membrane protein crystal by dehydration (2003) J. Struct. Biol, 141, pp. 97-102 Hunsicker-Wang, L.M., Pacoma, R.L., Chen, Y., Fee, J.A., Stout, C.D., A novel cryoprotection scheme for enhancing the diffraction of crystals of recombinant cytochrome ba3 oxidase from Thermus thermophilus (2005) Acta Crystallogr. D Biol. Crystallogr, 61, pp. 340-343 Lu, Q., Ma, J., Rong, H., Fan, J., Yuan, Y., Li, K., Gao, Y., Niu, L., Cloning, expression, purification, crystallization and preliminary crystallographic analysis of 5-aminolaevulinic acid dehydratase from Bacillus subtilis (2010) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 66, pp. 1053-1055 Koch, M., Breithaupt, C., Kiefersauer, R., Freigang, J., Huber, R., Messerschmidt, A., Crystal structure of protoporphyrinogen IX oxidase: A key enzyme in haem and chlorophyll biosynthesis (2004) EMBO J, 23, pp. 1720-1728 Bowler, M.W., Montgomery, M.G., Leslie, A.G., Walker, J.E., Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F(1)-ATPase by controlled dehydration (2006) Acta Crystallogr. D Biol. Crystallogr, 62, pp. 991-995 Engel, M., Hoffmann, T., Wagner, L., Wermann, M., Heiser, U., Kiefersauer, R., Huber, R., Brandstetter, H., The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 5063-5068 Estebanez-Perpina, E., Fuentes-Prior, P., Belorgey, D., Braun, M., Kiefersauer, R., Maskos, K., Huber, R., Bode, W., Crystal structure of the caspase activator human granzyme B, a proteinase highly specific for an Asp-P1 residue (2000) Biol. Chem, 381, pp. 1203-1214 Kyrieleis, O.J., Goettig, P., Kiefersauer, R., Huber, R., Brandstetter, H., Crystal structures of the tricorn interacting factor F3 from Thermoplasma acidophilum, a zinc aminopeptidase in three different conformations (2005) J. Mol. Biol, 349, pp. 787-800 Chotiyarnwong, P., Stewart-Jones, G.B., Tarry, M.J., Dejnirattisai, W., Siebold, C., Koch, M., Stuart, D.I., Screaton, G., Humidity control as a strategy for lattice optimization applied to crystals of HLA-A*1101 complexed with variant peptides from dengue virus (2007) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 63, pp. 386-392 Ke, A., Doudna, J.A., Crystallization of RNA and RNA-protein complexes (2004) Methods, 34, pp. 408-414 Bowman, G.D., O'Donnell, M., Kuriyan, J., Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex (2004) Nature, 429, pp. 724-730 Rojviriya, C., Pratumrat, T., Saper, M.A., Yuvaniyama, J., Improved X-ray diffraction from Bacillus megaterium penicillin G acylase crystals through long cryosoaking dehydration (2011) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 67, pp. 1570-1574 Liu, B., Luna, V.M., Chen, Y., Stout, C.D., Fee, J.A., An unexpected outcome of surface engineering an integral membrane protein: Improved crystallization of cytochrome ba(3) from Thermus thermophilus (2007) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 63, pp. 1029-1034 Deng, X., Davidson, W.S., Thompson, T.B., Improving the diffraction of apoA-IV crystals through extreme dehydration (2012) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 68 (105-110), p. 54 Amunts, A., Drory, O., Nelson, N., The structure of a plant photosystem I supercomplex at 3.4 A resolution (2007) Nature, 447, pp. 58-63 Narita, H., Nakagawa, A., Yamamoto, Y., Sakisaka, T., Takai, Y., Suzuki, M., Refolding, crystallization and preliminary X-ray crystallographic study of the whole extracellular regions of nectins (2011) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 67, pp. 344-348 Barton, W.A., Liu, B.P., Tzvetkova, D., Jeffrey, P.D., Fournier, A.E., Sah, D., Cate, R., Nikolov, D.B., Structure and axon outgrowth inhibitor binding of the Nogo-66 receptor and related proteins (2003) EMBO J, 22, pp. 3291-3302 Latham, C.F., Hu, S.H., Gee, C.L., Armishaw, C.J., Alewood, P.F., James, D.E., Martin, J.L., Crystallization and preliminary X-ray diffraction of the Munc18c-syntaxin4 (1-29) complex (2007) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 63, pp. 524-528 Esnouf, R.M., Ren, J., Garman, E.F., Somers, D.O., Ross, C.K., Jones, E.Y., Stammers, D.K., Stuart, D.I., Continuous and discontinuous changes in the unit cell of HIV-1 reverse transcriptase crystals on dehydration (1998) Acta Crystallogr. D Biol. Crystallogr, 54, pp. 938-953 Rustiguel, J.K., Pinheiro, M.P., Araujo, A.P., Nonato, M.C., Crystallization and preliminary X-ray diffraction analysis of recombinant chlorocatechol 1,2-dioxygenase from Pseudomonas putida (2011) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 67, pp. 507-509 Papanikolau, Y., Papadovasilaki, M., Ravelli, R.B., McCarthy, A.A., Cusack, S., Economou, A., Petratos, K., Structure of dimeric SecA, the Escherichia coli preprotein translocase motor (2007) J. Mol. Biol, 366, pp. 1545-1557 Fu, Z.Q., du Bois, G.C., Song, S.P., Harrison, R.W., Weber, I.T., Improving the diffraction quality of MTCP-1 crystals by post-crystallization soaking (1999) Acta Crystallogr. D Biol. Crystallogr, 55, pp. 5-7 Anandan, A., Vallet, C., Coyle, T., Moustafa, I.M., Vrielink, A., Crystallization and preliminary diffraction analysis of an engineered cephalosporin acylase (2010) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 66, pp. 808-810 Zurbriggen, A., Schneider, P., Bahler, P., Baumann, U., Erni, B., Expression, purification, crystallization and preliminary X-ray analysis of the EIICGlc domain of the Escherichia coli glucose transporter (2010) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 66, pp. 684-688 Wang, H., Guo, J., Pang, H., Zhang, X., Crystallization and preliminary X-ray analysis of the MaoC-like dehydratase from Phytophthora capsici (2010) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 66, pp. 272-274 Jenni, S., Ban, N., Imperfect pseudo-merohedral twinning in crystals of fungal fatty acid synthase (2009) Acta Crystallogr. D Biol. Crystallogr, 65, pp. 101-111 An, Y.J., Ahn, B.E., Roe, J.H., Cha, S.S., Crystallization and preliminary X-ray crystallographic analyses of Nur, a nickel-responsive transcription regulator from Streptomyces coelicolor (2008) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 64, pp. 130-132 Harata, K., Akiba, T., Effect of a sodium ion on the dehydration-induced phase transition of monoclinic lysozyme crystals (2007) Acta Crystallogr. D Biol. Crystallogr, 63, pp. 1016-1021 Nakamura, A., Wada, C., Miki, K., Expression and purification of F-plasmid RepE and preliminary X-ray crystallographic study of its complex with operator DNA (2007) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 63, pp. 346-349 Peng, Y., Xu, F., Bell, S.G., Wong, L.L., Rao, Z., Crystallization and preliminary X-ray diffraction studies of a ferredoxin reductase from Rhodopseudomonas palustris CGA009 (2007) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 63, pp. 422-425 Henderson, K.N., Reid, H.H., Borg, N.A., Broughton, S.E., Huyton, T., Anderson, R.P., McCluskey, J., Rossjohn, J., The production and crystallization of the human leukocyte antigen class II molecules HLA-DQ2 and HLA-DQ8 complexed with deamidated gliadin peptides implicated in coeliac disease (2007) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 63, pp. 1021-1025 Tong, L., Qian, C., Davidson, W., Massariol, M.J., Bonneau, P.R., Cordingley, M.G., Lagace, L., Experiences from the structure determination of human cytomegalovirus protease (1997) Acta Crystallogr. D Biol. Crystallogr, 53, pp. 682-690 Mao, X., Chen, X., Crystallization and X-ray crystallographic analysis of human STAT1 (2005) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 61, pp. 666-668 Madhusudan, Kodandapani, R., Vijayan, M., Protein hydration and water structure: X-ray analysis of a closely packed protein crystal with very low solvent content (1993) Acta Crystallogr. D Biol. Crystallogr, 49, pp. 234-245 Dobrianov, I., Kriminski, S., Caylor, C.L., Lemay, S.G., Kimmer, C., Kisselev, A., Finkelstein, K.D., Thorne, R.E., Dynamic response of tetragonal lysozyme crystals to changes in relative humidity: Implications for post-growth crystal treatments (2001) Acta Crystallogr. D Biol. Crystallogr, 57, pp. 61-68 Callahan, S.J., Morgan, R.D., Jain, R., Townson, S.A., Wilson, G.G., Roberts, R.J., Aggarwal, A.K., Crystallization and preliminary crystallographic analysis of the type IIL restriction enzyme MmeI in complex with DNA (2011) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 67, pp. 1262-1265 Andres, S.N., Junop, M.S., Crystallization and preliminary X-ray diffraction analysis of the human XRCC4-XLF complex (2011) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 67, pp. 1399-1402 Pauwels, K., Loris, R., Vandenbussche, G., Ruysschaert, J.M., Wyns, L., Gelder, V.P., Crystallization and crystal manipulation of a steric chaperone in complex with its lipase substrate (2005) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 61, pp. 791-795 Stocker, A., Keis, S., Cook, G.M., Dimroth, P., Purification, crystallization, and properties of F1-ATPase complexes from the thermoalkaliphilic Bacillus sp. strain TA2.A1 (2005) J. Struct. Biol, 152, pp. 140-145 Schick, B., Jurnak, F., Crystal growth and crystal improvement strategies (1994) Acta Crystallogr. F, 50, pp. 563-568 Cramer, P., Muller, C.W., Engineering of diffraction-quality crystals of the NF-kappaB P52 homodimer:DNA complex (1997) FEBS Lett, 405, pp. 373-377 Shang, G., Cang, H., Liu, Z., Gao, W., Bi, R., Crystallization and preliminary crystallographic analysis of a calcineurin B-like protein 1 (CBL1) mutant from Ammopiptanthus mongolicus (2010) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 66, pp. 1602-1605 Suga, M., Maeda, S., Nakagawa, S., Yamashita, E., Tsukihara, T., A description of the structural determination procedures of a gap junction channel at 3.5 A resolution (2009) Acta Crystallogr. D Biol. Crystallogr, 65, pp. 758-766 Verma, S.K., Jaiswal, M., Kumar, N., Parikh, A., Nandicoori, V.K., Prakash, B., Structure of N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) from Mycobacterium tuberculosis in a cubic space group (2009) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 65, pp. 435-439 Ravaud, S., Wild, K., Sinning, I., Purification, crystallization and preliminary structural characterization of the periplasmic domain P1 of the Escherichia coli membrane-protein insertase YidC (2008) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 64, pp. 144-148 Yap, T.L., Chen, Y.L., Xu, T., Wen, D., Vasudevan, S.G., Lescar, J., A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution (2007) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 63, pp. 78-83 Kiefersauer, R., Than, M.E., Dobbek, H., Gremer, L., Melero, M., Strobl, S., Dias, J.M., Huber, R., A novel free-mounting system for protein crystals: Transformation and improvement of diffraction power by accurately controlled humidity changes (2000) J. Appl. Cryst, 33, pp. 1223-1230 Sjogren, T., Carlsson, G., Larsson, G., Hajdu, A., Andersson, C., Pettersson, H., Hajdu, J., Protein crystallography in a vapour stream: Data collection, reaction initiation and intermediate trapping in naked hydrated protein crystals (2002) J. Appl. Cryst, 35, pp. 113-116 Wheeler, M.J., Russi, S., Bowler, M.G., Bowler, M.W., Measurement of the equilibrium relative humidity for common precipitant concentrations: Facilitating controlled dehydration experiments (2012) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 68, pp. 111-114 Eliassi, A., Modarress, H., Densities of poly(ethylene glycol) + water mixtures in the 298.15-328.15 K temperature range (1998) J. Chem. Eng. Data, 43, pp. 719-772 Alcorn, T., Juers, D.H., Progress in rational methods of cryoprotection in macromolecular crystallography (2010) Acta Crystallogr. D Biol. Crystallogr, 66, pp. 366-373 Matthews, B.W., Solvent content of protein crystals (1968) J. Mol. Biol, 33 (491-497), p. 93 Painter, L., Harding, M.M., Beeby, P.J., Synthesis and interaction with human serum albumin of the first 3,18-disubstituted derivative of bilirubin (1998) J. Chem. Soc. Perkin Trans, 18, pp. 3041-3050 Otwinowsky, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol, 276, pp. 307-326 Storoni, L.C., McCoy, A.J., Read, R.J., Likelihood-enhanced fast rotation functions (2004) Acta Crystallogr. D Biol. Crystallogr, 60 (432-438), p. 96 Sugio, S., Kashima, A., Mochizuki, S., Noda, M., Kobayashi, K., Crystal structure of human serum albumin at 2.5 A resolution (1999) Protein Eng, 12, pp. 439-446 Carter, D. C., Ho, J. X., Structure of serum albumin (1994) Adv. Protein Chem, 45, pp. 153-20 Carter, D. C., He, X. M., Munson, S. H., Twigg, P. D., Gernert, K. M., Broom, M. B., Miller, T. Y., Three-dimensional structure of human serum albumin (1989) Science, 244, pp. 1195-1198 He, X. M., Carter, D. C., Atomic structure and chemistry of human serum albumin (1992) Nature, 358, pp. 209-215 Abou-Zied, O. K., Al-Shihi, O. I., Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes (2008) J. Am. Chem. Soc, 130, pp. 10793-10801 Sadler, P. J., Tucker, A., PH-induced structural transitions of bovine serum albumin. Histidine pKa values and unfolding of the N-terminus during the N to F transition (1993) Eur. J. Biochem, 212, pp. 811-817 Riley, D. P., Arndt, U. W., New type of x-ray evidence on the molecular structure of globular proteins (1952) Nature, 169, pp. 138-139 Hughes, W. L., (1954) The Proteins, 2 b, pp. 663-755. , Neurath, H., Biley, K., Eds. Bos, O. J., Labro, J. F., Fischer, M. J., Wilting, J., Janssen, L. H., The molecular mechanism of the neutral-to-base transition of human serum albumin. Acid/base titration and proton nuclear magnetic resonance studies on a large peptic and a large tryptic fragment of albumin (1989) J. Biol. Chem, 264, pp. 953-959 Thome, D. M., (2001) X-ray Crystallographic Studies of Thiomolybdates and Bovine Serum Albumin, , Ph. D. thesis. Department of Chemistry, University of Saskatchewan, Saskatchewan, Canada Tai, H. C., (2004) X-ray Crystallographic Studies of Bovine Serum Albumin and Helicobacter Pylori Thioredoxin-2, , Ph. D. Thesis, Department of Chemistry, University of Saskatchewan, Saskatchewan, Canada Asanov, A. N., Delucas, L. J., Oldham, P. B., Wilson, W. W., Interfacial aggregation of bovine serum albumin related to crystallization conditions studied by total internal reflection fluorescence (1997) J. Colloid Interface Sci, 196, pp. 62-73 Arp, J. M., Timm, D. E., Bunick, G. J., Macromolecular crystal annealing: Overcoming increased mosaicity associated with cryocrystallography (1998) Acta Crystallogr. D Biol. Crystallogr, 54, pp. 622-628 Pang, S. S., Guddat, L. W., Duggleby, R. G., Crystallization of the FAD-independent acetolactate synthase of Klebsiella pneumoniae (2002) Acta Crystallogr. D Biol. Crystallogr, 58, pp. 1237-1239 Sam, M. D., Abbani, M. A., Cascio, D., Johnson, R. C., Clubb, R. T., Crystallization, dehydration and preliminary X-ray analysis of excisionase (Xis) proteins cooperatively bound to DNA (2006) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 62, pp. 825-828 Arakaki, T. L., Pezza, J. A., Cronin, M. A., Hopkins, C. E., Zimmer, D. B., Tolan, D. R., Allen, K. N., Structure of human brain fructose 1, 6- (bis) phosphate aldolase: Linking isozyme structure with function (2004) Protein Sci, 13, pp. 3077-3084 Malay, A. D., Allen, K. N., Tolan, D. R., Structure of the thermolabile mutant aldolase B, A149P: Molecular basis of hereditary fructose intolerance (2005) J. Mol. Biol, 347, pp. 135-144 Wojdyla, J. A., Manolaridis, I., Snijder, E. J., Gorbalenya, A. E., Coutard, B., Piotrowski, Y., Hilgenfeld, R., Tucker, P. A., Structure of the X (ADRP) domain of nsp3 from feline coronavirus (2009) Acta Crystallogr. D Biol. Crystallogr, 65, pp. 1292-1300 Haebel, P. W., Wichman, S., Goldstone, D., Metcalf, P., Crystallization and initial crystallographic analysis of the disulfide bond isomerase DsbC in complex with the alpha domain of the electron transporter DsbD (2001) J. Struct. Biol, 136, pp. 162-166 Yang, J. K., Yoon, H. J., Ahn, H. J., Lee, B. I., Cho, S. H., Waldo, G. S., Park, M. S., Suh, S. W., Crystallization and preliminary X-ray crystallographic analysis of the Rv2002 gene product from Mycobacterium tuberculosis, a beta-ketoacyl carrier protein reductase homologue (2002) Acta Crystallogr. D Biol. Crystallogr, 58, pp. 303-305 Kim, H. W., Han, B. W., Yoon, H. J., Yang, J. K., Lee, B. I., Lee, H. H., Ahn, H. J., Suh, S. W., Crystallization and preliminary X-ray crystallographic analysis of peptide deformylase from Pseudomonas aeruginosa (2002) Acta Crystallogr. D Biol. Crystallogr, 58, pp. 1874-1875 Hunsicker-Wang, L. M., Pacoma, R. L., Chen, Y., Fee, J. A., Stout, C. D., A novel cryoprotection scheme for enhancing the diffraction of crystals of recombinant cytochrome ba3 oxidase from Thermus thermophilus (2005) Acta Crystallogr. D Biol. Crystallogr, 61, pp. 340-343 Bowler, M. W., Montgomery, M. G., Leslie, A. G., Walker, J. E., Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F (1) -ATPase by controlled dehydration (2006) Acta Crystallogr. D Biol. Crystallogr, 62, pp. 991-995 Kyrieleis, O. J., Goettig, P., Kiefersauer, R., Huber, R., Brandstetter, H., Crystal structures of the tricorn interacting factor F3 from Thermoplasma acidophilum, a zinc aminopeptidase in three different conformations (2005) J. Mol. Biol, 349, pp. 787-800 Ke, A., Doudna, J. A., Crystallization of RNA and RNA-protein complexes (2004) Methods, 34, pp. 408-414 Bowman, G. D., O'Donnell, M., Kuriyan, J., Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex (2004) Nature, 429, pp. 724-730 Liu, B., Luna, V. M., Chen, Y., Stout, C. D., Fee, J. A., An unexpected outcome of surface engineering an integral membrane protein: Improved crystallization of cytochrome ba (3) from Thermus thermophilus (2007) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 63, pp. 1029-1034 Barton, W. A., Liu, B. P., Tzvetkova, D., Jeffrey, P. D., Fournier, A. E., Sah, D., Cate, R., Nikolov, D. B., Structure and axon outgrowth inhibitor binding of the Nogo-66 receptor and related proteins (2003) EMBO J, 22, pp. 3291-3302 Latham, C. F., Hu, S. H., Gee, C. L., Armishaw, C. J., Alewood, P. F., James, D. E., Martin, J. L., Crystallization and preliminary X-ray diffraction of the Munc18c-syntaxin4 (1-29) complex (2007) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 63, pp. 524-528 Esnouf, R. M., Ren, J., Garman, E. F., Somers, D. O., Ross, C. K., Jones, E. Y., Stammers, D. K., Stuart, D. I., Continuous and discontinuous changes in the unit cell of HIV-1 reverse transcriptase crystals on dehydration (1998) Acta Crystallogr. D Biol. Crystallogr, 54, pp. 938-953 Rustiguel, J. K., Pinheiro, M. P., Araujo, A. P., Nonato, M. C., Crystallization and preliminary X-ray diffraction analysis of recombinant chlorocatechol 1, 2-dioxygenase from Pseudomonas putida (2011) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 67, pp. 507-509 Fu, Z. Q., du Bois, G. C., Song, S. P., Harrison, R. W., Weber, I. T., Improving the diffraction quality of MTCP-1 crystals by post-crystallization soaking (1999) Acta Crystallogr. D Biol. Crystallogr, 55, pp. 5-7 An, Y. J., Ahn, B. E., Roe, J. H., Cha, S. S., Crystallization and preliminary X-ray crystallographic analyses of Nur, a nickel-responsive transcription regulator from Streptomyces coelicolor (2008) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 64, pp. 130-132 Henderson, K. N., Reid, H. H., Borg, N. A., Broughton, S. E., Huyton, T., Anderson, R. P., McCluskey, J., Rossjohn, J., The production and crystallization of the human leukocyte antigen class II molecules HLA-DQ2 and HLA-DQ8 complexed with deamidated gliadin peptides implicated in coeliac disease (2007) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 63, pp. 1021-1025 Callahan, S. J., Morgan, R. D., Jain, R., Townson, S. A., Wilson, G. G., Roberts, R. J., Aggarwal, A. K., Crystallization and preliminary crystallographic analysis of the type IIL restriction enzyme MmeI in complex with DNA (2011) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 67, pp. 1262-1265 Andres, S. N., Junop, M. S., Crystallization and preliminary X-ray diffraction analysis of the human XRCC4-XLF complex (2011) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 67, pp. 1399-1402 Verma, S. K., Jaiswal, M., Kumar, N., Parikh, A., Nandicoori, V. K., Prakash, B., Structure of N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) from Mycobacterium tuberculosis in a cubic space group (2009) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 65, pp. 435-439 Yap, T. L., Chen, Y. L., Xu, T., Wen, D., Vasudevan, S. G., Lescar, J., A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution (2007) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 63, pp. 78-83 Wheeler, M. J., Russi, S., Bowler, M. G., Bowler, M. W., Measurement of the equilibrium relative humidity for common precipitant concentrations: Facilitating controlled dehydration experiments (2012) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 68, pp. 111-114 Matthews, B. W., Solvent content of protein crystals (1968) J. Mol. Biol, 33 (491-497), p. 93 Storoni, L. C., McCoy, A. J., Read, R. J., Likelihood-enhanced fast rotation functions (2004) Acta Crystallogr. D Biol. Crystallogr, 60 (432-438), p. 96}, document_type={Journal Article, }, affiliation={Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, Naples I-80126, Italy Institute of Biostructures and Bioimages, CNR, Via Mezzocannone, 16, Naples I-80134, Italy Department of Pharmaceutical, Biomedical Sciences, University of Salerno, Via Ponte Don Melillo, I-84084 Fisciano, Italy}, ibbaffiliation={1}, } @article{IBB_ID_9848, author={Merlino A, Russo Krauss I, Albino A, Pica A, Vergara A, Masullo M, De Vendittis E, Sica F}, title={Improving Protein Crystal Quality by the Without-Oil Microbatch Method: Crystallization and Preliminary X-ray Diffraction Analysis of Glutathione Synthetase from Pseudoalteromonas haloplanktis}, date={2011 Sep}, journal={Int J Mol Sc (ISSN: 1422-0067, 1661-6596, 1422-0067electronic)}, year={2011}, fullvolume={360}, volume={360}, pages={6312--6319}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-80053206933&partnerID=40&md5=9ec9c40b3434ed0ebff0bd50fadccefe}, abstract={Glutathione synthetases catalyze the ATP-dependent synthesis of glutathione from L-gamma-glutamyl-L-cysteine and glycine. Although these enzymes have been sequenced and characterized from a variety of biological sources, their exact catalytic mechanism is not fully understood and nothing is known about their adaptation at extremophilic environments. Glutathione synthetase from the Antarctic eubacterium Pseudoalteromonas haloplanktis (PhGshB) has been expressed, purified and successfully crystallized. An overall improvement of the crystal quality has been obtained by adapting the crystal growth conditions found with vapor diffusion experiments to the without-oil microbatch method. The best crystals of PhGshB diffract to 2.34 angstrom resolution and belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 83.28 angstrom, b = 119.88 angstrom, c = 159.82 angstrom. Refinement of the model, obtained using phases derived from the structure of the same enzyme from Escherichia coli by molecular replacement, is in progress. The structural determination will provide the first structural characterization of a psychrophilic glutathione synthetase reported to date.}, keywords={Crystal Quality, Glutathione Synthetase, Psychrophile, Without-Oil Microbatch, X-Ray Crystallography, Glutathione Synthase, Article, Concentration (parameters), Controlled Study, Crystal Structure, Enzyme Purification, Escherichia Coli, Evaporation, Process Optimization, Protein Expression, Pseudoalteromonas, Pseudoalteromonas Haloplanktis, Psychrophilic Bacterium, Quality Control, Structure Analysis, Validation Process, X Ray Diffraction, }, references={Dalle-Donne, I., Rossi, R., Giustarini, D., Colombo, R., Milzani, A., S-glutathionylation in protein redox regulation (2007) Free Radic. Biol. Med, 43, pp. 883-89 Circu, M.L., Aw, T.Y., Glutathione and apoptosis (2008) Free Radic. Res, 42, pp. 689-706 Pallardo, F.V., Markovic, J., Garcia, J.L., Vina, J., Role of nuclear glutathione as a key regulator of cell proliferation (2009) Mol. Asp. Med, 30, pp. 77-85 Yamaguchi, H., Kato, H., Hata, Y., Nishioka, T., Kimura, A., Oda, J., Katsube, Y., Three-dimensional structure of the glutathione synthetase from Escherichia coli B at 2.0 Å resolution (1993) J. Mol. Biol, 229, pp. 1083-1100 Mooz, E.D., Meister, A., Tripeptide (glutathione) synthetase: Purification, properties and mechanism of action (1967) Biochemistry, 6, pp. 1722-1734 Gali, R.R., Board, P.G., Sequencing and expression of a cDNA for human glutathione synthetase (1995) Biochem. J, 310, pp. 353-358 Ota, T., Suzuki, Y., Nishikawa, T., Otsuki, T., Sugiyama, T., Irie, R., Wakamatsu, A., Nagai, K., Complete sequencing and characterization of 21,243 full-length human cDNAs (2004) Nat. Genet, 36, pp. 40-45 Huang, C.S., He, W., Meister, A., Anderson, M.E., Amino acid sequence of rat kidney glutathione synthetase (1995) Proc. Natl. Acad. Sci. USA, 92, pp. 1232-1236 Gushima, H., Yasuda, S., Soeda, E., Yokota, M., Kimura, A., Complete nucleotide sequence of the E. coli glutathione synthetase gsh-II (1984) Nucleic Acids Res, 12, pp. 9299-9307 Polekhina, G., Board, P.G., Gali, R.R., Rossjohn, J., Parker, M.W., Molecular basis of glutathione synthetase deficiency and a rare gene permutation event (1999) EMBO J, 18, pp. 3204-3213 Castellano, I., di Maro, A., Ruocco, M.R., Chambery, A., Parente, A., di Martino, M.T., Parlato, G., de Vendittis, E., Psychrophilic superoxide dismutase from Pseudoalteromonas haloplanktis: Biochemical characterization and identification of a highly reactive cysteine residue (2006) Biochimie, 88, pp. 1377-1389 Castellano, I., Ruocco, M.R., Cecere, F., di Maro, A., Chambery, A., Michniewicz, A., Parlato, G., de Vendittis, E., Glutathionylation of the iron superoxide dismutase from the psychrophilic eubacterium Pseudoalteromonas haloplanktis. Biochim. Biophys (2008) Acta Protein Proteonomics, 1784, pp. 816-826 Merlino, A., Russo Krauss, I., Castellano, I., de Vendittis, E., Rossi, B., Conte, M., Vergara, A., Sica, F., Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis (2010) J. Struct. Biol, 172, pp. 343-352 Matsuda, K., Mizuguchi, K., Nishioka, T., Kato, H., Go, N., Oda, J., Crystal structure of glutathione synthetase at optimal pH: Domain architecture and structural similarity with other proteins (1996) Protein Eng, 9, pp. 1083-1092 Hara, T., Kato, H., Katsube, Y., Oda, J.A., pseudo-Michaelis quaternary complex in the reverse reaction of a ligase: Structure of Escherichia coli B glutathione synthetase complexed with ADP, glutathione, and sulfate at 2.0 Å resolution (1996) Biochemistry, 35, pp. 11967-11974 Chayen, N.E., Shaw Stewart, P.D., Maeder, D.L., Blow, D.M., An automated system for micro-batch protein crystallization and screening (1990) J. Appl. Cryst, 23, pp. 297-302 Chayen, N.E., Recent advances in methodology for the crystallization of biological macromolecules (1999) J. Cryst. Growth, 199, pp. 649-655 Martins, P.M., Pessoa, J., Sarkany, Z., Rocha, F., Damas, A.M., Rationalizing protein crystallization Screenings through water equilibration theory and protein solubility data (2008) Cryst. Growth Des, 8, pp. 4233-4243 Rayment, I., Small-scale batch crystallization of proteins revisited: An underutilized way to grow large protein crystals (2002) Structure, 10, pp. 147-151 Matthews, B.W., Solvent content of protein crystals (1968) J. Mol. Biol, 33, pp. 491-497 Medigue, C., Krin, E., Pascal, G., Barbe, V., Bernsel, A., Bertin, P.N., Cheung, F., Duilio, A., Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125 (2005) Genome Res, 15, pp. 1325-1335 Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol, 276, pp. 307-326 Evans, P., Scaling and assessment of data quality (2006) Acta Cryst. D, 62, pp. 72-82 Weiss, M.S., Global indicators of X-ray data quality (2001) J. Appl. Crystallogr, 34, pp. 130-135 Storoni, L.C., McCoy, A.J., Read, R.J., Likelihood-enhanced fast rotation functions (2004) Acta Crystallogr. D Biol. Crystallogr, 60, pp. 432-438 Circu, M. L., Aw, T. Y., Glutathione and apoptosis (2008) Free Radic. Res, 42, pp. 689-706 Pallardo, F. V., Markovic, J., Garcia, J. L., Vina, J., Role of nuclear glutathione as a key regulator of cell proliferation (2009) Mol. Asp. Med, 30, pp. 77-85 Mooz, E. D., Meister, A., Tripeptide (glutathione) synthetase: Purification, properties and mechanism of action (1967) Biochemistry, 6, pp. 1722-1734 Gali, R. R., Board, P. G., Sequencing and expression of a cDNA for human glutathione synthetase (1995) Biochem. J, 310, pp. 353-358 Huang, C. S., He, W., Meister, A., Anderson, M. E., Amino acid sequence of rat kidney glutathione synthetase (1995) Proc. Natl. Acad. Sci. USA, 92, pp. 1232-1236 Chayen, N. E., Shaw Stewart, P. D., Maeder, D. L., Blow, D. M., An automated system for micro-batch protein crystallization and screening (1990) J. Appl. Cryst, 23, pp. 297-302 Chayen, N. E., Recent advances in methodology for the crystallization of biological macromolecules (1999) J. Cryst. Growth, 199, pp. 649-655 Martins, P. M., Pessoa, J., Sarkany, Z., Rocha, F., Damas, A. M., Rationalizing protein crystallization Screenings through water equilibration theory and protein solubility data (2008) Cryst. Growth Des, 8, pp. 4233-4243 Matthews, B. W., Solvent content of protein crystals (1968) J. Mol. Biol, 33, pp. 491-497 Weiss, M. S., Global indicators of X-ray data quality (2001) J. Appl. Crystallogr, 34, pp. 130-135 Storoni, L. C., McCoy, A. J., Read, R. J., Likelihood-enhanced fast rotation functions (2004) Acta Crystallogr. D Biol. Crystallogr, 60, pp. 432-438}, document_type={Journal Article, }, affiliation={Dipartimento di Chimica Paolo Corradini, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, Naples I-80126, Italy Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, Naples I-80134, Italy Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini 5, Naples I-80131, Italy Dipartimento di Studi delle Istituzioni e dei Sistemi Territoriali, Università di Napoli Parthenope, Via Medina 40, Naples I-80133, Italy}, ibbaffiliation={1}, } @article{IBB_ID_12459, author={Troise F, Monti M, Merlino A, Cozzolino F, Fedele C, Russo Krauss I, Sica F, Pucci P, D'Alessio G, De Lorenzo C}, title={A novel ErbB2 epitope targeted by human antitumor immunoagents}, date={2011 Apr}, journal={Febs Journal (ISSN: 1742-464x)}, year={2011}, fullvolume={382}, volume={382}, pages={1156--1166}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-79952857785&partnerID=40&md5=5e0ced118b1ef257c3ee6fba6b45067f}, abstract={Two novel human antitumor immunoconjugates, engineered by fusion of a single-chain antibody fragment against human ErbB2 receptor, termed Erbicin, with either a human RNase or the Fc region of a human IgG(1), are selectively cytotoxic for ErbB2-positive cancer cells in vitro and in vivo. These Erbicin-derived immunoagents (EDIAs) do not show the most negative properties of Herceptin, the only humanized mAb against ErbB2 used in the therapy of breast carcinoma: cardiotoxicity and the inability to act on resistant tumors. These differences are probably attributable to the different ErbB2 epitopes recognized by EDIAs and Herceptin, respectively, as we have previously reported that they induce different signaling mechanisms that control tumor and cardiac cell viability. Thus, to accurately identify the novel epitope recognized by EDIAs, three independent and complementary methodologies were used. They gave coherent results, which are reported here: EDIAs bind to a different ErbB2 epitope than Herceptin and the other human/humanized antibodies against ErbB2 reported so far. The epitope has been successfully located in region 122-195 of extracellular domain I. These findings could lead to the identification of novel epitopes on ErbB2 that could be used as potential therapeutic targets to mitigate anti-ErbB2-associated cardiotoxicity and eventually overcome resistance.}, keywords={Breast Cancer, Cardiotoxicity, Erbb2 Her2, Herceptin Trastuzumab, Immunotherapy, Antineoplastic Agent, Epidermal Growth Factor Receptor 2, Epidermal Growth Factor Receptor 2 Human Compact Antibody, Epitope, Erbicin, Erbicin Ribonuclease Fusion Protein, Pertuzumab, Unclassified Drug, Amino Acid Sequence, Article, Binding Assay, Controlled Study, Drug Receptor Binding, Drug Screening, Enzyme Linked Immunosorbent Assay, Epitope Mapping, Extracellular Space, Mass Spectrometry, Molecular Docking, Priority Journal, Protein Degradation, Animals, Antibodies, Monoclonal, Breast Neoplasms, Computer Simulation, Female, Immunoconjugates, Models, Molecular Sequence Data, Protein Binding, Protein Structure, Tertiary, Recombinant Fusion Proteins, Tumor Cells, Cultured, Immunology, Therapeutic Use, Humanized, Chemistry Immunology Therapeutic Use, Drug Therapy, Erbb-2 Immunology, }, references={Baselga, J., Albanell, J., Mechanism of action of anti-HER2 monoclonal antibodies (2001) Annals of Oncology, 12 (SUPPL. 1), pp. S35-S4 Slamon, D.J., Clark, G.M., Wong, S.G., Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene (1987) Science, 235 (4785), pp. 177-182 Stebbing, J., Copson, E., O'Reilly, S., Herceptin (trastuzamab) in advanced breast cancer (2000) Cancer Treatment Reviews, 26 (4), pp. 287-290. , DOI 10.1053/ctrv.2000.0182 Sparano, J.A., Cardiac toxicity of trastuzumab (Herceptin): Implications for the design of adjuvant trials (2001) Semin Oncol, 28, pp. 20-27 Cardoso, F., Piccart, M.J., Durbecq, V., Di Leo, A., Resistance to trastuzumab: A necessary evil or a temporary challenge? (2002) Clinical Breast Cancer, 3 (4), pp. 247-257 De Lorenzo, C., D'Alessio, G., From immunotoxins to immunoRNases (2008) Current Pharmaceutical Biotechnology, 9 (3), pp. 210-214. , http://www.ingentaconnect.com/content/ben/cpb/2008/00000009/00000003/ art00010, DOI 10.2174/138920108784567254 De Lorenzo, C., Palmer, D.B., Piccoli, R., Ritter, M.A., D'Alessio, G., A new human antitumor immunoreagent specific for ErbB2 (2002) Clinical Cancer Research, 8 (6), pp. 1710-1719 De Lorenzo, C., Arciello, A., Cozzolino, R., Palmer, D.B., Laccetti, P., Piccoli, R., D'Alessio, G., A fully human antitumor immunoRNase selective for ErbB-2-positive carcinomas (2004) Cancer Research, 64 (14), pp. 4870-4874. , DOI 10.1158/0008-5472.CAN-03-3717 De Lorenzo, C., Tedesco, A., Terrazzano, G., Cozzolino, R., Laccetti, P., Piccoli, R., D'Alessio, G., A human, compact, fully functional anti-ErbB2 antibody as a novel antitumour agent (2004) British Journal of Cancer, 91 (6), pp. 1200-1204. , DOI 10.1038/sj.bjc.6602110 De Lorenzo, C., Cozzolino, R., Carpentieri, A., Pucci, P., Laccetti, P., D'Alessio, G., Biological properties of a human compact anti-ErbB2 antibody (2005) Carcinogenesis, 26 (11), pp. 1890-1895. , DOI 10.1093/carcin/bgi146 De Lorenzo, C., Troise, F., Cafaro, V., D'Alessio, G., Combinatorial experimental protocols for Erbicin-derived immunoagents and Herceptin (2007) British Journal of Cancer, 97 (10), pp. 1354-1360. , DOI 10.1038/sj.bjc.6604022, PII 6604022 Riccio, G., Esposito, G., Leoncini, E., Contu, R., Condorelli, G., Chiariello, M., Laccetti, P., De Lorenzo, C., Cardiotoxic effects, or lack thereof, of anti-ErbB2 immunoagents (2009) FASEB J, 23, pp. 3171-3178 Gelardi, T., Damiano, V., Rosa, R., Bianco, R., Cozzolino, R., Tortora, G., Laccetti, P., De Lorenzo, C., Two novel human anti-ErbB2 immunoagents are active on trastuzumab-resistant tumours (2010) Br J Cancer, 102, pp. 513-519 Badache, A., Hynes, N.E., A new therapeutic antibody masks ErbB2 to its partners (2004) Cancer Cell, 5, pp. 299-301 Cho, H.-S., Leahy, D.J., Structure of the extracellular region of HER3 reveals an interdomain tether (2002) Science, 297 (5585), pp. 1330-1333. , DOI 10.1126/science.1074611 Cho, H.-S., Mason, K., Ramyar, K.X., Stanley, A.M., Gabelli, S.B., Denney Jr., D.W., Leahy, D.J., Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab (2003) Nature, 421 (6924), pp. 756-760. , DOI 10.1038/nature01392 Franklin, M.C., Carey, K.D., Vajdos, F.F., Leahy, D.J., De Vos, A.M., Sliwkowski, M.X., Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex (2004) Cancer Cell, 5 (4), pp. 317-328. , DOI 10.1016/S1535-6108(04)00083-2, PII S1535610804000832 Stancovski, I., Hurwitz, E., Leitner, O., Ullrich, A., Yarden, Y., Sela, M., Mechanistic aspects of the opposing effects of monoclonal antibodies to the ERBB2 receptor on tumor growth (1991) Proceedings of the National Academy of Sciences of the United States of America, 88 (19), pp. 8691-8695 Yip, Y.L., Novotny, J., Edwards, M., Ward, R.L., Structural analysis of the ErbB-2 receptor using monoclonal antibodies: Implications for receptor signalling (2003) International Journal of Cancer, 104 (3), pp. 303-309. , DOI 10.1002/ijc.10951 Al-Lazikani, B., Lesk, A.M., Chothia, C., Standard conformations for the canonical structures of immunoglobulins (1997) Journal of Molecular Biology, 273 (4), pp. 927-948. , DOI 10.1006/jmbi.1997.1354 Chothia, C., Lesk, A.M., Canonical structures for the hypervariable regions of immunoglobulins (1987) Journal of Molecular Biology, 196 (4), pp. 901-917 Ben-Kasus, T., Schechter, B., Lavi, S., Yarden, Y., Sela, M., Persistent elimination of ErbB-2/HER2-overexpressing tumors using combinations of monoclonal antibodies: Relevance of receptor endocytosis (2009) Proc Natl Acad Sci USA, 106, pp. 3294-3299 Friedman, L.M., Rinon, A., Schechter, B., Lyass, L., Lavi, S., Bacus, S.S., Sela, M., Yarden, Y., Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: Implications for cancer immunotherapy (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (6), pp. 1915-1920. , DOI 10.1073/pnas.0409610102 Ay, J., Keitel, T., Kuttner, G., Wessner, H., Scholz, C., Hahn, M., Hohne, W., Crystal structure of a phage library-derived single-chain Fv fragment complexed with turkey egg-white lysozyme at 2.0 A resolution (2000) J Mol Biol, 301, pp. 239-246 Laskowski, R.A., Moss, D.S., Thornton, J.M., Main-chain bond lengths and bond angles in protein structures (1993) Journal of Molecular Biology, 231 (4), pp. 1049-1067. , DOI 10.1006/jmbi.1993.1351 Sippl, M.J., Recognition of errors in three-dimensional structures of proteins (1993) Proteins: Structure, Function and Genetics, 17 (4), pp. 355-362. , DOI 10.1002/prot.340170404 The CCP4 suite: Programs for protein crystallography (1994) Acta Crystallogr, 50, pp. 760-763. , Collaborative Computational Project no. 4 Van Dijk, A.D., Boelens, R., Bonvin, A.M., Data-driven docking for the study of biomolecular complexes (2005) FEBS J, 272, pp. 293-312 Gabb, H.A., Jackson, R.M., Sternberg, M.J.E., Modelling protein docking using shape complementarity, electrostatics and biochemical information (1997) Journal of Molecular Biology, 272 (1), pp. 106-120. , DOI 10.1006/jmbi.1997.1203 Reynolds, C., Damerell, D., Jones, S., ProtorP: A protein-protein interaction analysis server (2009) Bioinformatics, 25, pp. 413-414 McDonald, I.K., Thornton, J.M., Satisfying hydrogen bonding potential in proteins (1994) Journal of Molecular Biology, 238 (5), pp. 777-793. , DOI 10.1006/jmbi.1994.1334 Lawrence, M.C., Colman, P.M., Shape complementarity at protein/protein interfaces (1993) Journal of Molecular Biology, 234 (4), pp. 946-950. , DOI 10.1006/jmbi.1993.1648 Slamon, D. J., Clark, G. M., Wong, S. G., Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene (1987) Science, 235 (4785), pp. 177-182 Sparano, J. A., Cardiac toxicity of trastuzumab (Herceptin): Implications for the design of adjuvant trials (2001) Semin Oncol, 28, pp. 20-27 Cho, H. -S., Leahy, D. J., Structure of the extracellular region of HER3 reveals an interdomain tether (2002) Science, 297 (5585), pp. 1330-1333. , DOI 10. 1126/science. 1074611 Cho, H. -S., Mason, K., Ramyar, K. X., Stanley, A. M., Gabelli, S. B., Denney Jr., D. W., Leahy, D. J., Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab (2003) Nature, 421 (6924), pp. 756-760. , DOI 10. 1038/nature01392 Franklin, M. C., Carey, K. D., Vajdos, F. F., Leahy, D. J., De Vos, A. M., Sliwkowski, M. X., Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex (2004) Cancer Cell, 5 (4), pp. 317-328. , DOI 10. 1016/S1535-6108 (04) 00083-2, PII S1535610804000832 Yip, Y. L., Novotny, J., Edwards, M., Ward, R. L., Structural analysis of the ErbB-2 receptor using monoclonal antibodies: Implications for receptor signalling (2003) International Journal of Cancer, 104 (3), pp. 303-309. , DOI 10. 1002/ijc. 10951 Friedman, L. M., Rinon, A., Schechter, B., Lyass, L., Lavi, S., Bacus, S. S., Sela, M., Yarden, Y., Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: Implications for cancer immunotherapy (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (6), pp. 1915-1920. , DOI 10. 1073/pnas. 0409610102 Laskowski, R. A., Moss, D. S., Thornton, J. M., Main-chain bond lengths and bond angles in protein structures (1993) Journal of Molecular Biology, 231 (4), pp. 1049-1067. , DOI 10. 1006/jmbi. 1993. 1351 Sippl, M. J., Recognition of errors in three-dimensional structures of proteins (1993) Proteins: Structure, Function and Genetics, 17 (4), pp. 355-362. , DOI 10. 1002/prot. 340170404 Van Dijk, A. D., Boelens, R., Bonvin, A. M., Data-driven docking for the study of biomolecular complexes (2005) FEBS J, 272, pp. 293-312 Gabb, H. A., Jackson, R. M., Sternberg, M. J. E., Modelling protein docking using shape complementarity, electrostatics and biochemical information (1997) Journal of Molecular Biology, 272 (1), pp. 106-120. , DOI 10. 1006/jmbi. 1997. 1203 McDonald, I. K., Thornton, J. M., Satisfying hydrogen bonding potential in proteins (1994) Journal of Molecular Biology, 238 (5), pp. 777-793. , DOI 10. 1006/jmbi. 1994. 1334 Lawrence, M. C., Colman, P. M., Shape complementarity at protein/protein interfaces (1993) Journal of Molecular Biology, 234 (4), pp. 946-950. , DOI 10. 1006/jmbi. 1993. 1648}, document_type={Journal Article, Research Support, Non-U. S. Gov'T, }, affiliation={Dipartimento di Biologia Strutturale e Funzionale, UniversitÀdi Napoli Federico II, via Cinthia, 80126 Napoli, Italy CEINGE Biotecnologie Avanzate, Napoli, Italy Dipartimento di Chimica Organica e Biochimica, UniversitÀ di Napoli Federico II, Italy Istituto di Biostrutture e Bioimmagini, CNR, Naples, Italy}, ibbaffiliation={1}, } @article{IBB_ID_8839, author={Pizzo E, Merlino A, Turano M, Russo Krauss I, Coscia F, Zanfardino A, Varcamonti M, Furia A, Giancola C, Mazzarella L, Sica F, D'Alessio G}, title={A new RNase sheds light on the RNase/angiogenin subfamily from zebrafish}, date={2011 Jan 15}, journal={Biochem J (ISSN: 1470-8728electronic, 0264-6021linking, 0264-6021print)}, year={2011}, fullvolume={766}, volume={766}, pages={345--355}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-78651266853&partnerID=40&md5=30a61a9b637299df0873584fb2dc55dc}, abstract={Recently, extracellular RNases of the RNase A superfamily, with the characteristic CKxxNTF sequence signature, have been identified in fish. This has led to the recognition that these RNases are present in the whole vertebrate subphylum. In fact, they comprise the only enzyme family unique to vertebrates. Four RNases from zebrafish (Danio rerio) have been previously reported and have a very low RNase activity; some of these are endowed, like human angiogenin, with powerful angiogenic and bactericidal activities. In the present paper, we report the three-dimensional structure, the thermodynamic behaviour and the biological properties of a novel zebrafish RNase, ZF-RNase-5. The investigation of its structural and functional properties, extended to all other subfamily members, provides an inclusive description of the whole zebrafish RNase subfamily. The Authors Journal compilation 2011 Biochemical Society}, keywords={Angiogenin, Bactericidal Activity, Rnase, Vertebrate, Zebrafish (zf) (danio Rerio), Enzyme, Ribonuclease, Unclassified Drug, Article, Biological Activity, Controlled Study, Drug Structure, Human, Nonhuman, Priority Journal, Thermodynamics, Zebra Fish, Amino Acid Sequence, Animals, Cells, Cultured, Gene Expression Regulation, Developmental, Enzymologic, Models, Molecular, Molecular Sequence Data, Protein Structure, Tertiary, Pancreatic, Sequence Alignment, Pancreatic Chemistry, Genetics, Metabolism, Ribonucleases Chemistry, Embryology, Genetics Metabolism, Pancreatic Chemistry Genetics Metabolism, Ribonucleases Chemistry Genetics Metabolism, Zebrafish Embryology Genetics Metabolism, }, references={Pizzo, E., D'Alessio, G., The success of the RNase scaffold in the advance of biosciences and in evolution (2007) Gene, 406, pp. 8-1 Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., FitzHugh, W., Initial sequencing and analysis of the human genome (2001) Nature, 409, pp. 860-921 Cho, S., Zhang, J., Zebrafish ribonucleases are bactericidal: Implications for the origin of the vertebrate RNase A superfamily (2007) Mol. Biol. Evol., 24, pp. 1259-1268 Kazakou, K., Holloway, D.E., Prior, S.H., Subramanian, V., Acharya, K.R., Ribonuclease A homologues of the zebrafish: Polymorphism, crystal structures of two representatives and their evolutionary implications (2008) J. Mol. Biol., 380, pp. 206-222 Pizzo, E., Buonanno, P., Di Maro, A., Ponticelli, S., De Falco, S., Quarto, N., Cubellis, M.V., D'Alessio, G., Ribonucleases and angiogenins from fish (2006) J. Biol. Chem., 281, pp. 27454-27460 Pizzo, E., Varcamonti, M., Di Maro, A., Zanfardino, A., Giancola, C., D'Alessio, G., Ribonucleases with angiogenic and bactericidal activities from the Atlantic salmon (2008) FEBS J., 275, pp. 1283-1295 Kishikawa, H., Wu, D., Hu, G.F., Targeting angiogenin in therapy of amyotropic lateral sclerosis (2008) Expert Opin. Ther. Targets, 12, pp. 1229-1242 Fu, H., Feng, J., Liu, Q., Sun, F., Tie, Y., Zhu, J., Xing, R., Zheng, X., Stress induces tRNA cleavage by angiogenin in mammalian cells (2009) FEBS Lett., 583, pp. 437-442 Yamasaki, S., Ivanov, P., Hu, G.F., Anderson, P., Angiogenin cleaves tRNA and promotes stress-induced translational repression (2009) J. Cell Biol., 185, pp. 35-42 Quarto, N., Pizzo, E., D'Alessio, G., Temporal and spatial expression of RNases from zebrafish ( Danio rerio) (2008) Gene, 427, pp. 32-41 Covassin, L.D., Siekmann, A.F., Kacergis, M.C., Laver, E., Moore, J.C., Villefranc, J.A., Weinstein, B.M., Lawson, N.D., A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development (2009) Dev. Biol., 329, pp. 212-226 Lawson, N.D., Weinstein, B.M., Arteries and veins: Making a difference with zebrafish (2002) Nat. Rev. Genet., 3, pp. 674-682 Ny, A., Autiero, M., Carmeliet, P., Zebrafish and Xenopus tadpoles: Small animal models to study angiogenesis and lymphangiogenesis (2006) Exp. Cell Res., 312, pp. 684-693 Monti, D.M., Yu, W., Pizzo, E., Shima, K., Hu, M.G., Di Malta, C., Piccoli, R., Hu, G.F., Characterization of the angiogenic activity of zebrafish ribonucleases (2009) FEBS J., 276, pp. 4077-4090 Rosenberg, H.F., Recombinant human eosinophil cationic protein ribonuclease activity is not essential for cytotoxicity (1995) J. Biol. Chem., 270, pp. 7876-7881 Blank, A., Sugiyama, R.H., Dekker, C.A., Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis: Use of aqueous isopropanol to remove detergent from gels (1982) Anal. Biochem., 120, pp. 267-275 Kelemen, B.R., Klink, T.A., Behlke, M.A., Eubanks, S.R., Leland, P.A., Raines, R.T., Hypersensitive substrate for ribonucleases (1999) Nucleic Acids Res., 27, pp. 3696-3701 Venyaminov, S.Y., Yang, J.T., Determination of protein secondary structure (1996) Circular Dichroism and the Conformational Analysis of Biomolecules, pp. 69-107. , Fasman, G. D., ed., Plenum Press, New York Barone, G., Del Vecchio, P., Fessas, D., Giancola, C., Graziano, G., THESEUS: A new software package for the handling and analysis of thermal denaturation data for biological macromolecules (1993) J. Thermal Anal., 39, pp. 2779-2790 Otwinowsky, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods in Enzymology, pp. 307-326. , Carter, Jr, C. W. and Sweet, R. M., eds, Academic Press, San Diego McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C., Read, R.J., Likelihood-enhanced fast translation functions (2005) Acta Crystallogr. D Biol. Crystallogr., 61, pp. 458-464 Acharya, K.R., Shapiro, R., Riordan, J.F., Vallee, B.L., Crystal structure of bovine angiogenin at 1.5-Å resolution (1995) Proc. Natl. Acad. Sci U.S.A., 92, pp. 2949-2953 Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Pannu, N.S., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr. D Biol. Crystallogr., 54, pp. 905-921 Jones, T.A., Zou, J.Y., Cowan, S.W., Kjedgaard, M., Improved methods for binding protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. D Biol. Crystallogr., 56, pp. 714-721 Laskowski, R.A., MacArthur, M.W., Moss, M.D., Thornton, J.M., PROCHECK: A program to check the stereochemical quality of protein structure (1993) J. Appl. Crystallogr., 26, pp. 283-291 Hooft, R.W., Vriend, G., Sander, C., Abola, E.E., Errors in protein structures (1996) Nature, 381, p. 272 Schwede, T., Kopp, J., Guex, N., Peitsch, M.C., SWISS-MODEL: An automated protein homology-modeling server (2003) Nucleic Acids Res., 31, pp. 3381-3385 Merlino, A., Graziano, G., Mazzarella, L., Structural and dynamic effects of α-helix deletion in Sso7d: Implications for protein thermal stability (2004) Proteins, 57, pp. 692-701 Porcelli, M., Moretti, M.A., Concilio, L., Forte, S., Merlino, A., Graziano, G., Cacciapuoti, G., S-adenosylhomocysteine hydrolase from the archaeon Pyrococcus furiosus: Biochemical characterization and analysis of protein structure by comparative molecular modeling (2005) Proteins, 58, pp. 815-825 Sippl, M.J., Recognition of errors in three-dimensional structures of proteins (1993) Proteins, 17, pp. 355-362 Sippl, M.J., Knowledge-based potentials for proteins (1995) Curr. Opin. Struct. Biol., 5, pp. 229-235 Berisio, R., Lamzin, V.S., Sica, F., Wilson, K.S., Zagari, A., Mazzarella, L., Protein titration in the crystal state (1999) J. Mol. Biol., 292, pp. 845-854 Holloway, D.E., Chavali, G.B., Hares, M.C., Subramanian, V., Acharya, K.R., Structure of murine angiogenin: Features of the substrate- and cell-binding regions and prospects for inhibitor-binding studies (2005) Acta Crystallogr. D Biol. Crystallogr., 61, pp. 1568-1578 Leonidas, D.D., Chavali, G.B., Jardine, A.M., Li, S., Shapiro, R., Acharya, K.R., Binding of phosphate and pyrophosphate ions at the active site of human angiogenin as revealed by X-ray crystallography (2001) Protein Sci., 10, pp. 1669-1676 Vitagliano, L., Merlino, A., Zagari, A., Mazzarella, L., Productive and nonproductive binding to ribonuclease A: X-ray structure of two complexes with uridylyl(2′,5′)guanosine (2000) Protein Sci., 9, pp. 1217-1225 Mazzarella, L., Capasso, S., Demasi, D., Di Lorenzo, G., Mattia, C.A., Zagari, A., Bovine seminal ribonuclease. Structure at 1.9 Å resolution (1993) Acta Crystallogr. D Biol. Crystallogr., 49, pp. 389-402 Merlino, A., Mazzarella, L., Carannante, A., Di Fiore, A., Di Donato, A., Notomista, E., Sica, F., The importance of dynamic effects on the enzyme activity: X-ray structure and molecular dynamics of onconase mutants (2005) J. Biol. Chem., 280, pp. 17953-17960 Merlino, A., Vitagliano, L., Sica, F., Zagari, A., Mazzarella, L., Population shift vs induced fit: The case of bovine seminal ribonuclease swapping dimer (2004) Biopolymers, 73, pp. 689-695 Barone, G., Catanzano, F., Del Vecchio, P., Giancola, C., Graziano, G., Thermodynamics of protein stability: A family of ribonucleases (1997) Pure Appl. Chem., 69, pp. 2307-2313 Crabtree, B., Thiyagarajan, N., Prior, S.H., Wilson, P., Iyer, S., Ferns, T., Shapiro, R., Acharya, K.R., Characterization of human angiogenin variants implicated in amyotrophic lateral sclerosis (2007) Biochemistry, 46, pp. 11810-11818 Leland, P.A., Staniszewski, K.E., Park, C., Kelemen, B.R., Raines, R.T., The ribonucleolytic activity of angiogenin (2002) Biochemistry, 41, pp. 1343-1350 Zanfardino, A., Pizzo, E., Di Maro, A., Varcamonti, M., D'Alessio, G., The bactericidal action on Escherichia coliof ZF-RNase-3 is triggered by the suicidal action of the bacterium OmpT protease (2010) FEBS J., 277, pp. 1921-1928 Moussaoui, M., Guasch, A., Boix, E., Cuchillo, C., Nogues, M., The role of non-catalytic binding subsites in the endonuclease activity of bovine pancreatic ribonuclease A (1996) J. Biol. Chem., 271, pp. 4687-4692 Schultz, L.W., Quirk, D.J., Raines, R.T., His... Asp catalytic dyad of ribonuclease A: Structure and function of the wild-type, D121N, and D121A enzymes (1998) Biochemistry, 37, pp. 8886-8898 Huang, Y.C., Lin, Y.M., Chang, T.W., Wu, S.J., Lee, Y.S., Chang, M.D., Chen, C., Liao, Y.D., The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity (2007) J. Biol. Chem., 282, pp. 4626-4633 Nitto, T., Dyer, K.D., Czapiga, M., Rosenberg, H.F., Evolution and function of leukocyte RNase a ribonucleases of the avian species, Gallus gallus (2006) J. Biol. Chem., 281, pp. 25622-25634 Piatigorsky, J., Wistow, G., The recruitment of crystallins: New functions precede gene duplication (1991) Science, 252, pp. 1078-1079 Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., FitzHugh, W., Initial sequencing and analysis of the human genome (2001) Nature, 409, pp. 860-921 Covassin, L. D., Siekmann, A. F., Kacergis, M. C., Laver, E., Moore, J. C., Villefranc, J. A., Weinstein, B. M., Lawson, N. D., A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development (2009) Dev. Biol., 329, pp. 212-226 Lawson, N. D., Weinstein, B. M., Arteries and veins: Making a difference with zebrafish (2002) Nat. Rev. Genet., 3, pp. 674-682 Monti, D. M., Yu, W., Pizzo, E., Shima, K., Hu, M. G., Di Malta, C., Piccoli, R., Hu, G. F., Characterization of the angiogenic activity of zebrafish ribonucleases (2009) FEBS J., 276, pp. 4077-4090 Rosenberg, H. F., Recombinant human eosinophil cationic protein ribonuclease activity is not essential for cytotoxicity (1995) J. Biol. Chem., 270, pp. 7876-7881 Kelemen, B. R., Klink, T. A., Behlke, M. A., Eubanks, S. R., Leland, P. A., Raines, R. T., Hypersensitive substrate for ribonucleases (1999) Nucleic Acids Res., 27, pp. 3696-3701 Venyaminov, S. Y., Yang, J. T., Determination of protein secondary structure (1996) Circular Dichroism and the Conformational Analysis of Biomolecules, pp. 69-107. , Fasman, G. D., ed., Plenum Press, New York McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C., Read, R. J., Likelihood-enhanced fast translation functions (2005) Acta Crystallogr. D Biol. Crystallogr., 61, pp. 458-464 Acharya, K. R., Shapiro, R., Riordan, J. F., Vallee, B. L., Crystal structure of bovine angiogenin at 1. 5- resolution (1995) Proc. Natl. Acad. Sci U. S. A., 92, pp. 2949-2953 Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Pannu, N. S., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr. D Biol. Crystallogr., 54, pp. 905-921 Jones, T. A., Zou, J. Y., Cowan, S. W., Kjedgaard, M., Improved methods for binding protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. D Biol. Crystallogr., 56, pp. 714-721 Laskowski, R. A., MacArthur, M. W., Moss, M. D., Thornton, J. M., PROCHECK: A program to check the stereochemical quality of protein structure (1993) J. Appl. Crystallogr., 26, pp. 283-291 Hooft, R. W., Vriend, G., Sander, C., Abola, E. E., Errors in protein structures (1996) Nature, 381, p. 272 Sippl, M. J., Recognition of errors in three-dimensional structures of proteins (1993) Proteins, 17, pp. 355-362 Sippl, M. J., Knowledge-based potentials for proteins (1995) Curr. Opin. Struct. Biol., 5, pp. 229-235 Holloway, D. E., Chavali, G. B., Hares, M. C., Subramanian, V., Acharya, K. R., Structure of murine angiogenin: Features of the substrate- and cell-binding regions and prospects for inhibitor-binding studies (2005) Acta Crystallogr. D Biol. Crystallogr., 61, pp. 1568-1578 Leonidas, D. D., Chavali, G. B., Jardine, A. M., Li, S., Shapiro, R., Acharya, K. R., Binding of phosphate and pyrophosphate ions at the active site of human angiogenin as revealed by X-ray crystallography (2001) Protein Sci., 10, pp. 1669-1676 Leland, P. A., Staniszewski, K. E., Park, C., Kelemen, B. R., Raines, R. T., The ribonucleolytic activity of angiogenin (2002) Biochemistry, 41, pp. 1343-1350 Schultz, L. W., Quirk, D. J., Raines, R. T., His. Asp catalytic dyad of ribonuclease A: Structure and function of the wild-type, D121N, and D121A enzymes (1998) Biochemistry, 37, pp. 8886-8898 Huang, Y. C., Lin, Y. M., Chang, T. W., Wu, S. J., Lee, Y. S., Chang, M. D., Chen, C., Liao, Y. D., The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity (2007) J. Biol. Chem., 282, pp. 4626-4633}, document_type={Journal Article, Research Support, Non-U. S. Gov'T, }, affiliation={Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy Dipartimento di Chimica, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale Delle Ricerche (CNR), Via Mezzocannone 16, I-80134 Naples, Italy}, ibbaffiliation={1}, } @article{IBB_ID_52310, author={Russo Krauss I, Merlino A, Giancola C, Randazzo A, Mazzarella L, Sica F}, title={Thrombin-aptamer recognition: a revealed ambiguity}, date={2011}, journal={Nucleic Acids Res (ISSN: 0305-1048, 1362-4962, 1362-4962electronic)}, year={2011}, fullvolume={486}, volume={486}, pages={7858--7867}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-80053183285&partnerID=40&md5=10458df8823d5431a24c26f060fdac93}, abstract={Aptamers are structured oligonucleotides that recognize molecular targets and can function as direct protein inhibitors. The best-known example is the thrombin-binding aptamer, TBA, a single-stranded 15-mer DNA that inhibits the activity of thrombin, the key enzyme of coagulation cascade. TBA folds as a G-quadruplex structure, as proved by its NMR structure. The X-ray structure of the complex between TBA and human alpha-thrombin was solved at 2.9-A resolution, but did not provide details of the aptamer conformation and the interactions with the protein molecule. TBA is rapidly processed by nucleases. To improve the properties of TBA, a number of modified analogs have been produced. In particular, a modified TBA containing a 5'-5' polarity inversion site, mTBA, has higher stability and higher affinity toward thrombin with respect to TBA, although it has a lower inhibitory activity. We present the crystal structure of the thrombin-mTBA complex at 2.15-A resolution; the resulting model eventually provides a clear picture of thrombin-aptamers interaction, and also highlights the structural bases of the different properties of TBA and mTBA. Our findings open the way for a rational design of modified aptamers with improved potency as anticoagulant drugs.}, keywords={Aptamer, Thrombin, Ambiguity, Article, Binding Affinity, Cell Polarity, Controlled Study, Crystal Structure, Crystallography, Molecular Recognition, Priority Journal, Protein Binding, Protein Dna Interaction, Protein Function, Protein Stability, Protein Structure, Structure Analysis, Nucleotide, X-Ray, Dna-Binding Proteins, Humans, Models, }, references={Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H., Toole, J.J., Selection of single-stranded DNA molecules that bind and inhibit human thrombin (1992) Nature, 355, pp. 564-56 Burke, J.M., Berzal-Herranz, A., In vitro selection and evolution of RNA: Applications for catalytic RNA, molecular recognition, and drug discovery (1993) FASEB Journal, 7 (1), pp. 106-112 Lancellotti, S., De Cristofaro, R., Nucleotide-derived thrombin inhibitors: A new tool for an old issue (2009) Cardiovasc. Hematol. Agents Med. Chem., 7, pp. 19-28 Gold, L., Oligonucleotides as research diagnostic, and therapeutic agents (1995) J. Biol. Chem., 270, pp. 13581-13584 Huntington, J.A., Molecular recognition mechanisms of thrombin (2005) Journal of Thrombosis and Haemostasis, 3 (8), pp. 1861-1872. , DOI 10.1111/j.1538-7836.2005.01363.x Bode, W., Turk, D., Karshikov, A., The refined 1.9-À X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human α-thrombin: Structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships (1992) Protein Science, 1 (4), pp. 426-471 Paborsky, L.R., McCurdy, S.N., Griffin, L.C., Toole, J.J., Leung, L.L.K., The single-stranded DNA aptamer-binding site of human thrombin (1993) Journal of Biological Chemistry, 268 (28), pp. 20808-20811 Tsiang, M., Jain, A.K., Dunn, K.E., Rojas, M.E., Leung, L.L., Gibbs, C.S., Functional mapping of the surface residues of human thrombin (1995) J. Biol. Chem., 270, pp. 16854-16863 Wu, Q., Tsiang, M., Sadler, J.E., Localization of the single-stranded DNA binding site in the thrombin anion-binding exosite (1992) J. Biol. Chem., 267, pp. 24408-24412 Li, W.-X., Kaplan, A.V., Grant, G.W., Toole, J.J., Leung, L.L.K., A novel nucleotide-based thrombin inhibitor inhibits clot-bound thrombin and reduces arterial platelet thrombus formation (1994) Blood, 83 (3), pp. 677-682 Griffin, L.C., Tidmarsh, G.F., Bock, L.C., Toole, J.J., Leung, L.L.K., In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits (1993) Blood, 81 (12), pp. 3271-3276 Macaya, R.F., Schultze, P., Smith, F.W., Roe, J.A., Feigon, J., Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution (1993) Proceedings of the National Academy of Sciences of the United States of America, 90 (8), pp. 3745-3749 Ke Yu Wang, McCurdy, S., Shea, R.G., Swaminathan, S., Bolton, P.H., A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA (1993) Biochemistry, 32 (8), pp. 1899-1904 Padmanabhan, K., Padmanabhan, K.P., Ferrara, J.D., Sadler, J.E., Tulinsky, A., The structure of α-thrombin inhibited by a 15-mer single-stranded DNA aptamer (1993) Journal of Biological Chemistry, 268 (24), pp. 17651-17654 Padmanabhan, K., Tulinsky, A., An ambiguous structure of a DNA 15-mer thrombin complex (1996) Acta Crystallogr. D Biol. Crystallogr., 52, pp. 272-282 Kelly, J.A., Feigon, J., Yeates, T.O., Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d(GGTTGGTGTGGTTGG) (1996) Journal of Molecular Biology, 256 (3), pp. 417-422. , DOI 10.1006/jmbi.1996.0097 Pasternak, A., Hernandez, F.J., Rasmussen, L.M., Vester, B., Wengel, J., Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer Nucleic Acids Res, 39, pp. 1155-1164 Pagano, B., Martino, L., Randazzo, A., Giancola, C., Stability and binding properties of a modified thrombin binding aptamer (2008) Biophys. J., 94, pp. 562-569 Nallagatla, S.R., Heuberger, B., Haque, A., Switzer, C., Combinatorial synthesis of thrombin-binding aptamers containing iso-guanine (2009) J. Comb. Chem., 11, pp. 364-369 McGuffie, E.M., Catapano, C.V., Design of a novel triple helix-forming oligodeoxyribonucleotide directed to the major promoter of the c-myc gene (2002) Nucleic Acids Research, 30 (12), pp. 2701-2709 Martino, L., Virno, A., Randazzo, A., Virgilio, A., Esposito, V., Giancola, C., Bucci, M., Mayol, L., A new modified thrombin binding aptamer containing a 5′-5′ inversion of polarity site (2006) Nucleic Acids Research, 34 (22), pp. 6653-6662. , DOI 10.1093/nar/gkl915 Zhang, N., Phan, A.T., Patel, D.J., (3+1) Assembly of three human telomeric repeats into an asymmetric dimeric G-quadruplex (2005) Journal of the American Chemical Society, 127 (49), pp. 17277-17285. , DOI 10.1021/ja0543090 Luu, K.N., Phan, A.T., Kuryavyi, V., Lacroix, L., Patel, D.J., Structure of the human telomere in K + solution: An intramolecular (3 + 1) G-quadruplex scaffold (2006) Journal of the American Chemical Society, 128 (30), pp. 9963-9970. , DOI 10.1021/ja062791w Ambrus, A., Chen, D., Dai, J., Bialis, T., Jones, R.A., Yang, D., Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution (2006) Nucleic Acids Research, 34 (9), pp. 2723-2735. , DOI 10.1093/nar/gkl348 Russo Krauss, I., Merlino, A., Randazzo, A., Mazzarella, A., Sica, F., Crystallization and preliminary X-ray analysis of the complex of human a-thrombin with a modified thrombin-binding aptamer (2010) Acta Crystallographica Sec. F, 66, pp. 961-963 Navaza, J., Saludjian, P., AMoRe: An automated molecular replacement program package (1997) Methods in Enzymology, 276, pp. 581-594. , DOI 10.1016/S0076-6879(97)76079-8 Bode, W., Mayr, I., Baumann, U., Huber, R., Stone, S.R., Hofsteenge, J., The refined 1.9 À crystal structure of human α-thrombin: Interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment (1989) EMBO Journal, 8 (11), pp. 3467-3475 Brunger, A.T., Adams, P.D., Clore, G.M., Delano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Pannu, N.S., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr. D Biol. Crystallogr., 54, pp. 905-921 Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47 (PART 2), pp. 110-119 Di Cera, E., Guinto, E.R., Vindigni, A., Dang, Q.D., Ayala, Y.M., Wuyi, M., Tulinsky, A., The Na+binding site of thrombin (1995) J. Biol. Chem., 270, pp. 22089-22092 Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., Procheck-a program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallogr., 26, pp. 283-291 Hooft, R.W., Vriend, G., Sander, C., Abola, E.E., Errors in protein structures (1996) Nature, 381, p. 272 McDonald, I.K., Thornton, J.M., Satisfying hydrogen bonding potential in proteins (1994) Journal of Molecular Biology, 238 (5), pp. 777-793. , DOI 10.1006/jmbi.1994.1334 Tiwari, A., Panigrahi, S.K., HBAT: A complete package for analysing strong and weak hydrogen bonds in macromolecular crystal structures (2007) Silico Biology, 7 (6), pp. 651-661 Lawrence, M.C., Colman, P.M., Shape complementarity at protein/protein interfaces (1993) Journal of Molecular Biology, 234 (4), pp. 946-950. , DOI 10.1006/jmbi.1993.1648 The CCP4 suite: Programs for protein crystallography (1994) Acta Crystallogr. D Biol. Crystallogr., 50, pp. 760-763. , Collaborative Computational Project Number 4 Nadassy, K., Tomas-Oliveira, I., Alberts, I., Janin, J., Wodak, S.J., Standard atomic volumes in double-stranded DNA and packing in protein-DNA interfaces (2001) Nucleic Acids Research, 29 (16), pp. 3362-3376 Hud, N.V., Smith, F.W., Anet, F.A.L., Feigon, J., The selectivity for K + versus Na + in DNA quadruplexes is dominated by relative free energies of hydration: A thermodynamic analysis by 1H NMR (1996) Biochemistry, 35 (48), pp. 15383-15390. , DOI 10.1021/bi9620565 Shefter, E., Trueblood, K.N., The crystal and molecular structure of D(+)-barium uridine-5'-phosphate (1965) Acta Crystallogr, 18, pp. 1067-1077 Rubin, J., Brennan, T., Sundaralingam, M., Crystal and molecular structure of a naturally occurring dinucleoside monophosphate. Uridylyl-(3'-5')-adenosine hemihydrate. Conformational rigidity of the nucleotide unit and models for polynucleotide chain folding (1972) Biochemistry, 11, pp. 3112-3128 Wahl, M.C., Rao, S.T., Sundaralingam, M., Crystal structure of the B-DNA hexamer d(CTCGAG): Model for an A-to-B transition (1996) Biophysical Journal, 70 (6), pp. 2857-2866 Horvath, M.P., Schultz, S.C., DNA G-quartets in a 1.86 À resolution structure of an Oxytricha nova telomeric protein-DNA complex (2001) Journal of Molecular Biology, 310 (2), pp. 367-377. , DOI 10.1006/jmbi.2001.4766 Phillips, K., Dauter, Z., Murchie, A.I.H., Lilley, D.M.J., Luisi, B., The crystal structure of a parallel-stranded guanine tetraplex at 0.95 À resolution (1997) Journal of Molecular Biology, 273 (1), pp. 171-182. , DOI 10.1006/jmbi.1997.1292 Haider, S., Parkinson, G.N., Neidle, S., Crystal structure of the potassium form of an Oxytricha nova G-quadruplex (2002) Journal of Molecular Biology, 320 (2), pp. 189-200. , DOI 10.1016/S0022-2836(02)00428-X Kielkopf, C.L., Ding, S., Kuhn, P., Rees, D.C., Conformational flexibility of B-DNA at 0.74 A resolution: D(CCAGTACTGG)(2) (2000) J. Mol. Biol., 296, pp. 787-801 Deane, C.M., Allen, F.H., Taylor, R., Blundell, T.L., Carbonyl-carbonyl interactions stabilize the partially allowed Ramachandran conformations of asparagine and aspartic acid (1999) Protein Engineering, 12 (12), pp. 1025-1028 Jones, S., Van Heyningen, P., Berman, H.M., Thornton, J.M., Protein-DNA interactions: A structural analysis (1999) Journal of Molecular Biology, 287 (5), pp. 877-896. , DOI 10.1006/jmbi.1999.2659 Nimjee, S.M., Rusconi, C.P., Harrington, R.A., Sullenger, B.A., The potential of aptamers as anticoagulants (2005) Trends in Cardiovascular Medicine, 15 (1), pp. 41-45. , DOI 10.1016/j.tcm.2005.01.002, PII S1050173805000034}, document_type={Journal Article, }, affiliation={Dip. di Chimica 'Paolo Corradini', Università di Napoli Federico II, Via Cintia, I-80126 Napoli, Italy Ist. di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy Dip. di Chimica Delle Sostanze Naturali, Università di Napoli Federico II, Via D. Montesano 49, I-8013 Napoli, Italy}, ibbaffiliation={1}, } @article{IBB_ID_8947, author={Merlino A, Russo Krauss I, Castellano I, De Vendittis E, Rossi B, Conte M, Vergara A, Sica F}, title={Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis}, date={2010 Dec}, journal={J Struct Biol (ISSN: 1047-8477, 1047-8477linking)}, year={2010}, fullvolume={488}, volume={488}, pages={343--352}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-77958176737&partnerID=40&md5=1b012c8e06d9b0760f4eb46c92ed9ff2}, abstract={Superoxide dismutases (SODs) are metalloenzymes catalysing the dismutation of superoxide anion radicals into molecular oxygen and hydrogen peroxide. Here, we present the crystal structure of a cold-adapted Fe-SOD from the Antarctic eubacterium Pseudoalteromonas haloplanktis (PhSOD), and that of its complex with sodium azide. The structures were compared with those of the corresponding homologues having a high sequence identity with PhSOD, such as the mesophilic SOD from Escherichia coli (EcSOD) or Pseudomonas ovalis, and the psychrophilic SOD from Aliivibrio salmonicida (AsSOD). These enzymes shared a large structural similarity, such as a conserved tertiary structure and arrangement of the two monomers, an almost identical total number of inter- and intramolecular hydrogen bonds and salt bridges. However, the two cold-adapted SODs showed an increased flexibility of the active site residues with respect to their mesophilic homologues. Structural information was combined with a characterisation of the chemical and thermal stability performed by CD and fluorescence measurements. Despite of its psychrophilic origin, the denaturation temperature of PhSOD was comparable with that of the mesophilic EcSOD, whereas AsSOD showed a lower denaturation temperature. On the contrary, the values of the denaturant concentration at the transition midpoint were in line with the psychrophilic/mesophilic origin of the proteins. These data provide additional support to the hypothesis that cold-adapted enzymes achieve efficient catalysis at low temperature, by increasing the flexibility of their active site; moreover, our results underline how fine structural modifications can alter enzyme flexibility and/or stability without compromising the overall structure of typical rigid enzymes, such as SODs. (C) 2010 Elsevier Inc. All rights reserved.}, keywords={Cold-Adapted Enzymes, Crystal Structure, Dynamics, Psychrophilic Proteins, Superoxide Dismutase, Thermal Stability, Bacterial Enzyme, Hydrogen, Iron Superoxide Dismutase, Monomer, Sodium Azide, Antarctica, Article, Catalysis, Chemical Bond, Cold Acclimatization, Controlled Study, Enzyme Active Site, Enzyme Isolation, Enzyme Stability, Enzyme Structure, Escherichia Coli, Eubacterium, Fluorescence, Hydrogen Bond, Low Temperature Procedures, Nonhuman, Priority Journal, Protein Denaturation, Pseudoalteromonas, Pseudoalteromonas Haloplanktis, Sequence Homology, Thermostability, Vibrio Salmonicida, Amino Acid Sequence, Bacterial Proteins, Catalytic Domain, Circular Dichroism, Molecular Sequence Data, Protein Folding, Protein Structure, Secondary, Pseudomonas Putida, }, references={Baldwin, R.L., Temperature dependence of the hydrophobic interaction in protein folding (1986) Proc. Natl. Acad. Sci. USA, 83, pp. 8069-807 Boucher, I.W., Brzozowski, A.M., Brannigan, J.A., Schnick, C., Smith, D.J., Kyes, S.A., Wilkinson, A.J., The crystal structure of superoxide dismutase from Plasmodium falciparum (2006) BMC Struct. Biol., 6, p. 20 Boucher, I.W., Kalliomaa, A.K., Levdikov, V.M., Blagova, E.V., Fogg, M.J., Brannigan, J.A., Wilson, K.S., Wilkinson, A.J., Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre (2005) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 61, pp. 621-624 Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Warren, G.L., Crystallography & NMR system: a new software suite for macromolecular structure determination (1998) Acta Crystallogr. D Biol. Crystallogr., 54 (PART 5), pp. 905-921 Castellano, I., Di Maro, A., Ruocco, M.R., Chambery, A., Parente, A., Di Martino, M.T., Parlato, G., De Vendittis, E., Psychrophilic superoxide dismutase from Pseudoalteromonas haloplanktis: biochemical characterization and identification of a highly reactive cysteine residue (2006) Biochimie, 88, pp. 1377-1389 Castellano, I., Ruocco, M.R., Cecere, F., Di Maro, A., Chambery, A., Michniewicz, A., Parlato, G., De Vendittis, E., Glutathionylation of the iron superoxide dismutase from the psychrophilic eubacterium Pseudoalteromonas haloplanktis (2008) Biochim. Biophys. Acta, 1784, pp. 816-826 (1994), 50, pp. 760-763. , CCP4, The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. CrystallogrChen, Y.C., Lo, Y.S., Hsu, W.C., Yang, J.M., 3D-partner: a web server to infer interacting partners and binding models (2007) Nucleic Acids Res., 35, pp. W561-W567 Culotta, V.C., Yang, M., O'Halloran, T.V., Activation of superoxide dismutases: putting the metal to the pedal (2006) Biochim. Biophys. Acta, 1763, pp. 747-758 D'Amico, S., Collins, T., Marx, J.C., Feller, G., Gerday, C., Psychrophilic microorganisms: challenges for life (2006) EMBO Rep., 7, pp. 385-389 D'Amico, S., Claverie, P., Collins, T., Georlette, D., Gratia, E., Hoyoux, A., Meuwis, M.A., Gerday, C., Molecular basis of cold adaptation (2002) Philos. Trans. R. Soc. London Ser. B Biol. Sci., 357, pp. 917-925 De Vendittis, E., Castellano, I., Cotugno, R., Ruocco, M.R., Raimo, G., Masullo, M., Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition (2008) J. Theor. Biol., 250, pp. 156-171 Dello Russo, A., Rullo, R., Nitti, G., Masullo, M., Bocchini, V., Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: average hydrophobicity and amino acid weight are involved in the adaptation of proteins to extreme environments (1997) Biochim. Biophys. Acta, 1343, pp. 23-30 Dominy, B.N., Minoux, H., Brooks, C.L., An electrostatic basis for the stability of thermophilic proteins (2004) Proteins, 57, pp. 128-141 Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J., CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues (2006) Nucleic Acids Res., 34, pp. W116-W118 Fedoy, A.E., Yang, N., Martinez, A., Leiros, H.K., Steen, I.H., Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability (2007) J. Mol. Biol., 372, pp. 130-149 Feller, G., Life at low temperatures: is disorder the driving force? (2007) Extremophiles, 11, pp. 211-216 Gerday, C., Aittaleb, M., Bentahir, M., Chessa, J.P., Claverie, P., Collins, T., D'Amico, S., Feller, G., Cold-adapted enzymes: from fundamentals to biotechnology (2000) Trends Biotechnol., 18, pp. 103-107 Gianese, G., Bossa, F., Pascarella, S., Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes (2002) Proteins, 47, pp. 236-249 Grove, L.E., Hallman, J.K., Emerson, J.P., Halfen, J.A., Brunold, T.C., Synthesis, X-ray crystallographic characterization, and electronic structure studies of a di-azide iron(III) complex: implications for the azide adducts of iron(III) superoxide dismutase (2008) Inorg. Chem., 47, pp. 5762-5774 Huston, A.L., Haeggstrom, J.Z., Feller, G., Cold adaptation of enzymes: structural, kinetic and microcalorimetric characterizations of an aminopeptidase from the Arctic psychrophile Colwellia psychrerythraea and of human leukotriene A(4) hydrolase (2008) Biochim. Biophys. Acta, 1784, pp. 1865-1872 Jackson, T.A., Brunold, T.C., Combined spectroscopic/computational studies on Fe- and Mn-dependent superoxide dismutases: insights into second-sphere tuning of active site properties (2004) Acc. Chem. Res., 37, pp. 461-470 Jackson, T.A., Yikilmaz, E., Miller, A.F., Brunold, T.C., Spectroscopic and computational study of a non-heme iron [Fe-NO]7 system: exploring the geometric and electronic structures of the nitrosyl adduct of iron superoxide dismutase (2003) J. Am. Chem. Soc., 125, pp. 8348-8363 Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47 (PART 2), pp. 110-119 Kerfeld, C.A., Yoshida, S., Tran, K.T., Yeates, T.O., Cascio, D., Bottin, H., Berthomieu, C., Boussac, B.A., The 1.6Å resolution structure of Fe-superoxide dismutase from the thermophilic cyanobacterium Thermosynechococcus elongatus (2003) J. Biol. Inorg. Chem., 8, pp. 707-714 Kim, F.J., Kim, H.P., Hah, Y.C., Roe, J.H., Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicolor (1996) Eur. J. Biochem., 241, pp. 178-185 Kim, S.Y., Hwang, K.Y., Kim, S.H., Sung, H.C., Han, Y.S., Cho, Y., Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum (1999) J Biol Chem, 274, pp. 11761-11767 Lah, M.S., Dixon, M.M., Pattridge, K.A., Stallings, W.C., Fee, J.A., Ludwig, M.L., Structure-function in Escherichia coli iron superoxide dismutase: comparisons with the manganese enzyme from Thermus thermophilus (1995) Biochemistry, 34, pp. 1646-1660 Laskowski, R.A., Macarthur, M.W., Moss, M.D., Thorton, J.M., PROCHECK: a program to check the stereochemical quality of protein structure (1993) J. Appl. Crystallogr., 26, pp. 283-291 Marx, J.C., Collins, T., D'Amico, S., Feller, G., Gerday, C., Cold-adapted enzymes from marine Antarctic microorganisms (2007) Mar. Biotechnol. (NY), 9, pp. 293-304 Marx, J.C., Blaise, V., Collins, T., D'Amico, S., Delille, D., Gratia, E., Hoyoux, A., Gerday, C., A perspective on cold enzymes: current knowledge and frequently asked questions (2004) Cell Mol. Biol. (Noisy-le-grand), 50, pp. 643-655 Margesin, R., Feller, G., Biotechnological applications of psychrophiles (2010) Environ. Technol., 31, pp. 835-844 Maugini, E., Tronelli, D., Bossa, F., Pascarella, S., Structural adaptation of the subunit interface of oligomeric thermophilic and hyperthermophilic enzymes (2009) Comput. Biol. Chem., 33, pp. 137-148 Mccord, J.M., Fridovich, I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) (1969) J. Biol. Chem., 244, pp. 6049-6055 Mcdonald, I.K., Thornton, J.M., Satisfying hydrogen bonding potential in proteins (1994) J. Mol. Biol., 238, pp. 777-793 Merlino, A., Russo Krauss, I., Castellano, I., De Vendittis, E., Vergara, A., Sica, F., Crystallization and preliminary X-ray diffraction studies of a psychrophilic iron superoxide dismutase from Pseudoalteromonas haloplanktis (2008) Protein Pept. Lett., 15, pp. 415-418 Miller, A.F., Superoxide dismutases: active sites that save, but a protein that kills (2004) Curr. Opin. Chem. Biol., 8, pp. 162-168 Munoz, I.G., Moran, J.F., Becana, M., Montoya, G., The crystal structure of an eukaryotic iron superoxide dismutase suggests intersubunit cooperation during catalysis (2005) Protein Sci., 14, pp. 387-394 Olufsen, M., Smalas, A.O., Moe, E., Brandsdal, B.O., Increased flexibility as a strategy for cold adaptation: a comparative molecular dynamics study of cold- and warm-active uracil DNA glycosylase (2005) J. Biol. Chem., 280, pp. 18042-18048 Otwinowsky, Z., Minor, W., (1997), pp. 307-326. , Processing of X-ray diffraction data collected in oscillation mode, Methods EnzymolPaiardini, A., Sali, R., Bossa, F., Pascarella, S., " Hot cores" in proteins: comparative analysis of the apolar contact area in structures from hyper/thermophilic and mesophilic organisms (2008) BMC Struct. Biol., 8, p. 14 Pedersen, H.L., Willassen, N.P., Leiros, I., The first structure of a cold-adapted superoxide dismutase (SOD): biochemical and structural characterization of iron SOD from Aliivibrio salmonicida (2009) Acta Crystallogr. Sect. F: Struct. Biol. Cryst. Commun., 65, pp. 84-92 Ringe, D., Petsko, G.A., Yamakura, F., Suzuki, K., Ohmori, D., Structure of iron superoxide dismutase from Pseudomonas ovalis at 2.9-Å resolution (1983) Proc. Natl. Acad. Sci. USA, 80, pp. 3879-3883 Siddiqui, K.S., Cavicchioli, R., Cold-adapted enzymes (2006) Annu. Rev. Biochem., 75, pp. 403-433 Slykhouse, T.O., Fee, J.A., Physical and chemical studies on bacterial superoxide dismutases. Purification and some anion binding properties of the iron-containing protein of Escherichia coli B (1976) J. Biol. Chem., 251, pp. 5472-5477 Stallings, W.C., Pattridge, K.A., Strong, R.K., Ludwig, M.L., Manganese and iron superoxide dismutases are structural homologs (1984) J. Biol. Chem., 259, pp. 10695-10699 Sterner, R., Liebl, W., Thermophilic adaptation of proteins (2001) Crit. Rev. Biochem. Mol. Biol., 36, pp. 39-106 Stoddard, B.L., Ringe, D., Petsko, G.A., The structure of iron superoxide dismutase from Pseudomonas ovalis complexed with the inhibitor azide (1990) Protein Eng., 4, pp. 113-119 Trapani, S., Navaza, J., AMoRe: classical and modern (2008) Acta Crystallogr. D. Biol. Crystallogr., 64, pp. 11-16 Trivedi, S., Gehlot, H.S., Rao, S.R., Protein thermostability in Archaea and Eubacteria (2006) Genet. Mol. Res., 5, pp. 816-827 Tsuruta, H., Mikami, B., Yamamoto, C., Yamagata, H., The role of group bulkiness in the catalytic activity of psychrophile cold-active protein tyrosine phosphatase (2008) FEBS J., 275, pp. 4317-4328 Ursby, T., Adinolfi, B.S., Al-Karadaghi, S., De Vendittis, E., Bocchini, V., Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: analysis of structure and thermostability (1999) J. Mol. Biol., 286, pp. 189-205 Whitmore, L., Wallace, B.A., DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data (2004) Nucleic Acids Res., 32, pp. W668-W673 Baldwin, R. L., Temperature dependence of the hydrophobic interaction in protein folding (1986) Proc. Natl. Acad. Sci. USA, 83, pp. 8069-807 Boucher, I. W., Brzozowski, A. M., Brannigan, J. A., Schnick, C., Smith, D. J., Kyes, S. A., Wilkinson, A. J., The crystal structure of superoxide dismutase from Plasmodium falciparum (2006) BMC Struct. Biol., 6, p. 20 Boucher, I. W., Kalliomaa, A. K., Levdikov, V. M., Blagova, E. V., Fogg, M. J., Brannigan, J. A., Wilson, K. S., Wilkinson, A. J., Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre (2005) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 61, pp. 621-624 Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Warren, G. L., Crystallography & NMR system: a new software suite for macromolecular structure determination (1998) Acta Crystallogr. D Biol. Crystallogr., 54 (PART 5), pp. 905-921 (1994), 50, pp. 760-763. , CCP4, The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. CrystallogrChen, Y. C., Lo, Y. S., Hsu, W. C., Yang, J. M., 3D-partner: a web server to infer interacting partners and binding models (2007) Nucleic Acids Res., 35, pp. W561-W567 Culotta, V. C., Yang, M., O'Halloran, T. V., Activation of superoxide dismutases: putting the metal to the pedal (2006) Biochim. Biophys. Acta, 1763, pp. 747-758 Dominy, B. N., Minoux, H., Brooks, C. L., An electrostatic basis for the stability of thermophilic proteins (2004) Proteins, 57, pp. 128-141 Fedoy, A. E., Yang, N., Martinez, A., Leiros, H. K., Steen, I. H., Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability (2007) J. Mol. Biol., 372, pp. 130-149 Grove, L. E., Hallman, J. K., Emerson, J. P., Halfen, J. A., Brunold, T. C., Synthesis, X-ray crystallographic characterization, and electronic structure studies of a di-azide iron (III) complex: implications for the azide adducts of iron (III) superoxide dismutase (2008) Inorg. Chem., 47, pp. 5762-5774 Huston, A. L., Haeggstrom, J. Z., Feller, G., Cold adaptation of enzymes: structural, kinetic and microcalorimetric characterizations of an aminopeptidase from the Arctic psychrophile Colwellia psychrerythraea and of human leukotriene A (4) hydrolase (2008) Biochim. Biophys. Acta, 1784, pp. 1865-1872 Jackson, T. A., Brunold, T. C., Combined spectroscopic/computational studies on Fe- and Mn-dependent superoxide dismutases: insights into second-sphere tuning of active site properties (2004) Acc. Chem. Res., 37, pp. 461-470 Jackson, T. A., Yikilmaz, E., Miller, A. F., Brunold, T. C., Spectroscopic and computational study of a non-heme iron [Fe-NO] 7 system: exploring the geometric and electronic structures of the nitrosyl adduct of iron superoxide dismutase (2003) J. Am. Chem. Soc., 125, pp. 8348-8363 Jones, T. A., Zou, J. Y., Cowan, S. W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47 (PART 2), pp. 110-119 Kerfeld, C. A., Yoshida, S., Tran, K. T., Yeates, T. O., Cascio, D., Bottin, H., Berthomieu, C., Boussac, B. A., The 1. 6 resolution structure of Fe-superoxide dismutase from the thermophilic cyanobacterium Thermosynechococcus elongatus (2003) J. Biol. Inorg. Chem., 8, pp. 707-714 Kim, F. J., Kim, H. P., Hah, Y. C., Roe, J. H., Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicolor (1996) Eur. J. Biochem., 241, pp. 178-185 Kim, S. Y., Hwang, K. Y., Kim, S. H., Sung, H. C., Han, Y. S., Cho, Y., Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum (1999) J Biol Chem, 274, pp. 11761-11767 Lah, M. S., Dixon, M. M., Pattridge, K. A., Stallings, W. C., Fee, J. A., Ludwig, M. L., Structure-function in Escherichia coli iron superoxide dismutase: comparisons with the manganese enzyme from Thermus thermophilus (1995) Biochemistry, 34, pp. 1646-1660 Laskowski, R. A., Macarthur, M. W., Moss, M. D., Thorton, J. M., PROCHECK: a program to check the stereochemical quality of protein structure (1993) J. Appl. Crystallogr., 26, pp. 283-291 Marx, J. C., Collins, T., D'Amico, S., Feller, G., Gerday, C., Cold-adapted enzymes from marine Antarctic microorganisms (2007) Mar. Biotechnol. (NY), 9, pp. 293-304 Marx, J. C., Blaise, V., Collins, T., D'Amico, S., Delille, D., Gratia, E., Hoyoux, A., Gerday, C., A perspective on cold enzymes: current knowledge and frequently asked questions (2004) Cell Mol. Biol. (Noisy-le-grand), 50, pp. 643-655 Mccord, J. M., Fridovich, I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) (1969) J. Biol. Chem., 244, pp. 6049-6055 Mcdonald, I. K., Thornton, J. M., Satisfying hydrogen bonding potential in proteins (1994) J. Mol. Biol., 238, pp. 777-793 Miller, A. F., Superoxide dismutases: active sites that save, but a protein that kills (2004) Curr. Opin. Chem. Biol., 8, pp. 162-168 Munoz, I. G., Moran, J. F., Becana, M., Montoya, G., The crystal structure of an eukaryotic iron superoxide dismutase suggests intersubunit cooperation during catalysis (2005) Protein Sci., 14, pp. 387-394 Pedersen, H. L., Willassen, N. P., Leiros, I., The first structure of a cold-adapted superoxide dismutase (SOD): biochemical and structural characterization of iron SOD from Aliivibrio salmonicida (2009) Acta Crystallogr. Sect. F: Struct. Biol. Cryst. Commun., 65, pp. 84-92 Siddiqui, K. S., Cavicchioli, R., Cold-adapted enzymes (2006) Annu. Rev. Biochem., 75, pp. 403-433 Slykhouse, T. O., Fee, J. A., Physical and chemical studies on bacterial superoxide dismutases. Purification and some anion binding properties of the iron-containing protein of Escherichia coli B (1976) J. Biol. Chem., 251, pp. 5472-5477 Stallings, W. C., Pattridge, K. A., Strong, R. K., Ludwig, M. L., Manganese and iron superoxide dismutases are structural homologs (1984) J. Biol. Chem., 259, pp. 10695-10699 Stoddard, B. L., Ringe, D., Petsko, G. A., The structure of iron superoxide dismutase from Pseudomonas ovalis complexed with the inhibitor azide (1990) Protein Eng., 4, pp. 113-119}, document_type={Journal Article, }, affiliation={Dipartimento di Chimica, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini 5, I-80131 Napoli, Italy}, ibbaffiliation={1}, } @article{IBB_ID_51017, author={Russo Krauss I, Merlino A, Randazzo A, Mazzarella L, Sica F}, title={Crystallization and preliminary X-ray analysis of the complex of human alpha-thrombin with a modified thrombin-binding aptamer}, date={2010 Aug 1}, journal={Nucleosides Nucleotides Nucleic Acids (ISSN: 1744-3091, 1744-4309, 1532-2335electronic)}, year={2010}, fullvolume={361}, volume={361}, pages={961--963}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-77955446114&partnerID=40&md5=a4c2092a293437c2d79737ffbfa18074}, abstract={The thrombin-binding aptamer (TBA) is a consensus DNA 15-mer that binds specifically to human-thrombin at nanomolar concentrations and inhibits its procoagulant functions. Recently, a modified TBA (mTBA) containing a 5 -5 inversion-of-polarity site has been shown to be more stable and to possess a higher thrombin affinity than its unmodified counterpart. The structure of the thrombin-TBA complex has previously been determined at low resolution, but did not provide a detailed picture of the aptamer conformation or of the protein-DNA assembly, while that of the complex with mTBA is unknown. Crystallographic analysis of the thrombin-mTBA complex has been attempted. The crystals diffracted to 2. 15 resolution and belonged to space group I222. 2010 International Union of Crystallography All rights reserved}, keywords={Protein-Nucleic Acid Interactions, Quadruplexes, Thrombin, Thrombin-Binding Aptamers, Thrombin Aptamer, Article, Chemistry, Crystallization, Human, Metabolism, Protein Binding, Protein Multimerization, X Ray Crystallography, Nucleotide, X-Ray, Base Sequence, Biomimetic Materials, Chemical Synthesis, Chemistry Techniques, Synthetic, Catalytic, Genetics, 10-23, Chimeric Oligonucleotide, Dnazyme, Deoxyribozyme, Nucleic Acid Crystallization, }, references={Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., Toole, J. J., (1992) Nature (London), 355, pp. 564-56 Bode, W., Mayr, I., Baumann, U., Huber, R., Stone, S. R., Hofsteenge, J., (1989) EMBO J., 8, pp. 3467-3475 Kelly, J. A., Feigon, J., Yeates, T. O., (1996) J. Mol. Biol., 256, pp. 417-422 Lancellotti, S., De Cristofaro, R., (2009) Cardiovasc. Hematol. Agents Med. Chem., 7, pp. 19-28 MacAya, R. F., Schultze, P., Smith, F. W., Roe, J. A., Feigon, J., (1993) Proc. Natl Acad. Sci. USA, 90, pp. 3745-3749 Martino, L., Virno, A., Randazzo, A., Virgilio, A., Esposito, V., Giancola, C., Bucci, M., Mayol, L., (2006) Nucleic Acids Res., 34, pp. 6653-6662 Navaza, J., Saludjian, P., (1997) Methods Enzymol., 276, pp. 581-594 Otwinowski, Z., Minor, W., (1997) Methods Enzymol., 276, pp. 307-326 Padmanabhan, K., Padmanabhan, K. P., Ferrara, J. D., Sadler, J. E., Tulinsky, A., (1993) J. Biol. Chem., 268, pp. 17651-17654 Padmanabhan, K., Tulinsky, A., (1996) Acta Cryst., D52, pp. 272-282 Pagano, B., Martino, L., Randazzo, A., Giancola, C., (2007) Biophys. J., 94, pp. 562-569 Schultze, P., MacAya, R. F., Feigon, J., (1994) J. Mol. Biol., 235, pp. 1532-1547}, document_type={Journal Article, Abstract, Conference, }, affiliation={Dipartimento di Chimica, Universit di Napoli Federico II, Via Cintia, I-80126 Napoli, Italy Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy a Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences , Department of Bioorganic Chemistry , Lodz , Poland., }, ibbaffiliation={1}, } @article{IBB_ID_9112, author={Merlino A, Russo Krauss I, Perillo M, Mattia CA, Ercole C, Picone D, Vergara A, Sica F}, title={Toward an Antitumor Form of Bovine Pancreatic Ribonuclease: The Crystal Structure of Three Noncovalent Dimeric Mutants}, date={2009 Dec}, journal={Biopolymers (ISSN: 0006-3525, 0006-6352, 0006-3525print)}, year={2009}, fullvolume={384}, volume={384}, pages={1029--1037}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-71749105511&partnerID=40&md5=957f24d3be8ff257aa572a78597a8990}, abstract={The cytotoxic action of bovine seminal ribonuclease (BS-RNase) depends on its noncovalent swapped dimeric form (NCD-BS), which presents a compact structure that allows the molecule to escape ribonuclease inhibitor (RI). A Key role in the acquisition of this structure has been attributed to the concomitant presense of a proline in position 19 and a leucine in position 28. This introduction of Leu28, Cys31, and Cys32 and, in addition, of Pro19 in the sequence of bovine pancreatic ribonuclease (RNase A) has produced two dimeric variants LCC and PLCC, which do exhibit a cytotoxic activity, though at a much lower level than BS-RNase. The crystal structure analysis of the noncovalent swapped form (NCD) of LCC and PLCG complexed with the substrate analogue 2'-deoxycytidylyl(3',5')-2'-deoxyguanosine, has revealed that, differently from NCD-BS, the dimers adopt an opened quaternary structure, with the two Leu residues fully exposed to the solvent, that does not hinder the binding of RI. similar results have been obtained for a third mutant of the pancreatic enzyme, engineered with the hinge peptide sequence of the seminal enzyme (residues 16-22) and the two cysteines in position 31 and 31, but lacking the hydrophobic Leu residue in position. 28. The comparison of these three structures with those previously reported for other ribonuclease swapped dimers strongly suggests that, in addition to Pro19 and Leu28, the presence of a glycine at the N-terminal end of the hinge peptide is also important to push the swapped form of RNase A dimer into the compact quaternary organization observed for NCD-BS. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 1029-1037, 2009.}, keywords={3d-Domain Swapping, Antitumor Activity, Bovine Seminal Ribonuclease, Crystal Structure, Helix Exchange, Noncovalent Dimer, Protein Mutations And Evolution, Quaternary Structure Flexibility, Swapped Dimers, Anti-Tumor Activities, Amines, Amino Acids, Enzymes, Peptides, Three Dimensional, Cysteine, Glycine, Leucine, Pancreatic Ribonuclease, Proline, Deoxyguanosine, Ribonuclease Inhibitor, Solvent, Amino Acid Sequence, Amino Terminal Sequence, Antineoplastic Activity, Article, Complex Formation, Controlled Study, Drug Structure, Enzyme Engineering, Hinge Region, Protein Quaternary Structure, Amino Acid Composition, Cytotoxicity, Dimerization, Enzyme Substrate, Gel Permeation Chromatography, Protein Binding, Protein Engineering, Animals, Antineoplastic Agents, Catalytic Domain, Cattle, Crystallography, X-Ray, Endoribonucleases, Isoenzymes, Models, Molecular, Protein Multimerization, Protein Structure, Tertiary, Recombinant Proteins, Structure-Activity Relationship, }, references={Raines, R.T., (1998) Chem Rev, 98, pp. 1045-106 Leland, P.A., Raines, R.T., (2001) Chem Biol, 8, pp. 405-413 Youle, R.J., D'Alessio, G., (1996) Ribonuclease: Structures and Functions, pp. 491-514. , D'Alessio, G. Academic Press: New York Vogelzang, N.J., Aklilu, M., Stadler, W.M., Dumas, M.C., Mikulski, S.M., (2001) Invest New Drugs, 19, pp. 255-260 Makarov, A.A., Ilinskaya, O.N., (2003) FEBS Lett, 540, pp. 15-20 Matousek, J., (2001) Comp Biochem Physiol C Toxicol Pharmacol, 129, pp. 175-191 Irie, M., Nitta, K., Nonaka, T., Biochemistry of frog ribonucleases (1998) Cell Mol Life Sci, 54, pp. 775-784 Navarro, S., Aleu, J., Jimenez, M., Boix, E., Cuchillo, C.M., Nogues, M.V., (2008) Cell Mol Life Sci, 65, pp. 324-337 Kim, J.S., Soucek, J., Matousek, J., Raines, R.T., (1995) Biochem J, 308 (PART 2), pp. 547-550 Wu, Y., Mikulski, S.M., Ardelt, W., Rybak, S.M., Youle, R.J., (1993) J Biol Chem, 268, pp. 10686-10693 Leland, P.A., Schultz, L.W., Kim, B.M., Raines, R.T., (1998) Proc Natl Acad Sci USA, 95, pp. 10407-10412 Bretscher, L.E., Abel, R.L., Raines, R.T., (2000) J Biol Chem, 275, pp. 9893-9896 Rodriguez, M., Benito, A., Tubert, P., Castro, J., Ribo, M., Beaumelle, B., Vilanova, M., (2006) J Mol Biol, 360, pp. 548-557 Bosch, M., Benito, A., Ribo, M., Puig, T., Beaumelle, B., Vilanova, M., (2004) Biochemistry, 43, pp. 2167-2177 Di Gaetano, S., D'Alessio, G., Piccoli, R., (2001) Biochem J, 358 (PART 1), pp. 241-247 Matousek, J., Gotte, G., Pouckova, P., Soucek, J., Slavik, T., Vottariello, F., Libonati, M., (2003) J Biol Chem, 278, pp. 23817-23822 Merlino, A., Avella, G., Di Gaetano, S., Arciello, A., Piccoli, R., Mazzarella, L., Sica, F., (2009) Protein Sci, 18, pp. 50-57 Soucek, J., Pouckova, P., Matousek, J., Stockbauer, P., Dostal, J., Zadinova, M., (1996) Neoplasma, 43, pp. 335-340 Antignani, A., Naddeo, M., Cubellis, M.V., Russo, A., D'Alessio, G., (2001) Biochemistry, 40, pp. 3492-3496 Piccoli, R., Tamburrini, M., Piccialli, G., Di Donato, A., Parente, A., D'Alessio, G., (1992) Proc Natl Acad Sci USA, 89, pp. 1870-1874 Mazzarella, L., Capasso, S., Demasi, D., Di Lorenzo, G., Mattia, C.A., Zagari, A., (1993) Acta Cryst D, 49, pp. 389-402 Berisio, R., Sica, F., De Lorenzo, C., Di Fiore, A., Piccoli, R., Zagari, A., Mazzarella, L., (2003) FEBS Lett, 554, pp. 105-110 Merlino, A., Vitagliano, L., Sica, F., Zagari, A., Mazzarella, L., (2004) Biopolymers, 73, pp. 689-695 Merlino, A., Ercole, C., Picone, D., Pizzo, E., Mazzarella, L., Sica, F., (2008) J Mol Biol, 376, pp. 427-437 Piccoli, R., Vescia, S., Bridges, S.H., D'Alessio, G., (1990) Ital J Biochem, 39, pp. 242-249 Mastronicola, M.R., Piccoli, R., D'Alessio, G., (1995) Eur J Biochem, 230, pp. 242-249 Cafaro, V., De Lorenzo, C., Piccoli, R., Bracale, A., Mastronicola, M.R., Di Donato, A., D'Alessio, G., (1995) FEBS Lett, 359, pp. 31-34 Vescia, S., Tramontano, D., Augusti-Tocco, G., D'Alessio, G., (1980) Cancer Res, 40, pp. 3740-3744 Sica, F., Di Fiore, A., Merlino, A., Mazzarella, L., (2004) J Biol Chem, 279, pp. 36753-36760 Ercole, C., Colamarino, R., Pizzo, E., Fogolari, F., Spadaccini, R., Picone, D., Biopolymers, , DOI: 10.1002/bip21176 Cafaro, V., Bracale, A., Di Maro, A., Sorrentino, S., D'Alessio, G., Di Donato, A., (1998) FEBS Lett, 437, pp. 149-152 Picone, D., Di Fiore, A., Ercole, C., Franzese, M., Sica, F., Tomaselli, S., Mazzarella, L., (2005) J Biol Chem, 280, pp. 13771-13778 Otwinowsky, Z., Minor, W., (1997) Methods Enzymol, 276, pp. 307-326 Navaza, J., Saludjian, P., (1997) Methods Enzymol, 276, pp. 581-594 Berisio, R., Lamzin, V.S., Sica, F., Wilson, K.S., Zagari, A., Mazzarella, L., (1999) J Mol Biol, 292, pp. 845-854 Brunger, A.T., Adams, P.D., Clore, G.M., Delano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Warren, G.L., (1998) Acta Crystallogr D Biol Crystallogr, 54 (PART 5), pp. 905-921 Jones, T.A., Bergdoll, M., Kjeldgaard, M.O., (1990) Crystallography and Modelling Methods in Molecular Design, pp. 189-199. , Bugg, C. New York: Springer-Verlag Press Laskowski, R.A., MacArthur, M.W., Moss, M.D., Thorton, J.M., (1993) J Appl Crystallogr, 26, pp. 283-291 Hooft, R.W., Vriend, G., Sander, C., Abola, E.E., (1996) Nature, 381, p. 272 Kraulis, P.J., (1991) J Appl Crystallogr, 24, pp. 946-950 Vitagliano, L., Merlino, A., Zagari, A., Mazzarella, L., (2000) Protein Sci, 9, pp. 1217-1225 Aguilar, C.F., Thomas, P.J., Mills, A., Moss, D.S., Palmer, R.A., (1992) J Mol Biol, 224, pp. 265-267 Vitagliano, L., Adinolfi, S., Sica, F., Merlino, A., Zagari, A., Mazzarella, L., (1999) J Mol Biol, 293, pp. 569-577 Canals, A., Pous, J., Guasch, A., Benito, A., Ribo, M., Vilanova, M., Coll, M., (2001) Structure, 9, pp. 967-976. , (Camb) Liu, Y., Hart, P.J., Schlunegger, M.P., Eisenberg, D., (1998) Proc Natl Acad Sci USA, 95, pp. 3437-3442 Liu, Y., Eisenberg, D., (2002) Protein Sci, 11, pp. 1285-1299 Schlunegger, M.P., Bennett, M.J., Eisenberg, D., (1997) Adv Protein Chem, 50, pp. 61-122 Di Donato, A., Cafaro, V., Romeo, I., D'Alessio, G., (1995) Protein Sci, 4, pp. 1470-1477 Merlino, A., Ceruso, M.A., Vitagliano, L., Mazzarella, L., (2005) Biophys J, 88, pp. 2003-2012 Raines, R. T., (1998) Chem Rev, 98, pp. 1045-106 Leland, P. A., Raines, R. T., (2001) Chem Biol, 8, pp. 405-413 Youle, R. J., D'Alessio, G., (1996) Ribonuclease: Structures and Functions, pp. 491-514. , D'Alessio, G. Vogelzang, N. J., Aklilu, M., Stadler, W. M., Dumas, M. C., Mikulski, S. M., (2001) Invest New Drugs, 19, pp. 255-260 Makarov, A. A., Ilinskaya, O. N., (2003) FEBS Lett, 540, pp. 15-20 Kim, J. S., Soucek, J., Matousek, J., Raines, R. T., (1995) Biochem J, 308 (PART 2), pp. 547-550 Leland, P. A., Schultz, L. W., Kim, B. M., Raines, R. T., (1998) Proc Natl Acad Sci USA, 95, pp. 10407-10412 Bretscher, L. E., Abel, R. L., Raines, R. T., (2000) J Biol Chem, 275, pp. 9893-9896 Mastronicola, M. R., Piccoli, R., D'Alessio, G., (1995) Eur J Biochem, 230, pp. 242-249 Brunger, A. T., Adams, P. D., Clore, G. M., Delano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Warren, G. L., (1998) Acta Crystallogr D Biol Crystallogr, 54 (PART 5), pp. 905-921 Jones, T. A., Bergdoll, M., Kjeldgaard, M. O., (1990) Crystallography and Modelling Methods in Molecular Design, pp. 189-199. , Bugg, C. Laskowski, R. A., MacArthur, M. W., Moss, M. D., Thorton, J. M., (1993) J Appl Crystallogr, 26, pp. 283-291 Hooft, R. W., Vriend, G., Sander, C., Abola, E. E., (1996) Nature, 381, p. 272 Kraulis, P. J., (1991) J Appl Crystallogr, 24, pp. 946-950 Aguilar, C. F., Thomas, P. J., Mills, A., Moss, D. S., Palmer, R. A., (1992) J Mol Biol, 224, pp. 265-267 Liu, Y., Hart, P. J., Schlunegger, M. P., Eisenberg, D., (1998) Proc Natl Acad Sci USA, 95, pp. 3437-3442}, document_type={Journal Article, }, affiliation={Department of Chemistry, University of Naples Federico II Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy Department of Pharmaceutical Science, University of Salerno, via Ponte don Melillo, I-84084 Fisciano (SA), Italy}, ibbaffiliation={1}, } @article{IBB_ID_9152, author={Merlino A, Russo Krauss I, Castellano I, De Vendittis E, Vergara A, Sica F}, title={Crystallization and preliminary x-ray diffraction studies of a psychrophilic iron superoxide dismutase from Pseudoalteromonas haloplanktis}, date={2008}, journal={Protein Pept Lett (ISSN: 0929-8665, 1875-5305)}, year={2008}, fullvolume={354}, volume={354}, pages={415--418}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-43549114985&partnerID=40&md5=a1aa4174d75402a1c6ba02961449ec1b}, abstract={The Antarctic eubacterium Pseudoalteromonas haloplanktis (Ph) produces a cold-active iron superoxide dismutase (SOD). PhSOD is a homodimeric enzyme, that displays a high catalytic activity even at low temperature. Using hanging-drop vapour-diffusion technique, PhSOD has been successfully crystallized in two different crystal forms. Both crystal forms are monoclinic with space group P2(1) and diffract to 2.1 A resolution. Form I has unit-cell parameters a=45.49A b=103.63A c=50.37A beta=108.2 degrees and contains a homodimer in the asymmetric unit. Form II has unit-cell parameters a=50.48A b=103.78A c=90.25A beta=103.8 degrees and an asymmetric unit containing two PhSOD homodimers. Structure determination has been achieved using molecular replacement. The crystallographic study of this cold-adapted enzyme could contribute to the understanding of the molecular mechanisms of cold-adaptation and of the high catalytic efficiency at low temperature.}, keywords={Cold Adaptation, Crystallization, Iron Superoxide Dismutase, Pseudoalteromonas Haloplanktis, X-Ray, Article, Chemistry, Dimerization, Enzymology, Isolation And Purification, X Ray Crystallography, }, references={Jaenicke, R., Böhm, G., (1998) Curr. Opin. Struct. Biol, 8, pp. 738-74 Vogt, G., Woell, S., Argos, P., (1997) J. Mol. Biol, 269, pp. 631-643 Szilagyi, A., Zavodszky, P., (2000) Structure, 8, pp. 493-504 Zavodszki, P., Kardos, J., Svingor, A., Petsko, G.A., (1998) Proc. Natl. Acad. Sci. USA, 95, pp. 7406-7411 Feller, G., Narinx, E., Arpigny, J.L., Aittaleb, M., Baise, E., Genicot, S., Gerday, C., (1996) FEMS Microbiol. Rev, 18, pp. 189-202 Goldman, A., (1995) Structure, 3, pp. 1277-1279 Siddiqui, K.S., Cavicchioli, R., (2006) Annu. Rev. Biochem, 75, pp. 403-433 Feller, G., (2003) Cell Mol. Life Sci, 60, pp. 648-662 D'Amico, S., Marx, J.C., Gerday, C., Feller, G., (2003) J. Biol. Chem, 278, pp. 7891-7896 Castellano, I., Di Maro, A., Ruocco, M.R., Chambery, A., Parente, A., Di Martino, M.T., Parlato, G., De Vendittis, E., (2006) Biochimie, 88, pp. 1377-1389 Lah, M.S., Dixon, M.M., Pattridge, K.A., Stallings, W.C., Fee, J.A., Ludwig, M.L., (1995) Biochemistry, 34, pp. 1646-1660 Ursby, T., Adinolfi, B.S., Al-Karadaghi, S., De Vendittis, E., Bocchini, V., (1999) J. Mol. Biol, 286, pp. 189-205 Castellano, I., Ruocco, M.R., Cecere, F., Di Maro, A., Chambery, A., Michniewicz, A., Parlato, G., Masullo, M. and De Vendittis, E. (2008) accepted for publication in Biochim. Biophys. Acta, doi: 10.1016/j.bbapap.2008.02.003.?Minor, W., Tomchick, D., Otwinowski, Z., (2000) Structure, 8, pp. R105-R110 Navaza, J., Saludjian, P., (1997) Methods Enzymol, 276, pp. 581-594 Morris, R.J., Zwart, P.H., Cohen, S., Fernandez, F.J., Kakaris, M., Kirillova, O., Vonrhein, C., Lamzin, V.S., (2004) J. Synchrotron Radiat, 11, pp. 56-59 Jones, T.A., (2004) Acta Crystallogr. D Biol. Crystallogr, 60, pp. 2115-2125 Jaenicke, R., B hm, G., (1998) Curr. Opin. Struct. Biol, 8, pp. 738-74 Siddiqui, K. S., Cavicchioli, R., (2006) Annu. Rev. Biochem, 75, pp. 403-433 Lah, M. S., Dixon, M. M., Pattridge, K. A., Stallings, W. C., Fee, J. A., Ludwig, M. L., (1995) Biochemistry, 34, pp. 1646-1660 Morris, R. J., Zwart, P. H., Cohen, S., Fernandez, F. J., Kakaris, M., Kirillova, O., Vonrhein, C., Lamzin, V. S., (2004) J. Synchrotron Radiat, 11, pp. 56-59 Jones, T. A., (2004) Acta Crystallogr. D Biol. Crystallogr, 60, pp. 2115-2125}, document_type={Journal Article, }, affiliation={Dipartimento di Chimica, Università degli Studi di Napoli 'Federico II', Via Cintia, I-80126 Napoli, Italy Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Via Pansini 5, I-80131 Napoli, Italy Istituto di Biostrutture e Bioimmagini, C.N.R., via Mezzocannone 16, I-80134 Napoli, Italy Department of Chemistry, University of Naples 'Federico II', Via Cintia, I-80126 Napoli, Italy}, ibbaffiliation={1}, }