View contact record, Full name: Eliana Gianolio
Menu piccolo
Institute
About us
Documents
News
Organization chart
Locations
Staff
Contact us
Activities
Education
Career opportunities
Meetings
Research
Research Areas
Biomolecules
Imaging
e-Health
Projects
Publications
Patents
Resources
Awards and acknowledgments
Statistics
Private Area
Login
Link utili
Staff
Research areas
Activities
Bibliography
Papers
CMS
Generic
IT
Advanced search▼
Staff: advanced search.
Query:
Options:
Any
All
Exact
Extended
Role or Position:
All positions
--------------------------------
Administration
Research&Development
Technical Staff
Associated Scientist
--------------------------------
Director of Institute
Research Director
Senior Researcher
Researcher
Technology Director
Senior Technologist
Technologist
Associated Scientist
Administrative officer
Administrative employee
Technician
Technical assistant
Temporary Researcher
Temporary Technologist
Temporary Technician
Temporary Tech Assistant
Research Fellow
Working site:
All sites
--------------------------------
Naples - De Amicis
Naples - Castellino
Turin
Staff
Research areas
Activities
Bibliography
Papers
CMS
Generic
Basic info
Publications
Photo
Name
Eliana Gianolio
No research areas
No activities
Empty curriculum
@article{IBB_ID_54475, author={Tear LR, Carrera C, Gianolio E, Aime S}, title={Towards an Improved Design of MRI Contrast Agents: Synthesis and Relaxometric Characterisation of Gd-HPDO3A Analogues}, date={2020 May 12}, journal={Chemistry (ISSN: 0947-6539linking, 1521-3765electronic)}, year={2020}, fullvolume={73}, volume={73}, pages={6056--6063}, url={}, abstract={The properties of Ln(III) -HPDO3A complexes as relaxation enhancers and paraCEST agents are essentially related to the hydroxylpropyl moiety. A series of three HPDO3A derivatives, with small modifications to the hydroxyl arm, were herein investigated to understand how heightened control can be gained over the parameters involved in the design of these agents. A full (1) H and (17) O-NMR relaxometric analysis was conducted and demonstrated that increasing the length of the OH group from the lanthanide centre significantly enhanced the water exchange rate of the gadolinium complex, but with a subsequent reduction in kinetic stability. Alternatively, the introduction of an additional methyl group, which increased the steric bulk around the OH moiety, resulted in the formation of almost exclusively the TSAP isomer (95 %) as identified by (1) H-NMR of the europium complex. The gadolinium analogue of this complex also exhibited a very fast water exchange rate, but with no detectable loss of kinetic stability. This complex therefore demonstrates a notable improvement over Gd-HPDO3A.}, keywords={Contrast Media Chemistry, Europium Chemistry, Gadolinium Chemistry, Heterocyclic Compounds Chemistry, Kinetics, Lanthanoid Series Elements Chemistry, Magnetic Resonance Imaging Methods, Organometallic Compounds Chemistry, Water, Mri Contrast Agents, Lanthanides, Macrocycles, Relaxometry, }, references={}, document_type={Journal Article, }, affiliation={Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino, Via Nizza 52, 10126, Torino, Italy. Institute of Biostructures and Bioimaging, National Research Council, Via Nizza 52, 10126, Torino, Italy.}, ibbaffiliation={1}, } @article{IBB_ID_53712, author={Di Gregorio E, Ferrauto G, Furlan C, Lanzardo S, Nuzzi R, Gianolio E, Aime S}, title={The Issue of Gadolinium Retained in Tissues: Insights on the Role of Metal Complex Stability by Comparing Metal Uptake in Murine Tissues Upon the Concomitant Administration of Lanthanum- and Gadolinium-Diethylentriamminopentaacetate}, date={2018 Mar}, journal={Invest Radiol (ISSN: 1536-0210electronic, 0020-9996linking)}, year={2018}, fullvolume={200}, volume={200}, pages={167--172}, url={}, abstract={OBJECTIVES: The aim of the study was to explore the role of the stability of metal complexes in the processes that lead to the metal retention in the brain and other tissues of mice administered with lanthanides-based contrast agents. This issue was tackled by the simultaneous injection of gadolinium (Gd)-diethylentriamminopentaacetate (DTPA) and lanthanum-DTPA, which have the same charge and structure but differ in their thermodynamic stability by 3 orders of magnitude. MATERIALS AND METHODS: A total of 20 healthy BALB/c mice were administered by a single intravenous injection with a dose consisting of 0.6 mmol La-DTPA/kg and 0.6 mmol Gd-DTPA/kg. Then the animals were killed at different time points: 4, 24, 48, and 96 hours (5 mice each group).In an additional protocol, 5 mice were administered with 9 doses of 0.3 mmol La-DTPA/kg and 0.3 mmol of Gd-DTPA/kg every 2 days over a period of 3 weeks. The sacrifice time was set to 3 weeks after the last administration. After sacrifice, the Gd and La content in liver, spleen, kidney, muscle, cerebrum, cerebellum, bone, eye, skin, blood, and urine was determined by inductively coupled plasma-mass spectrometry. RESULTS: A general decrease in the content of both the lanthanides was observed upon delaying the sacrifice time. At relatively short times after the injection (up to 96 hours), in the spleen, kidney, muscle, skin, and eye, almost the same content of La and Gd was detected, whereas in the cerebrum, cerebellum, bones, and liver, the amount of retained La decreased much slower than that of Gd, yielding a progressive increase in La/Gd ratio. The amount of retained La in the various tissues 21 days after the last of 9 administrations of La-DTPA and Gd-DTPA was always significantly higher than that of Gd. The concentration of both La and Gd decreased rapidly both in blood and in urine samples. DISCUSSION: The departure from the 1:1 ratio in the amounts of La and Gd determined in the investigated tissues has been used to gain information on the role of the complex stability and "wash-out" kinetics. The behavior of the less s` La-DTPA highlights processes occurring for Gd-DTPA at a slower rate.The herein obtained results support the view that most of the La/Gd retained in the brain arises from the intact chelate that has extravasated immediately after the intravenous administration. Long-term deposition of metal ions from internal reservoirs seems particularly relevant for liver and spleen.}, keywords={, }, references={}, document_type={Journal Article, }, affiliation={}, ibbaffiliation={1}, } @article{IBB_ID_53813, author={Di Gregorio E, Ferrauto G, Lanzardo S, Gianolio E, Aime S}, title={Early diagnosis of breast cancer by using Fast field cycling relaxometry (FFC-NMRD): investigations of ex-vivo murine breast tissue}, date={2018}, journal={Breast Cancer Radiology}, year={2018}, fullvolume={230}, volume={230}, pages={N/D--N/D}, url={}, abstract={}, keywords={, }, references={}, document_type={Journal Article, }, affiliation={}, ibbaffiliation={1}, } @article{IBB_ID_53814, author={Arena F, Bardini P, Blasi F, Gianolio E, Marini G, Aime S}, title={Gadolinium deposition, MRI hyperintensities, and glucose uptake in the hypoperfused rat brain after repeated administrations of Gadodiamide}, date={2018}, journal={Neuroradiolgy}, year={2018}, fullvolume={185}, volume={185}, pages={N/D--N/D}, url={}, abstract={}, keywords={, }, references={}, document_type={Journal Article, }, affiliation={}, ibbaffiliation={1}, } @article{IBB_ID_53818, author={Di Gregorio E, Iani R, Ferrauto G, Nuzzi R, Aime S, Gianolio E}, title={Gd accumulation in tissues of healthy mice upon repeated administrations of Gadodiamide and Gadoteridol}, date={2018}, journal={Journal Of Trace Elements In Medicine And Biology}, year={2018}, fullvolume={217}, volume={217}, pages={N/D--N/D}, url={}, abstract={}, keywords={, }, references={}, document_type={Journal Article, }, affiliation={}, ibbaffiliation={1}, } @article{IBB_ID_53714, author={Gianolio E, Bardini P, Arena F, Stefania R, Di Gregorio E, Iani R, Aime S}, title={Gadolinium Retention in the Rat Brain: Assessment of the Amounts of Insoluble Gadolinium-containing Species and Intact Gadolinium Complexes after Repeated Administration of Gadolinium-based Contrast Agents}, date={2017 Dec}, journal={Radiology (ISSN: 0033-8419, 1527-1315)}, year={2017}, fullvolume={317}, volume={317}, pages={839--849}, url={}, abstract={Purpose To evaluate the speciation of gadolinium-containing species after multiple administrations of the gadolinium-based contrast agents (GBCAs) gadodiamide and gadoteridol and to quantify the amount of intact gadolinium complexes and insoluble gadolinium-containing species. Materials and Methods A total dose of 13.2 mmol per kilogram of body weight of each GBCA was administered in healthy Wistar rats over a period of 8 weeks. Three days after the final administration, rats were sacrificed, and the brains were excised and divided into three portions. Each portion of brain homogenate was divided into two parts, one for determination of the total gadolinium concentration with inductively coupled plasma mass spectrometry and one for determination of the amount of intact GBCA and gadolinium-containing insoluble species. Relaxometric measurements of gadodiamide and gadolinium trichloride in the presence of polysialic acid were also performed. Results The mean total gadolinium concentrations for gadodiamide and gadoteridol, respectively, were 0.317 mug/g +/- 0.060 (standard deviation) and 0.048 mug/g +/- 0.004 in the cortex, 0.418 mug/g +/- 0.078 and 0.051 mug/g +/- 0.009 in the subcortical brain, and 0.781 mug/g +/- 0.079 and 0.061 mug/g +/- 0.012 in the cerebellum. Gadoteridol comprised 100% of the gadolinium species found in rats treated with gadoteridol. In rats treated with gadodiamide, the largest part of gadolinium retained in brain tissue was insoluble species. In the cerebellum, the amount of intact gadodiamide accounts for 18.2% +/- 10.6 of the total gadolinium found therein. The mass balance found for gadolinium implies the occurrence of other soluble gadolinium-containing species (approximately 30%). The relaxivity of the gadolinium polysialic acid species formed in vitro was 97.8 mM/sec at 1.5 T and 298 K. Conclusion Gadoteridol was far less retained, and the entire detected gadolinium was intact soluble GBCA, while gadodiamide yielded both soluble and insoluble gadolinium-containing species, with insoluble species dominating. ((c)) RSNA, 2017 Online supplemental material is available for this article.}, keywords={Animals, Brain, Metabolism, Brain Chemistry, Contrast Media, Administration, Dosage, Pharmacokinetics, Drug Administration Schedule, Gadolinium, Metabolic Clearance Rate, Organ Specificity, Physiology, Wistar, Solubility, Spectrophotometry, Atomic, Methods, Tissue Distribution, }, references={}, document_type={Journal Article, }, affiliation={From the Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Turin, Italy (E.G., P.B., F.A., R.S., E.D.G., R.I., S.A.); and Centro di Eccellenza di Imaging Preclinico (CEIP), Colleretto Giacosa, Italy (P.B., F.A., S.A.)., }, ibbaffiliation={1}, } @article{IBB_ID_53441, author={Diaferia C, Gianolio E, Sibillano T, Mercurio FA, Leone M, Giannini C, Balasco N, Vitagliano L, Morelli G, Accardo A}, title={Cross-beta nanostructures based on dinaphthylalanine Gd-conjugates loaded with doxorubicin}, date={2017 Mar 22}, journal={Sci Rep (ISSN: 2045-2322, 2045-2322electronic, 2045-2322linking)}, year={2017}, fullvolume={412}, volume={412}, pages={307--307}, url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029655183&doi=10.1038%2fs41598-017-00332-3&partnerID=40&md5=c4239950e87ef8b007c90d6b22e8dce4}, abstract={Very recently we proposed novel di- and tetra-phenylalanine peptides derivatized with gadolinium complexes as potentials supramolecular diagnostic agents for applications in MRI (Magnetic Resonance Imaging). It was observed that in very short FF dipeptide building blocks, the propensity to aggregate decreases significantly after modification with bulky moiety such as Gd-complexes, thus limiting their potential as CAs. We hypothesized that the replacement of the Phe side chain with more extended aromatic groups could improve the self-assembling. Here we describe the synthesis, structural and relaxometric behavior of a novel water soluble self-assembled peptide CA based on 2-naphthylalanine (2Nal). The peptide conjugate Gd-DOTA-L(6)-(2Nal)(2) is able to self-assemble in long fibrillary nanostructures in water solution (up to 1.0 mg/mL). CD and FTIR spectroscopies indicate a β sheet secondary structure with an antiparallel orientation of single strands. All data are in good agreement with WAXS and SAXS characterizations that show the typical "cross-β pattern" for fibrils at the solid state. Molecular modeling indicates the three-dimensional structure of the peptide spine of aggregates is essentially constituted by extended β-sheet motifs stabilized by hydrogen bonds and hydrophobic interactions. The high relaxivity of nanoaggregates (12.3 mM(-1) s(-1) at 20 MHz) and their capability to encapsulate doxorubicin suggest their potential application as supramolecular theranostic agents.}, keywords={Antibiotics, Antineoplastic Chemistry Pharmacology , Circular Dichroism , Doxorubicin Chemistry Pharmacology , Drug Carriers Chemical Synthesis , Gadolinium Chemistry , Models, Molecular , Nanostructures Chemistry , Oligopeptides Chemistry , Spectroscopy, Fourier Transform Infrared, }, references={}, document_type={Journal Article, Research Support, Non-U. S. Gov'T, }, affiliation={Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy., Department of Molecular Biotechnologies and Health Science, University of Turin, Via Nizza 52, 10125, Turin, Italy., Institute of Crystallography (IC), CNR, Via Amendola 122, 70126, Bari, Italy., Institute of Biostructure and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy., Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy. antonella.accardo@unina.it., Department of Molecular Biotechnologies and Health Science, University of Turin, Via Nizza 52, 10125, Turin, Italy. Institute of Crystallography (IC), CNR, Via Amendola 122, 70126, Bari, Italy. Institute of Biostructure and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy.}, ibbaffiliation={1}, } @article{IBB_ID_53190, author={Accardo A, Arena F, Gianolio E, Marasco D, Ringhieri P, Boffa C, Bardini P, Aime S, Morelli G}, title={Diolein based nanostructures as targeted theranostics}, date={2016}, journal={J Biomed Nanotechnol (ISSN: 1550-7033)}, year={2016}, fullvolume={446}, volume={446}, pages={1076--1088}, url={https://www2.scopus.com/inward/record.uri?eid=2-s2.0-84962488633&partnerID=40&md5=d4604833e3c962a1e3d502e76efecb1a}, abstract={Diolein based non-targeted theranostic nanoparticles (DO-NPs) containing 10%wt of the amphiphilic Gadolinium complex (C18)2DTPA(Gd), and targeted NPs, obtained by introducing growing amounts (3%wt, 6%wt or 10%wt) of (C18)2-Peg3000-FA in the sample composition, have been studied for their in vitro and in vivo properties. Cellular binDing was studied by ICP-MS analysis of the Gadolinium content and by Surface Plasmon Resonance (SPR) assays. The best formulation in terms of selectivity towards IGROV-1 cells with respect to non-targeted DO-NPs, was that containing 3% (C18)2Peg3000-FA (P <001). Cytotoxic studies and confocal microscopy analysis of IGROV-1 cells indicate high selective properties of the targeted doxorubicin (DOX) loaded NPs. Nanoparticles described here represent the first example in which a targeted carrier characterized by a stable foamy mesophase, provided by the Diolein component, combine the therapeutic effect due to the anticancer drug doxorubicin, with the imaging properties provided by paramagnetic gadolinium complexes for MRI. As evidenced by T1w and T2w MRI images and by the in vivo antitumor effect in IGROV-1 tumor-bearing mice, DONP3-FA/DOX provides very high therapeutic efficacy with a tumor growth regression of 80% and 50% higher as compared to the mice treated with saline solution and with Doxil, respectively. Copyright © 2016 American Scientific Publishers.}, keywords={Doxorubicin, Drug Delivery, Folic Acid, Gd Based Contrast Agents, Igrov-1 Cells, Mri, Nanostructures, Theranostics, Gadolinium, Magnetic Resonance Imaging, Mammals, Nanoparticles, Surface Plasmon Resonance, Tumors, Gadolinium Complexes, Selective Properties, Therapeutic Effects, Therapeutic Efficacy, }, references={Akhter, S., Ahmad, I., Ahmad, M.Z., Ramazani, F., Singh, A., Rahman, Z., Ahmad, F.J., Kok, R.J., Nanomedicines as cancer therapeutics: Current status (2013) Current Cancer Drug Targets, 13, p. 36 Ferrari, M., Frontiers in cancer nanomedicine: Directing mass transport through biological barriers (2010) Trends in Biotechnology, 28, p. 181 Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M., Xia, Y., Engineered nanoparticles for drug delivery in cancer therapy (2014) Angew. Chem. Int. Ed. Engl., 53, p. 12320 Ringhieri, P., Iannitti, R., Nardon, C., Palumbo, R., Fregona, D., Morelli, G., Accardo, A., Target selective micelles for bombesin receptors incorporating Au(III)-dithiocarbamato complexes (2014) Int. J. Pharm., 473, p. 194 Du, R., Zhong, T., Zhang, W.-Q., Song, P., Song, W.-D., Zhao, Y., Wang, C., Zhang, Q., Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acidpaclitaxel (CLA-PTX) on B16-F10 melanoma (2014) Int. J. Nanomed., 9, p. 3091 Matsumura, Y., Maeda, H., A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs (1986) Cancer Res., 46, p. 6387 Wagner, V., Dullaart, A., Bock, A.-K., Zweck, A., The emerging nanomedicine landscape (2006) Nat. Biotechnol., 24, p. 1211 Villaraza, A.J.L., Bumb, A., Brechbiel, M.W., Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: The interplay between size, function, and pharmacokinetics (2010) Chem. Rev., 110, p. 2921 Accardo, A., Tesauro, D., Aloj, L., Pedone, C., Morelli, G., Supramolecular aggregates containing lipophilic Gd(III) complexes as contrast agents in MRI (2014) Coord. Chem. Rev., 253, p. 2193 Mulder, W.J.M., Strijkers, G.J., Van Tilborg, G.A.F., Cormode, D.P., Fayad, Z.A., Nicolay, K., Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging (2009) Acc. Chem. Res., 42, p. 904 Erdogan, S., Liposomal nanocarriers for tumor imaging (2009) J. Biomed. Nanotechnol., 5, p. 141 Lammers, T., Aime, S., Hennink, W.E., Storm, G., Kiessling, F., Theranostic nanomedicine (2011) Acc. Chem. Res., 44, p. 1029 Muthu, M.S., Leong, D.T., Mei, L., Feng, S.-S., Nanotheranosticsapplication and further development of nanomedicine strategies for advanced theranostics (2014) Theranostics, 4, p. 660 Luk, B.T., Zhang, L., Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis (2014) ACS Applied Materials and Interfaces, 6, p. 21859 Mariano, R.N., Alberti, D., Cutrin, J.C., Crich, S.G., Aime, S., Design of PLGA based nanoparticles for imaging guided applications (2014) Mol. Pharm., 11, p. 4100 Yu, M.K., Park, J., Jon, S., Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy (2012) Theranostic., 2, p. 3 Pan, X., Han, K., Peng, X., Yang, Z., Qin, L., Zhu, C., Huang, X., Wu, C., Nanostructured cubosomes as advanced drug delivery system (2013) Curr. Pharm. Des., 19, p. 6290 Moghaddam, M.J., De Campo, L., Hirabayashi, M., Bean, P.A., Waddington, L.J., Scoble, J.A., Coia, G., Drummond, C.J., Gadolinium-DTPA amphiphile nanoassemblies: Agents for magnetic resonance imaging and neutron capture therapy (2014) Biomaterials Science, 2, p. 924 Accardo, A., Gianolio, E., Arena, F., Barnert, S., Schubert, R., Tesauro, D., Morelli, G., Nanostructures based on monoolein or diolein and amphiphilic gadolinium complexes as MRI contrast agents (2013) J. Mater. Chem. B, 1, p. 617 Accardo, A., Ringhieri, P., Szekely, N., Pipich, V., Luchini, A., Paduano, L., Tesauro, D., Structural insights on nanoparticles containing gadolinium complexes as potential theranostic (2014) Colloid. Polym. Sci., 292, p. 1121 Schmitt, L., Dietrich, C., Tampe, R., Synthesis and characterization of chelator-lipids for reversible immobilization of engineered proteins at self-assembled lipid interfaces (1994) J. Am. Chem. Soc., 116, p. 8485 Accardo, A., Morisco, A., Gianolio, E., Tesauro, D., Mangiapia, G., Radulescu, A., Brandt, A., Morelli, G., Nanoparticles containing octreotide peptides and gadolinium complexes for MRI applications (2011) J. Pept. Sci., 17, p. 154 Tesauro, D., Accardo, A., Gianolio, E., Paduano, L., Teixeira, J., Schillen, K., Aime, S., Morelli, G., Peptide derivatized lamellar aggregates as target specific MRI contrast agents (2007) ChemBioChem., 8, p. 950 Besenicar, M.P., Anderluh, G., Preparation of lipid membrane surfaces for molecular interaction studies by surface plasmon resonance biosensors (2010) Methods Mol. Biol., 627, p. 191 Mozsolits, H., Wirth, H.J., Werkmeister, J., Aguilar, M.I., Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance (2001) Biochim. Biophys. Acta., 1512, p. 64 Fritze, A., Hens, F., Kimpfler, A., Schubert, R., Peschka-Süss, R., Remote loaDing of doxorubicin into liposomes driven by a transmembrane phosphate gradient (2006) BBA Biomembranes., 1758, p. 1633 Botosoa, E.P., Maillasson, M., Mougin-Degraef, M., Remaud-Le Saëc, P., Gestin, J.-F., Jacques, Y., Barbet, J., Faivre-Chauvet, A., Antibody-Hapten recognition at the surface offunctionalized liposomes studied by SPR: Steric hindrance of pegylated phospholipids in stealth liposomes prepared for targeted radionuclide delivery (2011) J. Drug Delivery Article ID, p. 9. , 368535 Stella, B., Arpicco, S., Peracchia, M.T., Desmaele, D., Hoebeke, J., Renoir, M., D'Angelo, J., Couvreur, P., Design of folic acid-conjugated nanoparticles for drug targeting (2000) J. Pharm. Sci., 89, p. 1452 Zhang, Y., Thomas, T.P., Lee, J.-H., Li, M., Zong, H., Desai, A.M., Kotlyar, A., Baker, J.R., Jr., Polyvalent saccharide-functionalized generation 3 poly(amidoamine) dendrimer-methotrexate conjugate as a potential anticancer agent (2011) Bioorganic and Medicinal Chemistry, 19, p. 2557 Gomez-Monterrey, I., Campiglia, P., Aquino, C., Bertamino, A., Granata, I., Carotenuto, A., Brancaccio, D., Novellino, E., Design, synthesis, and cytotoxic evaluation of acyl derivatives of 3-aminonaphtho[2,3-b]thiophene-4,9-dione, a quinonebased system and different tumor cells (2011) J. Med. Chem., 54, p. 4077 De Cesare, M., Pratesi, G., Perego, P., Carenini, N., Tinelli, S., Merlini, L., Penco, S., Zunino, F., Potent antitumor activity and improved pharmacological profile of ST1481, a novel 7-substituted camptothecin (2001) Cancer Res., 61, p. 7189 Elbayoumi, T.A., Torchilin, V.P., Enhanced cytotoxicity of monoclonal anticancer antibody 2C5-modified doxorubicin-loaded PEGylated liposomes against various tumor cell lines (2007) Eur. J. Pharm. Sci., 32, p. 159 Molavi, O., Xiong, X.B., Douglas, D., Kneteman, N., Nagata, S., Pastan, I., Chu, Q., Lai, R., Anti-CD30 antibody conjugated liposomal doxorubicin with significantly improved therapeutic efficacy against anaplastic large cell lymphoma (2013) Biomaterials, 34, p. 8718 Murgia, S., Bonacchi, S., Falchi, A.M., Lampis, S., Lippolis, V., Meli, V., Monduzzi, M., Caltagirone, C., Drug-loaded fluorescent cubosomes: Versatile nanoparticles for potential theranostic applications (2013) Langmuir, 29, p. 6673 Caltagirone, C., Falchi, A.M., Lampis, S., Lippolis, V., Meli, V., Monduzzi, M., Prodi, L., Murgia, S., Cancer-cell-targeted theranostic cubosomes (2014) Langmuir, 30, p. 6228 Nilsson, C., Barrios-Lopez, B., Kallinen, A., Laurinmaki, P., Butcher, S.J., Raki, M., Weisell, J., Yaghmur, A., SPECT/CT imaging of radio-labeled cubosomes and hexosomes for potential theranostic applications (2013) Biomaterials, 34, p. 8491 Deshpande, S., Venugopal, E., Ramagiri, S., Bellare, J.R., Kumaraswamy, G., Singh, N., Enhancing cubosome functionality by coating with a single layer of poly-lysine (2014) ACS Applied Materials and Interfaces, 6, p. 17126}, document_type={Journal Article, }, affiliation={CIRPeB, Department of Pharmacy and IBB CNR, University of Naples Federico II, Via Mezzocannone, Napoli, Italy Department of Molecular Biotechnologies and Health Sciences and Molecular Imaging Centre, University of Turin, via Nizza, 52, Torino, Italy}, ibbaffiliation={1}, } @article{IBB_ID_10727, author={Accardo A, Gianolio E, Arena F, Barnert S, Schubert R, Tesauro D, Morelli G}, title={Nanostructures based on monoolein or diolein and amphiphilic gadolinium complexes as MRI contrast agents}, date={2013}, journal={J Mater Chem B (ISSN: 2050-7518, 2050-750x)}, year={2013}, fullvolume={412}, volume={412}, pages={617--628}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84876529807&partnerID=40&md5=940d1a0b5a9a34825d4386fa3e3fd078}, abstract={Highly ordered two or three dimensional mesophases in aqueous solution could be usefully obtained by using monoolein (MO) or diolein (DO) monomers. Nanostructures (also indicated as nanoparticles, NPs) of MO or DO containing different amounts (1%, 5%, 10% and 20%) of the synthetic amphiphilic gadolinium complex (C18)2DTPA(Gd) have been prepared and characterized for their relaxometric and structural behaviors. The nanostructure is found in the 110-200 nm range for all investigated systems, while the presence of the gadolinium containing monomer produces a partial loss of the cubic symmetry, as shown by Cryo-TEM images of NPs doped with 10% w/w of (C18)2DTPA(Gd). Gadolinium containing nanostructures display high relaxivity values (in the 10-15 mM-1 s-1 range at 25° and 20 MHz, with a further increase at 37 °C for DO based NPs), and interesting relaxometric properties for their possible use as MRI contrast agents. NPs containing 10% w/w of (C18)2DTPA(Gd) (MO3-NPs and DO3-NPs) have been also derivatized by introducing 3% wt of (C18)2-Peg3000-FA to obtain targeted aggregates (MO3-NP-FA, DO3-NP-FA). A preferential uptake efficiency of DO3-NP-FA in IGROV-1 cells with respect to DO-NPs without folic acid is observed, especially when cells are incubated with low concentrations of nanostructures or at short incubation times, thus indicating its potential use as a target-selective delivery system for MRI contrast agents on tumor cells overexpressing the folate receptor. This journal is © The Royal Society of Chemistry 2013.}, keywords={Delivery Systems, Folate Receptor, Gadolinium Complexes, Low Concentrations, Mri Contrast Agents, Relaxometric Properties, Short Incubations, Structural Behaviors, Doping (additives), Gadolinium Compounds, Monomers, Organic Acids, Nanostructures, }, references={Young, I.R., (2000) Methods in Biomedical Magnetic Resonance Imaging and Spectroscopy, , John Wiley & Sons Ltd., Chicheste Rinck, P.A., (2003) Magnetic Resonance in Medicine, , ABW Wissenschaftsverlag GmbH, Berlin Li, J., Zheng, D., Bae, K.T., Woodard, P.K., Haacke, E.M., (1998) Invest. Radiol., 33, pp. 578-586 Mühler, A., (1998) Invest. Radiol., 33, pp. 709-714 Mühler, A., (1995) MAGMA, 3, pp. 21-33 Delli Castelli, D., Gianolio, E., Geninatti Crich, S., Terreno, E., Aime, S., (2008) Coord. Chem. Rev., 252, pp. 2424-2443 Mulder, W.J.M., Strijkers, G.J., Van Tilborg, G.A.F., Cormode, D.P., Fayad, Z.A., Nicolay, K., (2009) Acc. Chem. Res., 42, pp. 904-914 Accardo, A., Tesauro, D., Aloj, L., Pedone, C., Morelli, G., (2009) Coord. Chem. Rev., 253 (1718), pp. 2193-2213 Tesauro, D., Accardo, A., Gianolio, E., Paduano, L., Texeira, J., Schillen, K., Aime, S., Morelli, G., (2007) ChemBioChem, 8, pp. 950-955 Mulder, W.J.M., Van Der Schaft, D.W.J., Hautvast, P.A.I., Strijkers, G.J., Koning, G.A., Storm, G., Mayo, K.H., Nicolay, K., (2007) FASEB J, 21 (2), pp. 378-383 Brandwijk, R.J.M.G.E., Mulder, W.J.M., Nicolay, K., Mayo, K.H., Thijssen, V.L.J.L., Griffioen, A.W., (2007) Bioconjugate Chem., 18, pp. 785-790 Vaccaro, M., Mangiapia, G., Paduano, L., Gianolio, E., Accardo, A., Tesauro, D., Morelli, G., (2007) ChemPhysChem, 8, pp. 2526-2538 Lipinski, M.J., Amirbekian, V., Frias, J.C., Aguinado, J.G.S., Mani, V., Briley-Saebo, K.C., Fuster, V., Fayad, Z.A., (2006) Magn. Reson. Med., 56 (3), pp. 601-610 Amirbekian, V., Lipinski, M.J., Briley-Saebo, K.C., Amirbekian, S., Aguinado, J.G.S., Weinreb, D.B., Vucic, E., Fayad, Z.A., (2007) Proc. Natl. Acad. Sci. U. S. A., 104 (3), pp. 961-966 Yaghmur, A., Glatter, O., (2009) Adv. Colloid Interface Sci., 147-148, pp. 333-342 Liu, G., Conn, C.E., Waddington, L.J., Mudie, S.T., Drummond, C.J., (2010) Langmuir, 26 (4), pp. 2383-2391 Conn, C.E., Panchagnula, V., Weerawardena, A., Waddington, L.J., Kennedy, D.F., Drummond, C.J., (2010) Langmuir, 26 (9), pp. 6240-6249 Moghaddam, M.J., De Campo, L., Waddington, L.J., Weerawardena, A., Kirby, N., Drummond, C.J., (2011) Soft Matter, 7, pp. 10994-11005 Accardo, A., Morisco, A., Gianolio, E., Tesauro, D., Mangiapia, G., Radulescu, A., Brandte, A., Morelli, G., (2011) J. Pept. Sci., 17, pp. 154-162 Schmitt, L., Dietrich, C., Tampe, R., (1994) J. Am. Chem. Soc., 116, pp. 8485-8491 Sharma, S.K., Lown, J.W., (2002) Tetrahedron Lett., 43, pp. 6665-6667 Dubochet, J., Adrian, M., Chang, J.J., Homo, J.C., Lepault, J., McDowall, A.W., Schultz, P., (1988) Q. Rev. Biophys., 21, pp. 129-228 Talmon, Y., (1996) Ber. Bunsenges. Phys. Chem., 100, pp. 364-372 Rank, A., Hauschild, S., Förster, S., Schubert, R., (2009) Langmuir, 25, pp. 1337-1344 Arena, F., Jebasingh, B.S., Gianolio, E., Stefania, R., Aime, S., (2011) Bioconjugate Chem., 22, pp. 2625-2635 Bradford, M.M., (1976) Anal. Biochem., 72, pp. 248-254 Gustafsson, J., Ljusberg-Wahren, H., Almgren, M., Larsson, K., (1997) Langmuir, 13, pp. 6964-6971 Spicer, P.T., Hayden, K.L., Lynch, M.L., Ofori-Boateng, A., Burns, J.L., (2001) Langmuir, 17 (13), pp. 5748-5756 Solomon, I., (1955) Phys. Rev., 99, pp. 559-565 Bloembergen, N., (1957) J. Chem. Phys., 27, pp. 572-573 Bloembergen, N., Morgan, L.O., (1961) J. Chem. Phys., 34, pp. 842-850 Aime, S., Botta, M., Fasano, M., Terreno, E., (2001) The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, p. 5. , ed. A. E. Merbach and E. Toth, John Wiley & Sons LTD Bertini, I., Luchinat, C., (1996) Coord. Chem. Rev., 50, pp. 1-300 Kamaly, N., Kalber, T., Thanaou, M., Bell, D.J., Miller, A.D., (2009) Bioconjugate Chem., 20, pp. 648-655 Mangiapia, G., Vaccaro, M., D'Errico, G., Frielinghaus, H., Radulescu, A., Pipich, V., Carnerup, A.M., Paduano, L., (2011) Soft Matter, 7, pp. 10577-10580 Hilgenbrik, A.R., Low, P.S., (2005) J. Pharm. Sci., 94, pp. 2135-2142 Sega, E.I., Low, P.S., (2008) Cancer Metastasis Rev., 27, pp. 655-664 Kim, I.B., Shin, H., Garcia, A.L., Bunz, U.H.F., (2007) Bioconjugate Chem., 18, pp. 815-820 Choi, H., Choi, S.R., Zhou, R., Kung, H.F., Chen, I.W., (2004) Acad. Radiol., 11, pp. 996-1004 Ding, N., Lu, Y., Lee, R., Yang, C., Huang, L., Liu, J., Xiang, G., (2011) Int. J. Nanomed., 6, pp. 2513-2520 Low, P.S., Henne, W.A., Doorneweerd, D.D., (2008) Acc. Chem. Res., 41, pp. 120-129 Barauskas, J., Cervin, C., Jankunenc, M., Spandyreva, M., Ribokaite, K., Tiberg, F., Johnsson, M., (2010) Int. J. Pharm., 391, pp. 284-291 Murgia, S., Falchi, A.M., Mano, M., Lampis, S., Angius, R., Carnerup, A.M., Schmidt, J., Monduzzi, M., (2010) J. Phys. Chem. B, 114, pp. 3518-3525 Sahay, G., Batrakova, E.V., Kabanov, A.V., (2008) Bioconjugate Chem., 19, pp. 2023-2029 Li, X., Chen, D., Le, C., Zhu, C., Gang, Y., Hovgaard, L., Yang, M., (2011) Int. J. Nanomed., 6, pp. 3151-3162 Young, I. R., (2000) Methods in Biomedical Magnetic Resonance Imaging and Spectroscopy, , John Wiley & Sons Ltd., Chicheste Rinck, P. A., (2003) Magnetic Resonance in Medicine, , ABW Wissenschaftsverlag GmbH, Berlin M hler, A., (1998) Invest. Radiol., 33, pp. 709-714 M hler, A., (1995) MAGMA, 3, pp. 21-33 Mulder, W. J. M., Strijkers, G. J., Van Tilborg, G. A. F., Cormode, D. P., Fayad, Z. A., Nicolay, K., (2009) Acc. Chem. Res., 42, pp. 904-914 Mulder, W. J. M., Van Der Schaft, D. W. J., Hautvast, P. A. I., Strijkers, G. J., Koning, G. A., Storm, G., Mayo, K. H., Nicolay, K., (2007) FASEB J, 21 (2), pp. 378-383 Brandwijk, R. J. M. G. E., Mulder, W. J. M., Nicolay, K., Mayo, K. H., Thijssen, V. L. J. L., Griffioen, A. W., (2007) Bioconjugate Chem., 18, pp. 785-790 Lipinski, M. J., Amirbekian, V., Frias, J. C., Aguinado, J. G. S., Mani, V., Briley-Saebo, K. C., Fuster, V., Fayad, Z. A., (2006) Magn. Reson. Med., 56 (3), pp. 601-610 Liu, G., Conn, C. E., Waddington, L. J., Mudie, S. T., Drummond, C. J., (2010) Langmuir, 26 (4), pp. 2383-2391 Conn, C. E., Panchagnula, V., Weerawardena, A., Waddington, L. J., Kennedy, D. F., Drummond, C. J., (2010) Langmuir, 26 (9), pp. 6240-6249 Moghaddam, M. J., De Campo, L., Waddington, L. J., Weerawardena, A., Kirby, N., Drummond, C. J., (2011) Soft Matter, 7, pp. 10994-11005 Sharma, S. K., Lown, J. W., (2002) Tetrahedron Lett., 43, pp. 6665-6667 Bradford, M. M., (1976) Anal. Biochem., 72, pp. 248-254 Spicer, P. T., Hayden, K. L., Lynch, M. L., Ofori-Boateng, A., Burns, J. L., (2001) Langmuir, 17 (13), pp. 5748-5756 Hilgenbrik, A. R., Low, P. S., (2005) J. Pharm. Sci., 94, pp. 2135-2142 Sega, E. I., Low, P. S., (2008) Cancer Metastasis Rev., 27, pp. 655-664 Kim, I. B., Shin, H., Garcia, A. L., Bunz, U. H. F., (2007) Bioconjugate Chem., 18, pp. 815-820 Choi, H., Choi, S. R., Zhou, R., Kung, H. F., Chen, I. W., (2004) Acad. Radiol., 11, pp. 996-1004 Low, P. S., Henne, W. A., Doorneweerd, D. D., (2008) Acc. Chem. Res., 41, pp. 120-129}, document_type={Journal Article, }, affiliation={CIRPeB, Department of Pharmacy, University of Naples Federico II, Via Mezzocannone, 16, 80134 Napoli, Italy Department of Chemistry I.F.M., Molecular Imaging Centre, University of Turin, Via Nizza, 52, 10125 Turin, Italy}, ibbaffiliation={1}, } @article{IBB_ID_9765, author={Menchise V, Digilio G, Gianolio E, Cittadino E, Catanzaro V, Carrera C, Aime S}, title={MR Contrast Agents}, date={2011 Sep}, journal={Mol Pharm (ISSN: 1543-8384)}, year={2011}, fullvolume={332}, volume={332}, pages={1750--1756}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-80053467204&partnerID=40&md5=58be3c08f3896b3ce2a4f437b062956c}, abstract={Murine melanoma B16 cells display on the extracellular side of the plasma membrane a large number of reactive protein thiols (exofacial protein thiols, EPTs). These EPTs can be chemically labeled with Gd-DO3A-PDP, a Gd(III)-based MRI contrast agent bearing a 2-pyridinedithio chemical function for the recognition of EPTs. Uptake of gadolinium up to 10(9) Gd atoms per cell can be achieved. The treatment of B16 cells ex vivo with a reducing agent such as tris(2-carboxyethyl)phosphine (TCEP) results in an increase by 850% of available EPTs and an increase by 45% of Gd uptake. Blocking EPTs with N-ethylmaleimide (NEM) caused a decrease by 84% of available EPTs and a decrease by 55% of Gd uptake. The amount of Gd taken up by B16 cells is therefore dependent upon the availability of EPTs, whose actual level in turn changes according to the extracellular redox microenvironment. Then Gd-DO3A-PDP has been assessed for the labeling of tumor cells in vivo on B16.F10 melanoma tumor-bearing mice. Gd-DO3A-PDP (or Gd-DO3A as the control) has been injected directly into the tumor region at a dose level of 0.1 mu mol and the signal enhancement in MR images followed over time. The washout kinetics of Gd-DO3A-PDP from tumor is very slow if compared to that of control Gd-DO3A, and 48 h post injection, the gadolinium-enhancement is still clearly visible. Therefore, B16 cells can be labeled ex vivo as well as in vivo according to a common EPTs-dependent route, provided that high levels of the thiol reactive probe can be delivered to the tumor.}, keywords={Contrast Agent, Gadolinium, Melanoma, Microenvironment, Redox, Tumor, 2 Pyridinedithio, Contrast Medium, Gadoteridol, Gadoteridol Pdp, N Ethylmaleimide, Thiol Derivative, Tris(2 Carboxyethyl)phosphine, Unclassified Drug, Animal Cell, Animal Experiment, Animal Model, Article, Cell Membrane, Controlled Study, Drug Uptake, In Vivo Study, Mouse, Nonhuman, Nuclear Magnetic Resonance Imaging, Oxidation Reduction Reaction, Priority Journal, Signal Transduction, Tumor Xenograft, Biological Transport, Cell Line, Coordination Complexes, Injections, Intralesional, Kinetics, Ligands, Limit Of Detection, Inbred C57bl, N-Ethylmaleimide-Sensitive Proteins, Sulfhydryl Reagents, Sulfides, Biological Transport Drug Effects, Contrast Media Administration, Dosage Chemistry Diagnostic Use, Coordination Complexes Administration, Gadolinium Administration, Experimental Diagnosis Metabolism Pathology, N-Ethylmaleimide-Sensitive Proteins Chemistry Metabolism, Pyridines Chemistry, Sulfhydryl Reagents Administration, Dosage Chemistry Diagnostic Use Pharmacology, Sulfides Chemistry Diagnostic Use, Tris (2 Carboxyethyl) Phosphine, }, references={Gatenby, R.A., Gillies, R.J., Why do cancers have high aerobic glycolysis? (2004) Nature Reviews Cancer, 4 (11), pp. 891-899. , DOI 10.1038/nrc147 Rofstad, E.K., Microenvironment-induced cancer metastasis (2000) International Journal of Radiation Biology, 76 (5), pp. 589-605 Raghunand, N., Jagadish, B., Trouard, T.P., Galons, J.-P., Gillies, R.J., Mash, E.A., Redox-sensitive contrast agents for MRI based on reversible binding of thiols to serum albumin (2006) Magnetic Resonance in Medicine, 55 (6), pp. 1272-1280. , DOI 10.1002/mrm.20904 Jonas, C.R., Ziegler, T.R., Gu, L.H., Jones, D.P., Extracellular thiol/disulfide redox state affects proliferation rate in a human colon carcinoma (Caco2) cell line (2002) Free Radical Biology and Medicine, 33 (11), pp. 1499-1506. , DOI 10.1016/S0891-5849(02)01081-X, PII S089158490201081X Jonas, C.R., Gu, L.H., Nkabyo, Y.S., Mannery, Y.O., Avissar, N.E., Sax, H.C., Jones, D.P., Ziegler, T.R., Glutamine and KGF each regulate extracellular thiol/disulfide redox and enhance proliferation in Caco-2 cells (2003) Am. J. Physiol., 285, pp. 1421-R1429 Rehman, F., Shanmugasundaram, P., Schrey, M.P., Fenretinide stimulates redox-sensitive ceramide production in breast cancer cells: Potential role in drug-induced cytotoxicity (2004) British Journal of Cancer, 91 (10), pp. 1821-1828. , DOI 10.1038/sj.bjc.6602212 Prezioso, J.A., Shields, D., Wang, N., Rosenstein, M., Role of gamma-glutamyltranspeptidase-mediated glutathione transport on the radiosensitivity of B16 melanoma variant cell lines (1994) Int. J. Radiat. Oncol. Biol. Phys., 30, pp. 373-381 Paolicchi, A., Lorenzini, E., Perego, P., Supino, R., Zunino, F., Comporti, M., Pompella, A., Extra-cellular thiol metabolism in clones of human metastatic melanoma with different gamma-glutamyl transpeptidase expression: Implications for cell response to platinum-based drugs (2002) International Journal of Cancer, 97 (6), pp. 740-745. , DOI 10.1002/ijc.10110 Glunde, K., Gillies, R.J., Neeman, M., Bhujwalla, Z.M., (2010) Molecular Imaging: Principles and Practice, pp. 844-863. , Weissleder, R. Ross, B. D. Rehemtulla, A. Gambhir, S. S. Eds. PMPH-USA: Beijing Glunde, K., Pathak, A.P., Bhujwalla, Z.M., Molecular-functional imaging of cancer: To image and imagine (2007) Trends in Molecular Medicine, 13 (7), pp. 287-297. , DOI 10.1016/j.molmed.2007.05.002, PII S147149140700086X Penet, M.-F., Pathak, A.P., Raman, V., Ballesteros, P., Artemov, D., Bhujwalla, Z.M., Noninvasive Multiparametric Imaging of Metastasis-Permissive Microenvironments in a Human Prostate Cancer Xenograft (2009) Cancer Res., 69 (22), pp. 8822-8829 Neeman, M., Provenzale, J.M., Dewhirst, M.W., Magnetic resonance imaging applications in the evaluation of tumor angiogenesis (2001) Seminars in Radiation Oncology, 11 (1), pp. 70-82 Bhujwalla, Z.M., Artemov, D., Ballesteros, P., Cerdan, S., Gillies, R.J., Solaiyappan, M., Combined vascular and extracellular pH imaging of solid tumors (2002) NMR in Biomedicine, 15 (2), pp. 114-119. , DOI 10.1002/nbm.743 Garcia-Espinosa, M.A., Rodrigues, T.B., Sierra, A., Benito, M., Fonseca, C., Gray, H.L., Bartnik, B.L., Cerdan, S., Cerebral glucose metabolism and the glutamine cycle as detected by in vivo and in vitro 13C NMR spectroscopy (2004) Neurochemistry International, 45 (2-3), pp. 297-303. , DOI 10.1016/j.neuint.2003.08.014, PII S0197018603002845 Manzoor, A.A., Yuan, H., Palmer, G.M., Viglianti, B.L., Dewhirst, M.K., (2010) Molecular Imaging: Principles and Practice, pp. 756-780. , Weissleder, R. Ross, B. D. Rehemtulla, A. Gambhir, S. S. PMPH-USA: Beijing Cook, J.A., Gius, D., Wink, D.A., Krishna, M.C., Russo, A., Mitchell, J.B., Oxidative stress, redox, and the tumor microenvironment (2004) Seminars in Radiation Oncology, 14 (3), pp. 259-266. , DOI 10.1016/j.semradonc.2004.04.001, PII S1053429604000529 Groves, A.M., Win, T., Ben Haim, S., Ell, P.J., Non-[18F]FDG PET in clinical oncology (2007) Lancet Oncol., 8, pp. 822-830 Rischin, D., Hicks, R.J., Fisher, R., Binns, D., Corry, J., Porceddu, S., Peters, L.J., Prognostic significance of [ 18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: A substudy of Trans-Tasman Radiation Oncology Group study 98.02 (2006) Journal of Clinical Oncology, 24 (13), pp. 2098-2104. , DOI 10.1200/JCO.2005.05.2878 Eschmann, S.-M., Paulsen, F., Reimold, M., Dittmann, H., Welz, S., Reischl, G., MacHulla, H.-J., Bares, R., Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy (2005) Journal of Nuclear Medicine, 46 (2), pp. 253-260 Hyodo, F., Soule, B.P., Matsumoto, K.-I., Matsumoto, S., Cook, J.A., Hyodo, E., Sowers, A.L., Mitchell, J.B., Assessment of tissue redox status using metabolic responsive contrast agents and magnetic resonance Imaging (2008) J. Pharm. Pharmacol., 60 (8), pp. 1049-1060 Aime, S., Botta, M., Gianolio, E., Terreno, E., A p(O 2)-responsive MRI contrast agent based on the redox switch of manganese(II/III) - Porphyrin complexes (2000) Angewandte Chemie - International Edition, 39 (4), pp. 747-750. , DOI 10.1002/(SICI)1521-3773(20000218)39:4 3.0. CO Moriarty-Craige, S.E., Jones, D.P., Extracellular thiols and thiol/disulfide redox in metabolism (2004) Annual Review of Nutrition, 24, pp. 481-509. , DOI 10.1146/annurev.nutr.24.012003.132208 Schafer, F.Q., Buettner, G.R., Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple (2001) Free Radical Biology and Medicine, 30 (11), pp. 1191-1212. , DOI 10.1016/S0891-5849(01)00480-4, PII S0891584901004804 Ghezzi, P., Oxidoreduction of protein thiols in redox regulation (2005) Biochemical Society Transactions, 33 (6), pp. 1378-1381. , DOI 10.1042/BST20051378 Sahaf, B., Heydari, K., Herzenberg, L.A., Herzenberg, L.A., Lymphocyte surface thiol levels (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (7), pp. 4001-4005. , DOI 10.1073/pnas.2628032100 Digilio, G., Menchise, V., Gianolio, E., Catanzaro, V., Carrera, C., Napolitano, R., Fedeli, F., Aime, S., Exofacial protein thiols as a route for the internalization of Gd(III)-based complexes for MRI cell labelling (2010) J. Med. Chem., 53, pp. 4877-4890 Laragione, T., Gianazza, E., Tonelli, R., Bigini, P., Mennini, T., Casoni, F., Massignan, T., Ghezzi, P., Regulation of redox-sensitive exofacial protein thiols in CHO cells (2006) Biological Chemistry, 387 (10-11), pp. 1371-1376. , DOI 10.1515/BC.2006.172, PII BCHM38710111371 Jiang, X.-M., Fitzgerald, M., Grant, C.M., Hogg, P.J., Redox Control of Exofacial Protein Thiols/Disulfides by Protein Disulfide Isomerase (1999) J. Biol. Chem., 274, pp. 2416-2423 Laragione, T., Bonetto, V., Casoni, F., Massignan, T., Bianchi, G., Gianazza, E., Ghezzi, P., Redox regulation of surface protein thiols: Identification of integrin α-4 as a molecular target by using redox proteomics (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (25), pp. 14737-14741. , DOI 10.1073/pnas.2434516100 Digilio, G., Catanzaro, V., Fedeli, F., Gianolio, E., Menchise, V., Napolitano, R., Gringeri, C., Aime, S., Targeting exofacial protein thiols with GdIII complexes. An efficient procedure for MRI cell labelling (2009) Chem. Commun., pp. 893-895 Carrera, C., Digilio, G., Baroni, S., Burgio, D., Consol, S., Fedeli, F., Longo, D., Aime, S., Synthesis and characterization of a Gd(III) based contrast agent responsive to thiol containing compounds (2007) Dalton Transactions, (43), pp. 4980-4987. , DOI 10.1039/b705088g Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254 Crich, S.G., Biancone, L., Cantaluppi, V., Duo, D., Esposito, G., Russo, S., Camussi, G., Aime, S., Improved Route for the Visualization of Stem Cells Labeled with a Gd-/Eu-Chelate as Dual (MRI and Fluorescence) Agent (2004) Magnetic Resonance in Medicine, 51 (5), pp. 938-944. , DOI 10.1002/mrm.20072 Crich, S.G., Cabella, C., Barge, A., Belfiore, S., Ghirelli, C., Lattuada, L., Lanzardo, S., Aime, S., In vitro and in vivo magnetic resonance detection of tumor cells by targeting glutamine transporters with Gd-based probes (2006) Journal of Medicinal Chemistry, 49 (16), pp. 4926-4936. , DOI 10.1021/jm0601093 Deneke, S.M., Thiol-based antioxidants (2001) Curr. Top. Cell. Regul., 36, pp. 151-180 Andersson, A., Lendgren, A., Hultberg, B., Effect of thiol oxidation and thiol export from erythrocytes on determination of redox status of homocysteine and other thiols in plasma from healthy subjects and patients with cerebral infarction (1995) Clin. Chem., 41, pp. 361-366 Peters Jr., T., (1996) All about Albumin Biochemistry, Genetics and Medical Applications, , Academic Press: London Raghunand, N., Guntle, G.P., Gokhale, V., Nichol, G.S., Mash, E.A., Jagadish, B., Design, synthesis, and evaluation of 1,4,7,10-tetraazacyclododecane-1,4, 7-triacetic acid derived, redox-sensitive contrast agents for magnetic resonance imaging (2010) J. Med. Chem., 53, pp. 6747-6757 Gatenby, R. A., Gillies, R. J., Why do cancers have high aerobic glycolysis? (2004) Nature Reviews Cancer, 4 (11), pp. 891-899. , DOI 10. 1038/nrc147 Rofstad, E. K., Microenvironment-induced cancer metastasis (2000) International Journal of Radiation Biology, 76 (5), pp. 589-605 Jonas, C. R., Ziegler, T. R., Gu, L. H., Jones, D. P., Extracellular thiol/disulfide redox state affects proliferation rate in a human colon carcinoma (Caco2) cell line (2002) Free Radical Biology and Medicine, 33 (11), pp. 1499-1506. , DOI 10. 1016/S0891-5849 (02) 01081-X, PII S089158490201081X Jonas, C. R., Gu, L. H., Nkabyo, Y. S., Mannery, Y. O., Avissar, N. E., Sax, H. C., Jones, D. P., Ziegler, T. R., Glutamine and KGF each regulate extracellular thiol/disulfide redox and enhance proliferation in Caco-2 cells (2003) Am. J. Physiol., 285, pp. 1421-R1429 Prezioso, J. A., Shields, D., Wang, N., Rosenstein, M., Role of gamma-glutamyltranspeptidase-mediated glutathione transport on the radiosensitivity of B16 melanoma variant cell lines (1994) Int. J. Radiat. Oncol. Biol. Phys., 30, pp. 373-381 Penet, M. -F., Pathak, A. P., Raman, V., Ballesteros, P., Artemov, D., Bhujwalla, Z. M., Noninvasive Multiparametric Imaging of Metastasis-Permissive Microenvironments in a Human Prostate Cancer Xenograft (2009) Cancer Res., 69 (22), pp. 8822-8829 Bhujwalla, Z. M., Artemov, D., Ballesteros, P., Cerdan, S., Gillies, R. J., Solaiyappan, M., Combined vascular and extracellular pH imaging of solid tumors (2002) NMR in Biomedicine, 15 (2), pp. 114-119. , DOI 10. 1002/nbm. 743 Manzoor, A. A., Yuan, H., Palmer, G. M., Viglianti, B. L., Dewhirst, M. K., (2010) Molecular Imaging: Principles and Practice, pp. 756-780. , Weissleder, R. Ross, B. D. Rehemtulla, A. Gambhir, S. S. PMPH-USA: Beijing Cook, J. A., Gius, D., Wink, D. A., Krishna, M. C., Russo, A., Mitchell, J. B., Oxidative stress, redox, and the tumor microenvironment (2004) Seminars in Radiation Oncology, 14 (3), pp. 259-266. , DOI 10. 1016/j. semradonc. 2004. 04. 001, PII S1053429604000529 Groves, A. M., Win, T., Ben Haim, S., Ell, P. J., Non- [18F] FDG PET in clinical oncology (2007) Lancet Oncol., 8, pp. 822-830 Eschmann, S. -M., Paulsen, F., Reimold, M., Dittmann, H., Welz, S., Reischl, G., MacHulla, H. -J., Bares, R., Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy (2005) Journal of Nuclear Medicine, 46 (2), pp. 253-260 Schafer, F. Q., Buettner, G. R., Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple (2001) Free Radical Biology and Medicine, 30 (11), pp. 1191-1212. , DOI 10. 1016/S0891-5849 (01) 00480-4, PII S0891584901004804 Jiang, X. -M., Fitzgerald, M., Grant, C. M., Hogg, P. J., Redox Control of Exofacial Protein Thiols/Disulfides by Protein Disulfide Isomerase (1999) J. Biol. Chem., 274, pp. 2416-2423 Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254 Crich, S. G., Biancone, L., Cantaluppi, V., Duo, D., Esposito, G., Russo, S., Camussi, G., Aime, S., Improved Route for the Visualization of Stem Cells Labeled with a Gd-/Eu-Chelate as Dual (MRI and Fluorescence) Agent (2004) Magnetic Resonance in Medicine, 51 (5), pp. 938-944. , DOI 10. 1002/mrm. 20072 Crich, S. G., Cabella, C., Barge, A., Belfiore, S., Ghirelli, C., Lattuada, L., Lanzardo, S., Aime, S., In vitro and in vivo magnetic resonance detection of tumor cells by targeting glutamine transporters with Gd-based probes (2006) Journal of Medicinal Chemistry, 49 (16), pp. 4926-4936. , DOI 10. 1021/jm0601093 Deneke, S. M., Thiol-based antioxidants (2001) Curr. Top. Cell. Regul., 36, pp. 151-180}, document_type={Research Support, Non-U. S. Gov'T, Book Chapter, }, affiliation={Institute for Biostructures and Bioimages (CNR), C/o Molecular Biotechnology Center (University of Turin), Via Nizza 52, I-10126 Torino, Italy Department of Environmental and Life Sciences, Università Del Piemonte Orientale A. Avogadro, Viale T. Michel 11, I-15121 Alessandria, Italy Department of Chemisty, IFM and Center for Molecular Imaging, University of Turin, Via Nizza 52, I-10126 Torino, Italy}, ibbaffiliation={1}, } @article{IBB_ID_9840, author={Accardo A, Morisco A, Gianolio E, Tesauro D, Mangiapia G, Radulescu A, Brandt A, Morelli G}, title={Nanoparticles containing octreotide peptides and gadolinium complexes for MRI applications}, date={2011 Feb}, journal={J Pept Sci (ISSN: 1075-2617, 1099-1387, 1075-2617print)}, year={2011}, fullvolume={504}, volume={504}, pages={154--162}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-78651440633&partnerID=40&md5=06e7b1d40752b219b9c6e6289c3d2560}, abstract={New mixed nanoparticles were obtained by self-aggregation of two amphiplic monomers. The first monomer (C18) 2L5-Oct contains two C18 hydrophobic moieties bound to the N-terminus of the cyclic peptide octreotide, and spaced from the bioactive peptide by five units of dioxoethylene linkers. The second monomer, (C18) 2DTPAGlu, (C18) 2DTPA or (C18) 2DOTA, and the corresponding Gd (III) complexes, contains two C18 hydrophobic moieties bound through a lysine residue to different polyamino-polycarboxy ligands: DTPAGlu, DTPA or DOTA. Mixed aggregates have been obtained and structurally characterized by small angle neutron scattering (SANS) techniques and for their relaxometric behavior. According to a decrease of negative charges in the surfactant head-group, a total or a partial micelle-to-vesicle transition is observed by passing from (C18) 2DTPAGlu to (C18) 2DOTA. The thicknesses of the bilayers are substantially constant, around 50, in the analyzed systems. Moreover, the mixed aggregates, in which a small amount of amphiphilic octreotide monomer (C18) 2L5-Oct (10% mol/mol) was inserted, do not differ significantly from the respective self-assembled systems. Fluorescence emission of tryptophan residue at 340 nm indicates low mobility of water molecules at the peptide surface. The proton relaxivity of mixed aggregates based on (C18) 2DTPAGlu (Gd), (C18) 2DTPA (Gd) and (C18) 2DOTA (Gd) resulted to be 17. 6, 15. 2 and 10. 0 mM-1 s-1 (at 20 MHz and 298K), respectively. The decrease in the relaxivity values can be ascribed to the increase in M (81, 205 and 750 ns). The presence of amphiphilic octreotide monomer exposed on mixed aggregate surface gives the entire nanoparticles a potential binding selectivity toward somatostatin sstr2 receptor subtype, and these systems could act as MRI target-specific contrast agent. Mixed nanoparticles (micelles and liposomes) are obtained by co-aggregation of lipophilic octreotide with gadolinium complex containing amphiphilic monomers for MRI applications. Copyright 2010 European Peptide Society and John Wiley & Sons, Ltd}, keywords={Amphiphilic Gadolinium Complexes, Mri Contrast Agents, Octreotide Peptide, Small-Angle Neutron Scattering, Supramolecular Aggregates, 10 Tetraazacyclododecane 1, 10 Tetraacetic Acid, Amphophile, Contrast Medium, Cyclopeptide, Ethylene Derivative, Gadolinium Pentetate, Gadoteric Acid, Glutamine, Lysine, Monomer, Nanoparticle, Pentetic Acid, Pentetic Acid Derivative, Somatostatin Receptor 2, Surfactant, Tryptophan, Water, Amino Terminal Sequence, Bilayer Membrane, Complex Formation, Drug Binding, Drug Receptor Binding, Fluorescence, Hydrophobicity, Macromolecule, Micelle, Nuclear Magnetic Resonance Imaging, Priority Journal, Protein Aggregation, Structure Analysis, Surface Property, Thickness, }, references={Berthold, M., Bartfai, T., Modes of peptide binding in G Protein-Coupled Receptors (1997) Neurochem. Res., 22, pp. 1023-103 Reubi, J.C., Peptide receptors as molecular targets for cancer diagnosis and therapy (2003) Endocr. Rev., 24, pp. 389-427 Lamberts, S.W.J., Octreotide: The Next Decade (1999), Bioscientifica: UK, Bristol, UKBauer, W., Briner, U., Doepfner, W., SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action (1982) Life Sci, 31, pp. 1133-1140 Veber, D.F., Freidinger, R.M., Schwenk-Perlow, D., Paleveda Jr, W.J., Holly, F.W., Strachan, R.G., Nurr, R.F., Hirschmann, R., A potent cyclic hexapeptide analogue of somatostatin (1981) Nature, 292, pp. 55-58 Patel, C.Y., Somatostatin and its receptor family (1999) Front. Neuroendocrinol., 20, pp. 157-198 Hofland, L.J., Internalization of [DOTA,125I-Tyr3]octreotide by somatostatin receptor-positive cells in vitro and in vivo: implications for somatostatin receptor-targeted radio-guided surgery (1999) Proc. Assoc. Am. Physicians, 111, pp. 63-69 Huang, C.M., Wu, Y.T., Chen, S.T., Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis (2000) Chem. Biol., 7, pp. 453-461 Mier, W., Eritja, R., Ashour, M., Haberkorn, U., Eisenhut, M., Peptide-PNA conjugates targeted transport of antisense therapeutics into tumours (2003) Angew. Chem. Int. Ed., 42, pp. 1968-1971 Lamberts, S.W.J., Krenning, E.P., Reubi, J.C., The role of somatostatin and its analogs in the diagnosis and treatment of tumors (1991) Endocr. Rev., 12, pp. 450-482 Krenning, E.P., Kwekkeboom, D.J., Pauwels, S., Kvols, L.K., Reubi, J.C., Nuclear Medicine Annual (1995) Somatostatin receptor scintigraphy, pp. 1-50. , Freeman LM (ed.). Lippincott-Raven: New York Reubi, J.C., Waser, B., Schaer, J.C., Laissue, J.A., Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands (2001) Eur. J. Nucl. Med., 28, pp. 836-846. , Erratum in: Eur. J. Nucl. Med. 2001 Froidevaux, S., Eberle, A.N., Somatostatin analogues and radiopeptides in cancer therapy (2002) Biopolymers (Pept. Sci.), 66, pp. 161-183 Allen, T.M., Ligand-targeted therapeutics in anticancer therapy (2002) Nat. Rev. Cancer, 2, pp. 750-763 Wu, H., Chang, D., Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy (2010) J. Oncol., , ASAP DOI 10.1155/2010/723798 van Tilborg, G.A.F., Mulder, W.J.M., Deckers, N., Storm, G., Reutelingsperger, C.P.M., Strijkers, G.J., Nicolay, K., Annexin A5-functionalized bimodal lipid-based contrast agents for the detection of apoptosis (2006) Bioconjug. Chem., 17, pp. 741-749 Mulder, W.J.M., Strijkers, G.J., van Tilborg, G.A.F., Cormode, D.P., Fayad, Z.A., Nicolay, K., Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging (2009) Acc. Chem. Res., 42, pp. 904-914 Bull, S.R., Guler, M.O., Bras, R.E., Maede, T.J., Stupp, S.I., Self-assembled peptide amphiphile nanofibers conjugated to MRI contrast agents (2005) Nano Lett, 5, pp. 1-4 Kluza, E., van der Schaft, D.W.J., Hautvast, P.A.I., Mulder, W.J.M., Mayo, K.H., Griffioen, A.W., Strijkers, G.J., Nicolay, K., Synergistic targeting of αvβ3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis (2010) Nano Lett, 10, pp. 52-58 Ferrari, M., Cancer nanotechnology: opportunities and challenges (2005) Nat. Rev. Cancer, 5, pp. 161-171 Accardo, A., Tesauro, D., Roscigno, P., Gianolio, E., Paduano, L., D'Errico, G., Pedone, C., Morelli, G., Physicochemical properties of mixed micellar aggregates containing CCK peptides and Gd complexes designed as tumor specific contrast agents in MRI (2004) J. Am. Chem. Soc., 126, pp. 3097-3107 Vaccaro, M., Mangiapia, G., Paduano, L., Gianolio, E., Accardo, A., Tesauro, D., Morelli, G., Structural and relaxometric characterization peptide aggregates containing gadolinium complexes as potential selective contrast agents in MRI (2007) ChemPhysChem, 8, pp. 2526-2538 Tesauro, D., Accardo, A., Gianolio, E., Paduano, L., Teixeira, J., Schillen, K., Aime, S., Morelli, G., Peptide derivatized lamellar aggregates as target-specific MRI contrast agents (2007) ChemBioChem, 8, pp. 950-955 Accardo, A., Mansi, R., Morisco, A., Mangiapia, G., Paduano, L., Tesauro, D., Radulescu, A., Morelli, G., Peptide modified nanocarriers for selective targeting of bombesin receptors (2010) Mol. Biosyst., 6, pp. 878-887 Morisco, A., Accardo, A., Gianolio, E., Tesauro, D., Benedetti, E., Morelli, G., Micelles derivatized with octreotide as potential target-selective contrast agents in MRI (2009) J. Pept. Sci., 15, pp. 242-250 Anelli, P.L., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., L-glutamic acid and L-lysine as useful building blocks for the preparation of bifunctional DTPA-like ligands (1999) Bioconjug. Chem., 10, pp. 137-140 Schmitt, L., Dietrich, C., Synthesis and characterization of chelator-lipids for reversible immobilization of engineered proteins at self-assembled lipid interfaces (1994) J. Am. Chem. Soc., 116, pp. 8485-8491 Ellmann, G.L., Tissue sulfhydryl groups (1959) Arch. Biochem. Biophys., 82, pp. 70-77 Brunisholz, G., Randin, M., The separation of the rare earths by ethylenediamine-tetraacetic acid (EDTA). IX. A cycle for the separation of the rare earths by fractionation (1959) Helv. Chim. Acta, 42, pp. 1927-1938 Edelhoch, H., Spectroscopic determination of tryptophan and tyrosine in proteins (1967) Biochemistry, 6, pp. 1948-1954 Pace, C.N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., How to measure and predict the molar absorption coefficient of a protein (1995) Protein Sci, 4, pp. 2411-2423 Vaccaro, M., Accardo, A., Tesauro, D., Mangiapia, G., Löf, D., Schillen, K., Soederman, O., Paduano, L., Supramolecular aggregates of amphiphilic gadolinium complexes as blood pool MRI/MRA contrast agents: physicochemical characterization (2006) Langmuir, 22, pp. 6635-6643 Wignall, G.D., Bates, F.S., Absolute calibration of small-angle neutron scattering data (1987) J. Appl. Crystallogr., 20, pp. 28-40 Torchilin, V.P., Omelyanenko, V.G., Papisov, M.I., Bogdanov, A.J., Trubetskoy, V.S., Herron, J.N., Gentry, C.A., Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity (1994) Biochim. Biophys. Acta, 119, pp. 11-20 Wang, Q., Graham, K., Schauer, T., Fietz, T., Mohammed, A., Liu, X., Hoffend, J., Mier, W., Pharmacological properties of hydrophilic and lipophilic derivatives of octreotate (2004) Nucl. Med. Biol., 31, pp. 21-30 Anelli, P.L., Lattuada, L., Lorusso, V., Schneider, M., Tournier, H., Uggeri, F., Mixed micelles containing lipophilic gadolinium complexes as MRA contrast agents (2001) Magn. Res. Mater. Phys. Biol. Med., 12, pp. 114-120 Chan, W.C., White, P.D., Fmoc Solid Phase Peptide Synthesis (2000), Oxford University Press: New YorkLackowicz, J.R., Principles of Fluorescence Spectroscopy (1983), Plenum Press: New YorkCaravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B., Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications (1999) Chem. Rev., 99, pp. 2293-2352 Bloembergen, N., Morgan, L.O., Proton relaxation times in paramagnetic solutions. Effects of electron spin relaxation (1961) J. Chem. Phys., 34, pp. 842-850 Lipari, G., Szabo, A., Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity (1982) J. Am. Chem. Soc., 104, pp. 4546-4559 Aime, S., Botta, M., Fasano, M., Paoletti, S., Terreno, E., Relaxometric determination of the exchange rate of the coordinated water protons in a neutral Gd-III chelate (1997) Chem. Eur. J., 3, pp. 1499-1504 Powell, D.H., Favre, M., Graeppi, N., Dhubhghaill, O.M.N., Pubanz, D., Merbach, A.E., Solution kinetic behaviour of lanthanide (III) polyamino carboxylates from O-17 NMR-studies (1995) J. Alloys Compd., 225, pp. 246-252 Delli Castelli, D., Gianolio, E., Geninatti Crich, S., Terreno, E., Aime, S., Metal containing nanosized systems for MR-molecular imaging applications (2008) Coord. Chem. Rev., 252, pp. 2424-2443 Reubi, J. C., Peptide receptors as molecular targets for cancer diagnosis and therapy (2003) Endocr. Rev., 24, pp. 389-427 Lamberts, S. W. J., Octreotide: The Next Decade (1999), Bioscientifica: UK, Bristol, UKBauer, W., Briner, U., Doepfner, W., SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action (1982) Life Sci, 31, pp. 1133-1140 Veber, D. F., Freidinger, R. M., Schwenk-Perlow, D., Paleveda Jr, W. J., Holly, F. W., Strachan, R. G., Nurr, R. F., Hirschmann, R., A potent cyclic hexapeptide analogue of somatostatin (1981) Nature, 292, pp. 55-58 Patel, C. Y., Somatostatin and its receptor family (1999) Front. Neuroendocrinol., 20, pp. 157-198 Hofland, L. J., Internalization of [DOTA, 125I-Tyr3] octreotide by somatostatin receptor-positive cells in vitro and in vivo: implications for somatostatin receptor-targeted radio-guided surgery (1999) Proc. Assoc. Am. Physicians, 111, pp. 63-69 Huang, C. M., Wu, Y. T., Chen, S. T., Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis (2000) Chem. Biol., 7, pp. 453-461 Krenning, E. P., Kwekkeboom, D. J., Pauwels, S., Kvols, L. K., Reubi, J. C., Nuclear Medicine Annual (1995) Somatostatin receptor scintigraphy, pp. 1-50. , Freeman LM (ed.). Lippincott-Raven: New York Reubi, J. C., Waser, B., Schaer, J. C., Laissue, J. A., Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands (2001) Eur. J. Nucl. Med., 28, pp. 836-846. , Erratum in: Eur. J. Nucl. Med. 2001 Allen, T. M., Ligand-targeted therapeutics in anticancer therapy (2002) Nat. Rev. Cancer, 2, pp. 750-763 van Tilborg, G. A. F., Mulder, W. J. M., Deckers, N., Storm, G., Reutelingsperger, C. P. M., Strijkers, G. J., Nicolay, K., Annexin A5-functionalized bimodal lipid-based contrast agents for the detection of apoptosis (2006) Bioconjug. Chem., 17, pp. 741-749 Mulder, W. J. M., Strijkers, G. J., van Tilborg, G. A. F., Cormode, D. P., Fayad, Z. A., Nicolay, K., Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging (2009) Acc. Chem. Res., 42, pp. 904-914 Bull, S. R., Guler, M. O., Bras, R. E., Maede, T. J., Stupp, S. I., Self-assembled peptide amphiphile nanofibers conjugated to MRI contrast agents (2005) Nano Lett, 5, pp. 1-4 Anelli, P. L., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., L-glutamic acid and L-lysine as useful building blocks for the preparation of bifunctional DTPA-like ligands (1999) Bioconjug. Chem., 10, pp. 137-140 Ellmann, G. L., Tissue sulfhydryl groups (1959) Arch. Biochem. Biophys., 82, pp. 70-77 Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., How to measure and predict the molar absorption coefficient of a protein (1995) Protein Sci, 4, pp. 2411-2423 Wignall, G. D., Bates, F. S., Absolute calibration of small-angle neutron scattering data (1987) J. Appl. Crystallogr., 20, pp. 28-40 Torchilin, V. P., Omelyanenko, V. G., Papisov, M. I., Bogdanov, A. J., Trubetskoy, V. S., Herron, J. N., Gentry, C. A., Poly (ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity (1994) Biochim. Biophys. Acta, 119, pp. 11-20 Anelli, P. L., Lattuada, L., Lorusso, V., Schneider, M., Tournier, H., Uggeri, F., Mixed micelles containing lipophilic gadolinium complexes as MRA contrast agents (2001) Magn. Res. Mater. Phys. Biol. Med., 12, pp. 114-120 Chan, W. C., White, P. D., Fmoc Solid Phase Peptide Synthesis (2000), Oxford University Press: New YorkLackowicz, J. R., Principles of Fluorescence Spectroscopy (1983), Plenum Press: New YorkCaravan, P., Ellison, J. J., McMurry, T. J., Lauffer, R. B., Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications (1999) Chem. Rev., 99, pp. 2293-2352 Powell, D. H., Favre, M., Graeppi, N., Dhubhghaill, O. M. N., Pubanz, D., Merbach, A. E., Solution kinetic behaviour of lanthanide (III) polyamino carboxylates from O-17 NMR-studies (1995) J. Alloys Compd., 225, pp. 246-252}, document_type={Journal Article, }, affiliation={Department of Biological Sciences, CIRPeB, University of Naples Federico II, IBB CNR, Via Mezzocannone 16, 80134 Naples, Italy Department of Chemistry I.F.M., Molecular Imaging Centre, University of Turin, Via Nizza, 52, 10125 Turin, Italy Juelich Centre for Neutron Science, Lichtenbergstrasse 1, D 85747 Garching, Germany Helmholtz Zentrum Berlin, Glienicker Strasse 100, D-14109 Berlin, Germany}, ibbaffiliation={1}, } @article{IBB_ID_52328, author={Menchise V, Digilio G, Gianolio E, Cittadino E, Catanzaro V, Carrera C, Aime S}, title={In vivo labeling of B16 melanoma tumor xenograft with a thiol-reactive gadolinium based MRI contrast agent}, date={2011}, journal={Mol Pharm (ISSN: 1543-8384)}, year={2011}, fullvolume={445}, volume={445}, pages={1750--1756}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-80053467204&partnerID=40&md5=58be3c08f3896b3ce2a4f437b062956c}, abstract={Murine melanoma B16 cells display on the extracellular side of the plasma membrane a large number of reactive protein thiols (exofacial protein thiols, EPTs). These EPTs can be chemically labeled with Gd-DO3A-PDP, a Gd(III)-based MRI contrast agent bearing a 2-pyridinedithio chemical function for the recognition of EPTs. Uptake of gadolinium up to 10 9 Gd atoms per cell can be achieved. The treatment of B16 cells ex vivo with a reducing agent such as tris(2-carboxyethyl)phosphine (TCEP) results in an increase by 850% of available EPTs and an increase by 45% of Gd uptake. Blocking EPTs with N-ethylmaleimide (NEM) caused a decrease by 84% of available EPTs and a decrease by 55% of Gd uptake. The amount of Gd taken up by B16 cells is therefore dependent upon the availability of EPTs, whose actual level in turn changes according to the extracellular redox microenvironment. Then Gd-DO3A-PDP has been assessed for the labeling of tumor cells in vivo on B16.F10 melanoma tumor-bearing mice. Gd-DO3A-PDP (or Gd-DO3A as the control) has been injected directly into the tumor region at a dose level of 0.1 μmol and the signal enhancement in MR images followed over time. The washout kinetics of Gd-DO3A-PDP from tumor is very slow if compared to that of control Gd-DO3A, and 48 h post injection, the gadolinium-enhancement is still clearly visible. Therefore, B16 cells can be labeled ex vivo as well as in vivo according to a common EPTs-dependent route, provided that high levels of the thiol reactive probe can be delivered to the tumor. © 2011 American Chemical Society.}, keywords={Contrast Agent, Gadolinium, Melanoma, Microenvironment, Redox, Tumor, 2 Pyridinedithio, Contrast Medium, Gadoteridol, Gadoteridol Pdp, N Ethylmaleimide, Thiol Derivative, Tris(2 Carboxyethyl)phosphine, Unclassified Drug, Animal Cell, Animal Experiment, Animal Model, Article, Cell Membrane, Controlled Study, Drug Uptake, In Vivo Study, Mouse, Nonhuman, Nuclear Magnetic Resonance Imaging, Oxidation Reduction Reaction, Priority Journal, Signal Transduction, Tumor Xenograft, Biological Transport, Cell Line, Coordination Complexes, Injections, Intralesional, Kinetics, Ligands, Limit Of Detection, Inbred C57bl, N-Ethylmaleimide-Sensitive Proteins, Sulfhydryl Reagents, Sulfides, }, references={Gatenby, R.A., Gillies, R.J., Why do cancers have high aerobic glycolysis? (2004) Nature Reviews Cancer, 4 (11), pp. 891-899. , DOI 10.1038/nrc147 Rofstad, E.K., Microenvironment-induced cancer metastasis (2000) International Journal of Radiation Biology, 76 (5), pp. 589-605 Raghunand, N., Jagadish, B., Trouard, T.P., Galons, J.-P., Gillies, R.J., Mash, E.A., Redox-sensitive contrast agents for MRI based on reversible binding of thiols to serum albumin (2006) Magnetic Resonance in Medicine, 55 (6), pp. 1272-1280. , DOI 10.1002/mrm.20904 Jonas, C.R., Ziegler, T.R., Gu, L.H., Jones, D.P., Extracellular thiol/disulfide redox state affects proliferation rate in a human colon carcinoma (Caco2) cell line (2002) Free Radical Biology and Medicine, 33 (11), pp. 1499-1506. , DOI 10.1016/S0891-5849(02)01081-X, PII S089158490201081X Jonas, C.R., Gu, L.H., Nkabyo, Y.S., Mannery, Y.O., Avissar, N.E., Sax, H.C., Jones, D.P., Ziegler, T.R., Glutamine and KGF each regulate extracellular thiol/disulfide redox and enhance proliferation in Caco-2 cells (2003) Am. J. Physiol., 285, pp. 1421-R1429 Rehman, F., Shanmugasundaram, P., Schrey, M.P., Fenretinide stimulates redox-sensitive ceramide production in breast cancer cells: Potential role in drug-induced cytotoxicity (2004) British Journal of Cancer, 91 (10), pp. 1821-1828. , DOI 10.1038/sj.bjc.6602212 Prezioso, J.A., Shields, D., Wang, N., Rosenstein, M., Role of gamma-glutamyltranspeptidase-mediated glutathione transport on the radiosensitivity of B16 melanoma variant cell lines (1994) Int. J. Radiat. Oncol. Biol. Phys., 30, pp. 373-381 Paolicchi, A., Lorenzini, E., Perego, P., Supino, R., Zunino, F., Comporti, M., Pompella, A., Extra-cellular thiol metabolism in clones of human metastatic melanoma with different gamma-glutamyl transpeptidase expression: Implications for cell response to platinum-based drugs (2002) International Journal of Cancer, 97 (6), pp. 740-745. , DOI 10.1002/ijc.10110 Glunde, K., Gillies, R.J., Neeman, M., Bhujwalla, Z.M., (2010) Molecular Imaging: Principles and Practice, pp. 844-863. , Weissleder, R. Ross, B. D. Rehemtulla, A. Gambhir, S. S. Eds. PMPH-USA: Beijing Glunde, K., Pathak, A.P., Bhujwalla, Z.M., Molecular-functional imaging of cancer: To image and imagine (2007) Trends in Molecular Medicine, 13 (7), pp. 287-297. , DOI 10.1016/j.molmed.2007.05.002, PII S147149140700086X Penet, M.-F., Pathak, A.P., Raman, V., Ballesteros, P., Artemov, D., Bhujwalla, Z.M., Noninvasive Multiparametric Imaging of Metastasis-Permissive Microenvironments in a Human Prostate Cancer Xenograft (2009) Cancer Res., 69 (22), pp. 8822-8829 Neeman, M., Provenzale, J.M., Dewhirst, M.W., Magnetic resonance imaging applications in the evaluation of tumor angiogenesis (2001) Seminars in Radiation Oncology, 11 (1), pp. 70-82 Bhujwalla, Z.M., Artemov, D., Ballesteros, P., Cerdan, S., Gillies, R.J., Solaiyappan, M., Combined vascular and extracellular pH imaging of solid tumors (2002) NMR in Biomedicine, 15 (2), pp. 114-119. , DOI 10.1002/nbm.743 Garcia-Espinosa, M.A., Rodrigues, T.B., Sierra, A., Benito, M., Fonseca, C., Gray, H.L., Bartnik, B.L., Cerdan, S., Cerebral glucose metabolism and the glutamine cycle as detected by in vivo and in vitro 13C NMR spectroscopy (2004) Neurochemistry International, 45 (2-3), pp. 297-303. , DOI 10.1016/j.neuint.2003.08.014, PII S0197018603002845 Manzoor, A.A., Yuan, H., Palmer, G.M., Viglianti, B.L., Dewhirst, M.K., (2010) Molecular Imaging: Principles and Practice, pp. 756-780. , Weissleder, R. Ross, B. D. Rehemtulla, A. Gambhir, S. S. PMPH-USA: Beijing Cook, J.A., Gius, D., Wink, D.A., Krishna, M.C., Russo, A., Mitchell, J.B., Oxidative stress, redox, and the tumor microenvironment (2004) Seminars in Radiation Oncology, 14 (3), pp. 259-266. , DOI 10.1016/j.semradonc.2004.04.001, PII S1053429604000529 Groves, A.M., Win, T., Ben Haim, S., Ell, P.J., Non-[18F]FDG PET in clinical oncology (2007) Lancet Oncol., 8, pp. 822-830 Rischin, D., Hicks, R.J., Fisher, R., Binns, D., Corry, J., Porceddu, S., Peters, L.J., Prognostic significance of [ 18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: A substudy of Trans-Tasman Radiation Oncology Group study 98.02 (2006) Journal of Clinical Oncology, 24 (13), pp. 2098-2104. , DOI 10.1200/JCO.2005.05.2878 Eschmann, S.-M., Paulsen, F., Reimold, M., Dittmann, H., Welz, S., Reischl, G., MacHulla, H.-J., Bares, R., Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy (2005) Journal of Nuclear Medicine, 46 (2), pp. 253-260 Hyodo, F., Soule, B.P., Matsumoto, K.-I., Matsumoto, S., Cook, J.A., Hyodo, E., Sowers, A.L., Mitchell, J.B., Assessment of tissue redox status using metabolic responsive contrast agents and magnetic resonance Imaging (2008) J. Pharm. Pharmacol., 60 (8), pp. 1049-1060 Aime, S., Botta, M., Gianolio, E., Terreno, E., A p(O 2)-responsive MRI contrast agent based on the redox switch of manganese(II/III) - Porphyrin complexes (2000) Angewandte Chemie - International Edition, 39 (4), pp. 747-750. , DOI 10.1002/(SICI)1521-3773(20000218)39:4 3.0. CO Moriarty-Craige, S.E., Jones, D.P., Extracellular thiols and thiol/disulfide redox in metabolism (2004) Annual Review of Nutrition, 24, pp. 481-509. , DOI 10.1146/annurev.nutr.24.012003.132208 Schafer, F.Q., Buettner, G.R., Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple (2001) Free Radical Biology and Medicine, 30 (11), pp. 1191-1212. , DOI 10.1016/S0891-5849(01)00480-4, PII S0891584901004804 Ghezzi, P., Oxidoreduction of protein thiols in redox regulation (2005) Biochemical Society Transactions, 33 (6), pp. 1378-1381. , DOI 10.1042/BST20051378 Sahaf, B., Heydari, K., Herzenberg, L.A., Herzenberg, L.A., Lymphocyte surface thiol levels (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (7), pp. 4001-4005. , DOI 10.1073/pnas.2628032100 Digilio, G., Menchise, V., Gianolio, E., Catanzaro, V., Carrera, C., Napolitano, R., Fedeli, F., Aime, S., Exofacial protein thiols as a route for the internalization of Gd(III)-based complexes for MRI cell labelling (2010) J. Med. Chem., 53, pp. 4877-4890 Laragione, T., Gianazza, E., Tonelli, R., Bigini, P., Mennini, T., Casoni, F., Massignan, T., Ghezzi, P., Regulation of redox-sensitive exofacial protein thiols in CHO cells (2006) Biological Chemistry, 387 (10-11), pp. 1371-1376. , DOI 10.1515/BC.2006.172, PII BCHM38710111371 Jiang, X.-M., Fitzgerald, M., Grant, C.M., Hogg, P.J., Redox Control of Exofacial Protein Thiols/Disulfides by Protein Disulfide Isomerase (1999) J. Biol. Chem., 274, pp. 2416-2423 Laragione, T., Bonetto, V., Casoni, F., Massignan, T., Bianchi, G., Gianazza, E., Ghezzi, P., Redox regulation of surface protein thiols: Identification of integrin α-4 as a molecular target by using redox proteomics (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (25), pp. 14737-14741. , DOI 10.1073/pnas.2434516100 Digilio, G., Catanzaro, V., Fedeli, F., Gianolio, E., Menchise, V., Napolitano, R., Gringeri, C., Aime, S., Targeting exofacial protein thiols with GdIII complexes. An efficient procedure for MRI cell labelling (2009) Chem. Commun., pp. 893-895 Carrera, C., Digilio, G., Baroni, S., Burgio, D., Consol, S., Fedeli, F., Longo, D., Aime, S., Synthesis and characterization of a Gd(III) based contrast agent responsive to thiol containing compounds (2007) Dalton Transactions, (43), pp. 4980-4987. , DOI 10.1039/b705088g Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254 Crich, S.G., Biancone, L., Cantaluppi, V., Duo, D., Esposito, G., Russo, S., Camussi, G., Aime, S., Improved Route for the Visualization of Stem Cells Labeled with a Gd-/Eu-Chelate as Dual (MRI and Fluorescence) Agent (2004) Magnetic Resonance in Medicine, 51 (5), pp. 938-944. , DOI 10.1002/mrm.20072 Crich, S.G., Cabella, C., Barge, A., Belfiore, S., Ghirelli, C., Lattuada, L., Lanzardo, S., Aime, S., In vitro and in vivo magnetic resonance detection of tumor cells by targeting glutamine transporters with Gd-based probes (2006) Journal of Medicinal Chemistry, 49 (16), pp. 4926-4936. , DOI 10.1021/jm0601093 Deneke, S.M., Thiol-based antioxidants (2001) Curr. Top. Cell. Regul., 36, pp. 151-180 Andersson, A., Lendgren, A., Hultberg, B., Effect of thiol oxidation and thiol export from erythrocytes on determination of redox status of homocysteine and other thiols in plasma from healthy subjects and patients with cerebral infarction (1995) Clin. Chem., 41, pp. 361-366 Peters Jr., T., (1996) All about Albumin Biochemistry, Genetics and Medical Applications, , Academic Press: London Raghunand, N., Guntle, G.P., Gokhale, V., Nichol, G.S., Mash, E.A., Jagadish, B., Design, synthesis, and evaluation of 1,4,7,10-tetraazacyclododecane-1,4, 7-triacetic acid derived, redox-sensitive contrast agents for magnetic resonance imaging (2010) J. Med. Chem., 53, pp. 6747-6757}, document_type={Journal Article, }, affiliation={Institute for Biostructures and Bioimages (CNR), C/o Molecular Biotechnology Center (University of Turin), Via Nizza 52, I-10126 Torino, Italy Department of Environmental and Life Sciences, Università Del Piemonte Orientale A. Avogadro, Viale T. Michel 11, I-15121 Alessandria, Italy Department of Chemisty, IFM and Center for Molecular Imaging, University of Turin, Via Nizza 52, I-10126 Torino, Italy}, ibbaffiliation={1}, } @article{IBB_ID_8893, author={Digilio G, Menchise V, Gianolio E, Catanzaro V, Carrera C, Napolitano R, Fedeli F, Aime S}, title={Exofacial protein thiols as a route for the internalization of Gd(III)-based complexes for magnetic resonance imaging cell labeling}, date={2010 Jul 8}, journal={J Med Chem (ISSN: 0022-2623, 1520-4804, 0022-2623print)}, year={2010}, fullvolume={455}, volume={455}, pages={4877--4890}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-77954342954&partnerID=40&md5=a280f75ef2469a4e1e2f1c17dd0279c6}, abstract={Four novel MRI Gd(III)-based probes have been synthesized and evaluated for their labeling properties on cultured cell lines K562, C6, and B16. The labeling strategy relies upon the fact that cells display a large number of reactive exofacial protein thiols (EPTs) that can be exploited as anchorage points for suitably activated MRI probes. The probes are composed of a Gd(III) chelate (based on either DO3A or DTPA) connected through a flexible linker to the 2-pyridyldithio chemical function for binding to EPTs. GdDO3A-based chelates could efficiently label cells (up to a level of 1.2 × 1010 Gd(III) atoms/cell), whereas GdDTPA-based chelates showed poor or no cell labeling ability at all. Among the GdDO3A based compounds, that having the longest spacer (compound GdL1A) showed the best labeling efficacy. The mechanism of EPT mediated cell labeling by GdL1A involves probe internalization without sequestration of the Gd(III) chelate within subcellular structures such as endosomes. © 2010 American Chemical Society.}, keywords={Gadolinium, Gadolinium Chelate, Thiol, Article, Cell Culture, Cell Labeling, Endosome, Human, Human Cell, Internalization, Molecular Probe, Nuclear Magnetic Resonance Imaging, Structure Analysis, Animals, Chelating Agents, Contrast Media, Glioma, K562 Cells, Magnetic Resonance Spectroscopy, Melanoma, Experimental, Mice, Organometallic Compounds, Proteins, Spectrophotometry, Ultraviolet, Sulfhydryl Compounds, Chelating Agents Chemical Synthesis Chemistry Pharmacokinetics, Contrast Media Chemical Synthesis Chemistry Pharmacokinetics, Gadolinium Chemistry, Glioma Metabolism, Magnetic Resonance Imaging Methods, Experimental Metabolism, Organometallic Compounds Chemical Synthesis Chemistry Pharmacokinetics, Proteins Chemistry Metabolism, Sulfhydryl Compounds Chemistry Metabolism, }, references={Krestin, G.P., Bernsen, M.R., Molecular imaging in radiology: The latest fad or the new frontier? (2006) Eur. Radiol., 16, pp. 2383-238 Weissleder, R., Mahmood, U., Molecular imaging (2001) Radiology, 219, pp. 316-333 (2007) Molecular and Cellular MR-Imaging, , Modo, M. M. J. J. CRC Press: Boca Raton, FL Pathak, A.P., Gimi, B., Glunde, K., Ackerstaff, E., Artemov, D., Bhujwalla, Z.M., Molecular and functional imaging of cancer: Advances in MRI and MRS (2004) Methods Enzymol., 386, pp. 3-60 Aime, S., Cabella, C., Colombatto, S., Geninatti-Crich, S., Gianolio, E., Maggioni, F., Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations (2002) J. Magn. Reson. Imaging, 16, pp. 394-406 Muller, R.N., Roch, A., Colet, J.-M., Ouaksim, A., Gillis, P., Particulate Magnetic Constrast Agents (2001) The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, pp. 417-435. , Merbach, A. E. John Wiley & Sons: Chichester, U.K Bulte, J.W.M., Kraitchman, D.L., Iron oxide MR contrast agents for molecular and cellular imaging (2004) NMR Biomed., 17, pp. 484-499 Lewin, M., Carlesso, N., Tung, C.H., Tang, X.W., Cory, D., Scadden, D.T., Weissleder, R., Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells (2000) Nat. Biotechnol., 18, pp. 410-414 Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B., Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications (1999) Chem. Rev., 99, pp. 2293-2353 Wiener, E.C., Konda, S., Shadron, A., Brechbiel, M., Gansow, O., Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor (1997) Invest. Radiol., 32, pp. 748-754 Geninatti Crich, S., Cabella, C., Barge, A., Belfiore, S., Ghirelli, C., Lattuada, L., Lanzardo, S., Aime, S., In vitro and in vivo magnetic resonance detection of tumor cells by targeting glutamine transporters with Gd-based probes (2006) J. Med. Chem., 49, pp. 4926-4936 Biancone, L., Geninatti Crich, S., Cantaluppi, V., Mauriello Romanazzi, G., Russo, S., Scalabrino, E., Esposito, G., Camussi, G., Magnetic resonance imaging of gadolinium-labeled pancreatic islets for experimental transplantation (2007) NMR Biomed., 20, pp. 40-48 Terreno, E., Geninatti Crich, S., Belfiore, S., Biancone, L., Cabella, C., Esposito, G., Manazza, S.D., Aime, S., Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons (2006) Magn. Reson. Med., 55, pp. 491-497 Strijkers, G.J., Hak, S., Kok, M.B., Springer, C.S., Nicolay, K., Three-compartment T 1 relaxation model for intracellular paramagnetic contrast agents (2009) Magn. Reson. Med., 61, pp. 1049-1058 Endres, P.J., MacRenaris, K.W., Vogt, S., Meade, T.J., Cell-permeable MR contrast agents with increased intracellular retention (2008) Bioconjugate Chem., 19, pp. 2049-2059 Gianolio, E., Giovenzana, G.B., Ciampa, A., Lanzardo, S., Imperio, D., Aime, S., A novel method of cellular labeling: Anchoring MR-imaging reporter particles on the outer cell surface (2008) ChemMedChem, 3, pp. 60-62 Digilio, G., Catanzaro, V., Fedeli, F., Gianolio, E., Menchise, V., Napolitano, R., Gringeri, C., Aime, S., Targeting exofacial protein thiols with Gd-III complexes. An efficient procedure for MRI cell labeling (2009) Chem. Commun., pp. 893-895 Carrera, C., Digilio, G., Baroni, S., Burgio, D., Consol, S., Fedeli, F., Longo, D., Aime, S., Synthesis and characterization of a Gd(III) based contrast agent responsive to thiol containing compounds (2007) Dalton Trans., pp. 4980-4987 Laragione, T., Gianazza, E., Tonelli, R., Bigini, P., Mennini, T., Casoni, F., Massignan, T., Ghezzi, P., Regulation of redox-sensitive exofacial protein thiols in CHO cells (2006) Biol. Chem., 387, pp. 1371-1376 Sahaf, B., Heydari, K., Herzenberg, L.A., Herzenberg, L.A., Lymphocyte surface thiol levels (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 4001-4005 Jiang, X.-M., Fitzgerald, M., Grant, C.M., Hogg, P.J., Redox control of exofacial protein thiols/disulfides by protein disulfide isomerase (1999) J. Biol. Chem., 274, pp. 2416-2423 Laragione, T., Sonetto, V., Casoni, F., Massignan, T., Bianchi, G., Gianazza, E., Ghezzi, P., Redox regulation of surface protein thiols: Identification of integrin α-4 as a molecular target by using redox proteomics (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 14737-14741 Dominici, S., Valentini, M., Maellaro, E., Del Bello, B., Paolicchi, A., Lorenzini, E., Tongiani, R., Pompella, A., Redox modulation of cell surface protein thiols in U937 lymphoma cells: The role of the γ-glutamyl transpeptidase dependent H2O 2 production and S-thiolation (1999) Free Radical Biol. Med., 27, pp. 623-635 Anelli, P.S., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., L -Glutamic acid and l -lysine as useful building blocks for the preparation of bifunctional DTPA-like ligands (1999) Bioconjugate Chem., 10, pp. 137-140 Cabella, C., Geninatti Crich, S., Corpillo, D., Barge, A., Ghirelli, C., Bruno, E., Lorusso, V., Aime, S., Cellular labeling with Gd(III) chelates: Only high thermodynamic stabilities prevent the cells acting as sponges of Gd3+ ions (2006) Contrast Media Mol. Imaging, 1, pp. 23-29 Banci, L., Bertini, I., Luchinat, C., (1991) Nuclear and Electronic Relaxation, , VCH: Weinheim, Germany Aime, S., Geninatti Crich, S., Gianolio, E., Giovenzana, G.B., Tei, L., Terreno, E., High sensitivity lanthanide(III) based probes for MR-medical imaging (2006) Coord. Chem. Rev., 250, pp. 1562-1579 Aime, S., Gianolio, E., Terreno, E., Giovenzana, G.B., Pagliarin, R., Sisti, M., Palmisano, G., Parker, D., Ternary Gd(III)L-HSA adducts: Evidence for the replacement of inner-sphere water molecules by coordinating groups of the protein. Implications for the design of contrast agents for MRI (2000) JBIC, J. Biol. Inorg. Chem., 5, pp. 488-497 Aime, S., Botta, M., Geninatti Crich, S., Giovenzana, G., Pagliarin, R., Sisti, M., Terreno, E., NMR relaxometric studies of Gd(III) complexes with heptadentate macrocyclic ligands (1998) Magn. Reson. Chem., 36, pp. S200-S208 Powell, D.H., Ni Dhubhghaill, O.M., Pubanz, D., Helm, L., Lebedev, Y.S., Schlaepfer, W., Merbach, A.E., Structural and dynamic parameters obtained from O-17 NMR, EPR, and NMRD studies of monomeric and dimeric Gd3+ complexes of interest in magnetic resonance imaging: An integrated and theoretically self consistent approach (1996) J. Am. Chem. Soc., 118, pp. 9333-9346 Botta, M., Aime, S., Barge, A., Bobba, G., Dickins, R.S., Parker, D., Terreno, E., Ternary complexes between cationic Gd(III) chelates and anionic metabolites in acqueous solution: An NMR relaxometric study (2003) Chem.-Eur. J., 9, pp. 2102-2109 Terreno, E., Botta, M., Boniforte, P., Bracco, C., Milone, L., Mondino, B., Uggeri, F., Aime, S., A multinuclear NMR relaxometry study of ternary adducts formed between heptadentate Gd(III) chelates and l -lactate (2005) Chem.-Eur. J., 11, pp. 5531-5537 Hogg, P.J., Disulfide bonds as switches for protein function (2003) Trends Biochem. Sci., 28, pp. 211-214 Go, Y.-M., Jones, D.P., Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state (2005) Circulation, 111, pp. 2973-2980 Ghezzi, P., Oxidoreduction of protein thiols in redox regulation (2005) Biochem. Soc. Trans., 33, pp. 1378-1381 Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254 Krestin, G. P., Bernsen, M. R., Molecular imaging in radiology: The latest fad or the new frontier? (2006) Eur. Radiol., 16, pp. 2383-238 (2007) Molecular and Cellular MR-Imaging, , Modo, M. M. J. J. Pathak, A. P., Gimi, B., Glunde, K., Ackerstaff, E., Artemov, D., Bhujwalla, Z. M., Molecular and functional imaging of cancer: Advances in MRI and MRS (2004) Methods Enzymol., 386, pp. 3-60 Muller, R. N., Roch, A., Colet, J. -M., Ouaksim, A., Gillis, P., Particulate Magnetic Constrast Agents (2001) The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, pp. 417-435. , Merbach, A. E. Bulte, J. W. M., Kraitchman, D. L., Iron oxide MR contrast agents for molecular and cellular imaging (2004) NMR Biomed., 17, pp. 484-499 Wiener, E. C., Konda, S., Shadron, A., Brechbiel, M., Gansow, O., Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor (1997) Invest. Radiol., 32, pp. 748-754 Strijkers, G. J., Hak, S., Kok, M. B., Springer, C. S., Nicolay, K., Three-compartment T 1 relaxation model for intracellular paramagnetic contrast agents (2009) Magn. Reson. Med., 61, pp. 1049-1058 Endres, P. J., MacRenaris, K. W., Vogt, S., Meade, T. J., Cell-permeable MR contrast agents with increased intracellular retention (2008) Bioconjugate Chem., 19, pp. 2049-2059 Jiang, X. -M., Fitzgerald, M., Grant, C. M., Hogg, P. J., Redox control of exofacial protein thiols/disulfides by protein disulfide isomerase (1999) J. Biol. Chem., 274, pp. 2416-2423 Anelli, P. S., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., L -Glutamic acid and l -lysine as useful building blocks for the preparation of bifunctional DTPA-like ligands (1999) Bioconjugate Chem., 10, pp. 137-140 Powell, D. H., Ni Dhubhghaill, O. M., Pubanz, D., Helm, L., Lebedev, Y. S., Schlaepfer, W., Merbach, A. E., Structural and dynamic parameters obtained from O-17 NMR, EPR, and NMRD studies of monomeric and dimeric Gd3+ complexes of interest in magnetic resonance imaging: An integrated and theoretically self consistent approach (1996) J. Am. Chem. Soc., 118, pp. 9333-9346 Hogg, P. J., Disulfide bonds as switches for protein function (2003) Trends Biochem. Sci., 28, pp. 211-214 Go, Y. -M., Jones, D. P., Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state (2005) Circulation, 111, pp. 2973-2980 Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254}, document_type={Journal Article, Research Support, Non-U. S. Gov'T, }, affiliation={Department of Environmental and Life Sciences, University of Eastern Piedmont A. Avogadro, Viale T. Michel 11, I-15121 Alessandria, Italy Institute for Biostructures and Bioimages (CNR), C/o Molecular Biotechnology Center, University of Turin, Via Nizza 52, I-10125 Torino, Italy Department of Chemisty, IFM and Center for Molecular Imaging, University of Turin, Via Nizza 52, I-10125 Torino, Italy}, ibbaffiliation={1}, } @article{IBB_ID_9046, author={Accardo A, Tesauro D, Morisco A, Mangiapia G, Vaccaro M, Gianolio E, Heenan RK, Paduano L, Morelli G}, title={Micelles obtained by aggregation of gemini surfactants containing the CCK8 peptide and a gadolinium complex}, date={2009 May}, journal={J Biol Inorg Chem (ISSN: 0949-8257, 1432-1327electronic, 0949-8257linking)}, year={2009}, fullvolume={395}, volume={395}, pages={587--599}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-67349182328&partnerID=40&md5=4f8b53d13714fb99ae7fe465b22bc510}, abstract={Two gemini surfactants, [C18CysL5CCK8]2 and [C18CysDTPAGlu] 2, containing, respectively, the CCK8 peptide and the DTPAGlu chelating agent or its gadolinium complex have been prepared by linking lipophilic chains through a disulfide bond between two cysteine residues. The two surfactants aggregate in water solution forming pure or mixed micelles, with a critical micellar concentration in the 5 × 10-6-5 × 10-5 mol kg-1 range, as measured by fluorescence spectroscopy. As indicated by small-angle neutron scattering, the shape and size of the micelles are influenced by the temperature: increasing temperature leads to progressive reduction of the size of the supramolecular aggregates. Cylindrical structures found at lower temperatures (10-40 °C) evolve into ellipsoidal micelles at 50-80 °C. Furthermore, the surface-exposed CCK8 peptide changes its conformation above a transition temperature of approximately 45 °C, going from a β-sheet to a random-coil structure, as indicated by circular dichroism measurements. The mixed aggregate obtained by coaggregation of the two gemini-based amphiphilic compounds, [C18CysDTPAGlu(Gd)]2 and [C18CysL5CCK8]2 in 70:30 molar ratio, represents the first example of a peptide-containing gemini surfactant as a potential target-selective contrast agent in MRI. In fact, it presents a high relaxivity value of the gadolinium complex, 21.5 mM-1 s -1, and the CCK8 bioactive peptide exposed on the external surface is therefore capable of selective targeting of the cholecystokinin receptors. © 2009 SBIC.}, keywords={Amphiphilic Gadolinium Complexes, Cck8 Peptide, Micelles, Peptide Gemini Surfactant, Small-Angle Neutron Scattering, Chelating Agent, Cholecystokinin, Contrast Medium, Cysteine, Unclassified Drug, Article, Beta Sheet, Chemical Structure, Circular Dichroism, Concentration (parameters), Conformational Transition, Controlled Study, Disulfide Bond, Fluorescence Spectroscopy, Lipophilicity, Molecular Size, Nuclear Magnetic Resonance Imaging, Priority Journal, Temperature, Molecular Structure, Biomolecular, Peptide Fragments, Protein Conformation, Surface-Active Agents, }, references={Caravan, P., Ellison, J., Lauffer, R., (1999) Chem Rev, 99, pp. 2293-235 Meade, T.J., Taylor, A.K., Bull, S.R., (2003) Curr Opin Neurobiol, 13, pp. 597-602 Toth, E., Helm, L., Merbach, A.E., (2001) The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, 1st Edn., pp. 45-120. , Wiley, London Aime, S., Botta, M., Fasano, M., Terreno, E., (1998) Chem Soc Rev, 27, pp. 19-29 Weinmann, H.J., (2000) Methods in Biomedical Magnetic Resonance. Imaging and Spectroscopy, , Wiley, Chichester Banci, L., Bertini, I., Luchinat, C., (1991) Nuclear and Electronic Relaxation, , VCH, Weinheim Laus, S., Sour, A., Ruloff, R., Toth, E., Merbach, A.E., (2005) Chem Eur J, 11, pp. 3064-3076 Nasongkla, N., Bey, E., Ren, J., Ai, H., Khemtong, C., Guthi, J.S., Chin, S.-F., Gao, J., (2006) Nano Lett, 6, pp. 2427-2430 Dirksen, A., Langereis, S., De Waal, B.F.M., Van Genderen, M.H.P., Hackeng, T.M., Meijer, E.W., (2005) Chem Commun, pp. 2811-2813 Toth, E., Bolskar, R.D., Borel, A., Gonzalez, G., Helm, L., Merbach, A.E., Sitharaman, B., Wilson, L.J., (2005) J Am Chem Soc, 127, pp. 799-805 Accardo, A., Tesauro, D., Roscigno, P., Gianolio, E., Paduano, L., D'Errico, G., Pedone, C., Morelli, G., (2004) J Am Chem Soc, 126, pp. 3097-3107 Gløgård, C., Stensrud, G., Hovland, R., Fossheim, S.L., Klaveness, J., (2002) Int J Pharm, 233, pp. 131-140 Nasongkla, N., Shuai, X., Ai, H., Weinberg, B.D., Pink, J., Boothman, D.A., Gao, J., (2004) Angew Chem Int Ed, 43, pp. 6323-6327 Li, K., Bednarski, M.D., (2002) J Magn Reson Imaging, 16, pp. 388-393 Reubi, J.C., (2003) Endocr Rev, 24, pp. 389-427 Tesauro, D., Accardo, A., Gianolio, E., Paduano, L., Teixeira, J., Schillen, K., Aime, S., Morelli, G., (2007) Chembiochem, 8, pp. 950-955 Vaccaro, M., Mangiapia, G., Paduano, L., Gianolio, E., Accardo, A., Tesauro, D., Morelli, G., (2007) Chemphyschem, 8, pp. 2526-2538 Wank, S.A., (1995) Am J Physiol Gastrointest Liver Physiol, 269, pp. 628-G646 Menger, F.M., Littau, C.A., (1991) J Am Chem Soc, 113, pp. 1451-1452 Zana, R., (2002) Adv Colloid Interface Sci, 97, pp. 205-253 Jennings, K., Marshall, I., Birrell, H., Edwards, A., Haskins, N., Sodermann, O., Kirby, A.J., Camilleri, P., (1998) Chem Commun, 18, pp. 1951-1952 Camilleri, P., Kremer, A., Edwards, A.J., Jennings, K.H., Jenkins, O., Marshall, I., McGregor, C., Kirby, A.J., (2000) Chem Commun, 14, pp. 1253-1254 Ronsin, G., Kirby, A.J., Rittenhouse, S., Woodnutt, G., Camilleri, P.J., (2002) Chem Soc Perkin Trans, 2, pp. 1302-1306 Lowik, D.W., Garcia-Hartjes, J., Meijer, J.T., Van Hest, J.C.M., (2005) Langmuir, 21, pp. 524-526 Hamley, I.W., Ansari, I.A., Castelletto, V., Nuhn, H., Rosler, A., Klok, H.A., (2005) Biomacromolecules, 6, pp. 1310-1315 Gorski, N., Kalus, J., (2001) Langmuir, 17, pp. 4211-4215 Bott, R., Wolff, T., Zierold, K., (2002) Langmuir, 18, pp. 2004-2012 Chang, W.C., White, P.D., (2000) Fmoc Solid Phase Peptide Synthesis, , Oxford University Press, New York Ellmann, G.L., (1959) Arch Biochem Biophys, 82, pp. 70-77 Barge, A., Cravotto, G., Gianolio, E., Fedeli, F., (2006) Contrast Med Mol Imaging, 1, pp. 184-188 Diwu, Z., Lu, Y., Zhang, C., Klaubert, D.H., Haugland, R.P., (1997) Photochem Photobiol, 66, pp. 424-431 Menger, F.M., (1979) Acc Chem Res, 12, pp. 111-117 Zana, R., (2002) Langmuir, 18 (20), pp. 7759-7760 Menger, F.M., Jerkumica, J.M., Jhonston, J.C., (1978) J Am Chem Soc, 100, pp. 4676-4678 Mangiapia, G., Accardo, A., Lo Celso, F., Tesauro, D., Morelli, G., Radulescu, A., Paduano, L., (2004) J Phys Chem B, 108, pp. 17611-17617 Underfriend, S., Meienhofer, J., (1985) The Peptides, 7. , IHruby VJ (ed) Academic Press, New York Pellegrini, M., Mierke, D.F., (1999) Biochemistry, 38, pp. 14775-14783 Moroder, L., D'Ursi, A., Picone, D., Amodeo, P., Temussi, P.A., (1993) Biochem Biophys Res Commun, 190 (3), pp. 741-746 Radulescu, A., Mathers, R.T., Coates, G.W., Richter, D., Fetters, L., (2004) Macromolecules, 37, pp. 6962-6971 Kotlarchyk, M., Chen, S.H., (1983) J Chem Phys, 79, pp. 2461-2469 Nicolle, G.M., Toth, E., Eisenwiener, K.P., MacKe, H.R., Merbach, A.E., (2002) J Biol Inorg Chem, 7, pp. 757-769 Delli Castelli, D., Gianolio, E., Geninatti Crich, S., Terreno, E., Aime, S., (2008) Coord Chem Rev, 252, pp. 2424-2443 Powell, D.H., Ni Dhubhghaill, O.M., Pubanz, D., Helm, L., Lebedev, Y.S., Schlaepfer, V., Merbach, A.E., (1996) J Am Chem Soc, 118, pp. 9333-9346 Lipari, G., Szabo, A., (1982) J Am Chem Soc, 104, pp. 4546-4559 Nicolle, G.M., Helm, L., Merbach, A.E., (2003) Magn Reson Chem, 41, pp. 794-799 Torchilin, V.P., (2005) Nat Rev Drug Discov, 4, pp. 145-154 Rjmge, B., Mulder, W.J.M., Nicolay, K., Mayo, K.H., Vljl, T., Griffioen, A.W., (2007) Bioconjug Chem, 18, pp. 785-792 Reubi, J.C., Schaer, J.C., Waser, B., (1997) Cancer Res, 57, pp. 1377-1386 Anelli, P.L., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., (1999) Bioconjug Chem, 10, pp. 137-140 Edelhoch, H., (1967) Biochemistry, 6, pp. 1948-1954 Pace, C.N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., (1995) Protein Sci, 4, pp. 2411-2423 Birdi, K.S., Singh, H.N., Dalsager, S.U., (1979) J Phys Chem, 83, pp. 2733-2737 De Vendittis, E., Palumbo, G., Parlato, G., Bocchini, V., (1981) Anal Biochem, 115, pp. 278-286 Heenan, R.K., Penfold, J., King, S.M., (1997) J Appl Crystallogr, 30, pp. 1140-1147 Meade, T. J., Taylor, A. K., Bull, S. R., (2003) Curr Opin Neurobiol, 13, pp. 597-602 Weinmann, H. J., (2000) Methods in Biomedical Magnetic Resonance. Imaging and Spectroscopy, , Wiley, Chichester Gl g rd, C., Stensrud, G., Hovland, R., Fossheim, S. L., Klaveness, J., (2002) Int J Pharm, 233, pp. 131-140 Reubi, J. C., (2003) Endocr Rev, 24, pp. 389-427 Wank, S. A., (1995) Am J Physiol Gastrointest Liver Physiol, 269, pp. 628-G646 Menger, F. M., Littau, C. A., (1991) J Am Chem Soc, 113, pp. 1451-1452 Lowik, D. W., Garcia-Hartjes, J., Meijer, J. T., Van Hest, J. C. M., (2005) Langmuir, 21, pp. 524-526 Hamley, I. W., Ansari, I. A., Castelletto, V., Nuhn, H., Rosler, A., Klok, H. A., (2005) Biomacromolecules, 6, pp. 1310-1315 Chang, W. C., White, P. D., (2000) Fmoc Solid Phase Peptide Synthesis, , Oxford University Press, New York Ellmann, G. L., (1959) Arch Biochem Biophys, 82, pp. 70-77 Menger, F. M., (1979) Acc Chem Res, 12, pp. 111-117 Menger, F. M., Jerkumica, J. M., Jhonston, J. C., (1978) J Am Chem Soc, 100, pp. 4676-4678 Nicolle, G. M., Toth, E., Eisenwiener, K. P., MacKe, H. R., Merbach, A. E., (2002) J Biol Inorg Chem, 7, pp. 757-769 Powell, D. H., Ni Dhubhghaill, O. M., Pubanz, D., Helm, L., Lebedev, Y. S., Schlaepfer, V., Merbach, A. E., (1996) J Am Chem Soc, 118, pp. 9333-9346 Nicolle, G. M., Helm, L., Merbach, A. E., (2003) Magn Reson Chem, 41, pp. 794-799 Torchilin, V. P., (2005) Nat Rev Drug Discov, 4, pp. 145-154 Reubi, J. C., Schaer, J. C., Waser, B., (1997) Cancer Res, 57, pp. 1377-1386 Anelli, P. L., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., (1999) Bioconjug Chem, 10, pp. 137-140 Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., (1995) Protein Sci, 4, pp. 2411-2423 Birdi, K. S., Singh, H. N., Dalsager, S. U., (1979) J Phys Chem, 83, pp. 2733-2737 Heenan, R. K., Penfold, J., King, S. M., (1997) J Appl Crystallogr, 30, pp. 1140-1147}, document_type={Journal Article, }, affiliation={Department of Biological Sciences and IBB CNR, CIRPeB, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy Department of Chemistry CSGI, Consorzio Interuniversitario per Lo Sviluppo dei Sistemi A Grande Interfase, University of Naples Federico II, Via Cynthia, 80126 Naples, Italy ISIS-CLRC, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, United Kingdom}, ibbaffiliation={1}, } @article{IBB_ID_9119, author={Morisco A, Accardo A, Gianolio E, Tesauro D, Benedetti E, Morelli G}, title={Micelles derivatized with octreotide as potential target-selective contrast agents in MRI}, date={2009 Mar}, journal={J Pept Sci (ISSN: 1075-2617, 1099-1387, 1075-2617print)}, year={2009}, fullvolume={356}, volume={356}, pages={242--250}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-63449132697&partnerID=40&md5=96d23947eb6096e65d2ffb3e1ec9f7e7}, abstract={New amphiphilic monomers (OCA-DTPAGlu and OCA-DOTA) containing, in the same molecule, three different functions: (i) the chelating agent (DTPAGlu or DOTA) able to coordinate gadolinium ion, (ii) the octreotide bioactive peptide able to target somatostatin receptors, and (iii) a hydrophobic moiety with two 18-carbon atoms alkyl chains have been designed and synthesized by solid-phase methods. The novel amphiphilic monomers aggregate, in water solution, giving stable micelles at very low concentration (cmc values of 2.3 × 10-6 mol kg-1 and 2.5 × 10-6 mol kg-1 for OCA-DTPAGlu and OCA-DOTA, respectively) as confirmed by fluorescence spectroscopy. Fluorescence studies and circular dichroism experiments indicate, for the two compounds as well as for their gadolinium complexes (OCA-DOTA(Gd) and OCA-DTPAGlu(Gd)), the complete exposure of octreotide on the micelle surface, and the predominant presence of an antiparallel β-sheet peptide conformation characterized by a β-like turn. The high relaxivity value (r1p = 13.9mM-1 s-1 at 20 MHz and 25 °C), measured for micelles obtained by the gadolinium complex OCA-DTPAGlu(Gd), indicates these aggregates as promising target-selective magnetic resonance imaging (MRI) contrast agents. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.}, keywords={Fluorescence Spectroscopy And Circular Dichroism, Micelles, Mri Contrast Agent, Octreotide, Nuclear Magnetic Resonance Imaging Agent, 10 Tetraazacyclododecane 1, 10 Tetraacetic Acid, 10 Tetraacetic Acid Gadolinium, Octreotide Pentetic Acid Glutamate, Octreotide Pentetic Acid Glutamate Gadolinium, Unclassified Drug, Contrast Medium, Article, Beta Sheet, Derivatization, Drug Design, Drug Structure, Drug Synthesis, Priority Journal, Solid Phase Synthesis, Chemical Structure, Chemistry, Methodology, Oxalis Tuberosa, Molecular Structure, }, references={Brazeau, P., Vale, W., Burgus, R., Ling, N., Butcher, M., Rivier, J., Guillemin, R., Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone (1973) Science, 179, pp. 77-7 Bell, G., Reisine, T., Molecular biology of somatostatin receptors (1993) Trends Neurosci, 16, pp. 34-38 Reubi, J.C., Horisberger, U., Laissue, J., High density of somatostatin receptors in veins surrounding human cancer tissue: Role in tumour host interaction? (1994) Int. J. Cancer, 56, pp. 681-688 Reubi, J.C., Schaer, J.C., Waser, B., Mengod, G., Expression and localization of somatostatin receptor SSTR1, SSTR2, and SSTR3 messenger RNAs in primary human tumors using in situ hybridization (1994) Cancer Res, 54, pp. 3455-3459 Patel, Y.C., Wheatley, T., In vivo and in vitro plasma disappearance of somatostatin-14 and somatostatin-28 in the rat (1983) Endocrinology, 112, pp. 220-225 Lamberts, S.W.J., Octreotide: The Next Decade (1999) BioScientifica, , Bristol Bauer, W., Briner, U., Doepfner, W., SMS 201-995: A very potent and selective octapeptide analogue of somatostatin with prolonged action (1982) Life Sci, 31, pp. 1133-1140 Veber, D.F., Freidinger, R.M., Schwenk-Perlow, D., Paleveda Jr, W.J., Holly, F.W., Strachan, R.G., Nurr, R.F., Hirschmann, R., A potent cyclic hexapeptide analogue of somatostatin (1981) Nature, 292, pp. 55-58 Patel, C.Y., Somatostatin and its receptor family (1999) Front. Neuroendocrinol. Rev, 20, pp. 157-198 Hofland, L.J., Internalization of [DOTA,125I-Tyr3]octreotide by somatostatin receptor-positive cells in vitro and in vivo: Implications for somatostatin receptor-targeted radio-guided surgery (1999) Proc.Assoc. Am. Phys, 111, pp. 63-69 Huang, C.M., Wu, Y.T., Chen, S.T., Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis (2000) Chem. Biol, 7, pp. 453-461 Mier, W., Eritja, R., Ashour, M., Haberkorn, U., Eisenhut, M., Peptide-PNA conjugates targeted transport of antisense therapeutics into tumours (2003) Angew. Chem., Int. Ed. Engl, 42, pp. 1968-1971 Lamberts, S.W.J., Krenning, E.P., Reubi, J.C., The role of somatostatin and its analogs in the diagnosis and treatment of tumors (1991) Endocrinol. Rev, 12, pp. 450-482 Krenning, E.P., Kwekkeboom, D.J., Pauwels, S., Kvols, L.K., Reubi, J.C., Somatostatin receptor scintigraphy (1995) Nucl. Med. Annu, pp. 1-50 Reubi JC, Waser B, Schaer JC, Laissue JA. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur. J. Nucl. Med. 2001 28: 836-846, Erratum in Eur. J. Nucl. Med. 2001 28: 1433Froidevaux, S., Eberle, A.N., Somatostatin analogues and radiopeptides in cancer therapy (2002) Biopolymers (Pept. Sci.), 66, pp. 161-183 Andre, J.P., Toth, E., Fischer, H., Seelig, A., Maecke, H.R., Merbach, A.E., High relaxivity for monomeric Gd(DOTA)-Based MRI contrast agents, thanks to micellar self-organization (1999) Chem. - Eur. J, 5, pp. 2977-2983 Gløgård, C., Stensrud, G., Hovland, R., Fossheim, S.L., Klaveness, J., Liposomes as carriers of amphiphilic gadolinium chelates: The affect of membrane composition on incorporation efficacy and in vitro relaxivity (2002) Int. J. Pharm, 233, pp. 131-140 Mulder, W.J.M., Strijkers, G.J., Griffioen, A.W., Van Bloois, L., Molema, G., Storm, G., Koning, A., Nicolay, K., A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets (2004) Bioconjugate Chem, 15, pp. 799-806 Accardo, A., Tesauro, D., Roscigno, P., Gianolio, E., Paduano, L., D'Errico, G., Pedone, C., Morelli, G., Physicochemical properties of mixed micellar aggregates containing CCK peptides and Gd complexes designed as tumor specific contrast agents in MRI (2004) J. Am. Chem. Soc, 126, pp. 3097-3107 Vaccaro, M., Mangiapia, G., Paduano, L., Gianolio, E., Accardo, A., Tesauro, D., Morelli, G., Structural and relaxometric Characterization peptide aggregates containing gadolinium complexes as potential selective contrastagents in MRI (2007) ChemPhysChem, 8, pp. 2526-2538 Wang, Q., Graham, K., Schauer, T., Fietz, T., Mohammed, A., Liu, X., Hoffend, J., Mier, W., Pharmacological properties of hydrophilic and lipophilic derivatives of octreotate (2004) Nucl. Med. Biol, 31, pp. 21-30 Torchilin, V.P., Omelyanenko, V.G., Papisov, M.I., Bogdanov, A.J., Trubetskoy, V.S., Herron, J.N., Gentry, C.A., Poly(ethylene glycol) on the liposome surface: On the mechanism of polymer-coated liposome longevity (1994) Biochim. Biophys. Acta, 119, pp. 11-20 Chang, W.C., White, P.D., (2000) Fmoc Solid Phase Peptide Synthesis, , Oxford University Press: New York,USA Birdi, K.S., Singh, H.N., Dalsager, S.U., Interaction of ionic micelles with the hydrophobic fluorescent probe 1-anilino-8-naphthalenesulfonate (1979) J. Phys. Chem, 83, pp. 2733-2737 Morag, O., Ahmad, A., Kamaly, N., Perouzel, E., Caussin, A., Keller, M., Herlihy, A., Jorgensen, M.R., MAGfect: A novel liposome formulation for MRI labelling and visualization of cells (2006) Org. Biomol. Chem, 4, pp. 3489-3497 Wynants, C., Van Binst, G., Loosli, H.R., SMS 201-995, a very potent analogue of somatostatin. Assignment of the 1H 500 MHz NMR spectra and conformational analysis in aqueous solution (1985) Int. J. Pept. Protein Res, 25, pp. 608-614 Pohl, E., Heine, A., Sheldrick, G.M., Dauter, Z., Wilson, K.S., Kallen, J., Huber, W., Pfaefli, P.J., Structure of octreotide, a somatostatin analogue (1995) Acta Crystallogr, D51, pp. 48-59 Lackowicz, J.R., (1983) Principles of Fluorescence Spectroscopy, , Plenum Press: New York Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B., Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics and applications (1999) Chem. Rev. (Washington, DC), 99, pp. 2293-2352 Bloembergen, N., Morgan, L.O., Proton relaxation times in paramagnetic solutions. Effects of electron spin relaxation (1961) J. Chem. Phys, 34, pp. 842-850 Lipari, G., Szabo, A., Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity (1982) J. Am. Chem. Soc, 104, pp. 4546-4559 Anelli, P.L., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., L-glutamic acid and L-Lysine as Useful Building Blocks for the Preparation of Bifunctional DTPA-like Ligands (1999) Bioconjugate Chem, 10, pp. 137-140 Schmitt, L., Dietrich, C., Synthesis and characterization of chelator-lipids for reversible immobilization of engineered proteins at self-assembled lipid interfaces (1994) J. Am. Chem. Soc, 116, pp. 8485-8491 Ellmann, G.L., Tissue sulfhydryl groups (1959) Arch. Biochem. Biophys, 82, pp. 70-77 Edelhoch, H., Spectroscopic determination of tryptophan and tyrosine in proteins (1967) Biochemistry, 6, pp. 1948-1954 Pace, C.N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., How to measure and predict the molar absorption coefficient of a protein (1995) Protein Sci, 4, pp. 2411-2423 De Vendittis, E., Palumbo, G., Parlato, G., Bocchini, V., A fluorimetric method for the estimation of the critical micelle concentration of surfactants (1981) Anal. Biochem, 115, pp. 278-286 Reubi, J. C., Horisberger, U., Laissue, J., High density of somatostatin receptors in veins surrounding human cancer tissue: Role in tumour host interaction? (1994) Int. J. Cancer, 56, pp. 681-688 Reubi, J. C., Schaer, J. C., Waser, B., Mengod, G., Expression and localization of somatostatin receptor SSTR1, SSTR2, and SSTR3 messenger RNAs in primary human tumors using in situ hybridization (1994) Cancer Res, 54, pp. 3455-3459 Patel, Y. C., Wheatley, T., In vivo and in vitro plasma disappearance of somatostatin-14 and somatostatin-28 in the rat (1983) Endocrinology, 112, pp. 220-225 Lamberts, S. W. J., Octreotide: The Next Decade (1999) BioScientifica, , Bristol Veber, D. F., Freidinger, R. M., Schwenk-Perlow, D., Paleveda Jr, W. J., Holly, F. W., Strachan, R. G., Nurr, R. F., Hirschmann, R., A potent cyclic hexapeptide analogue of somatostatin (1981) Nature, 292, pp. 55-58 Patel, C. Y., Somatostatin and its receptor family (1999) Front. Neuroendocrinol. Rev, 20, pp. 157-198 Hofland, L. J., Internalization of [DOTA, 125I-Tyr3] octreotide by somatostatin receptor-positive cells in vitro and in vivo: Implications for somatostatin receptor-targeted radio-guided surgery (1999) Proc. Assoc. Am. Phys, 111, pp. 63-69 Huang, C. M., Wu, Y. T., Chen, S. T., Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis (2000) Chem. Biol, 7, pp. 453-461 Krenning, E. P., Kwekkeboom, D. J., Pauwels, S., Kvols, L. K., Reubi, J. C., Somatostatin receptor scintigraphy (1995) Nucl. Med. Annu, pp. 1-50 Andre, J. P., Toth, E., Fischer, H., Seelig, A., Maecke, H. R., Merbach, A. E., High relaxivity for monomeric Gd (DOTA) -Based MRI contrast agents, thanks to micellar self-organization (1999) Chem. - Eur. J, 5, pp. 2977-2983 Gl g rd, C., Stensrud, G., Hovland, R., Fossheim, S. L., Klaveness, J., Liposomes as carriers of amphiphilic gadolinium chelates: The affect of membrane composition on incorporation efficacy and in vitro relaxivity (2002) Int. J. Pharm, 233, pp. 131-140 Mulder, W. J. M., Strijkers, G. J., Griffioen, A. W., Van Bloois, L., Molema, G., Storm, G., Koning, A., Nicolay, K., A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets (2004) Bioconjugate Chem, 15, pp. 799-806 Torchilin, V. P., Omelyanenko, V. G., Papisov, M. I., Bogdanov, A. J., Trubetskoy, V. S., Herron, J. N., Gentry, C. A., Poly (ethylene glycol) on the liposome surface: On the mechanism of polymer-coated liposome longevity (1994) Biochim. Biophys. Acta, 119, pp. 11-20 Chang, W. C., White, P. D., (2000) Fmoc Solid Phase Peptide Synthesis, , Oxford University Press: New York, USA Birdi, K. S., Singh, H. N., Dalsager, S. U., Interaction of ionic micelles with the hydrophobic fluorescent probe 1-anilino-8-naphthalenesulfonate (1979) J. Phys. Chem, 83, pp. 2733-2737 Lackowicz, J. R., (1983) Principles of Fluorescence Spectroscopy, , Plenum Press: New York Anelli, P. L., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., L-glutamic acid and L-Lysine as Useful Building Blocks for the Preparation of Bifunctional DTPA-like Ligands (1999) Bioconjugate Chem, 10, pp. 137-140 Ellmann, G. L., Tissue sulfhydryl groups (1959) Arch. Biochem. Biophys, 82, pp. 70-77 Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., How to measure and predict the molar absorption coefficient of a protein (1995) Protein Sci, 4, pp. 2411-2423}, document_type={Journal Article, }, affiliation={Department of Biological Sciences, CIRPeB, University of Naples Federico II and IBB CNR, Via Mezzocannone 16, 80134 Naples, Italy Department of Chemistry I.F.M., Molecular Imaging Centre, University of Turin, Via Nizza 52, 10125 Turin, Italy}, ibbaffiliation={1}, } @article{IBB_ID_50822, author={Digilio G, Catanzaro V, Fedeli F, Gianolio E, Menchise V, Napolitano R, Gringeri C, Aime S}, title={Targeting exofacial protein thiols with Gd-III complexes. An efficient procedure for MRI cell labelling}, date={2009 Feb 28}, journal={Chem Commun (ISSN: 1359-7345, 1364-548x, 1364-548xelectronic)}, year={2009}, fullvolume={344}, volume={344}, pages={893--895}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-61449093769&partnerID=40&md5=0565237a82166e46cfa6b7d5cfc2de2b}, abstract={Cells display on the outer surface of the plasma membrane a large number of protein thiols that can be reversibly labelled with suitably designed Gd III-based contrast agents for cell tracking by MRI. The Royal Society of Chemistry 2009}, keywords={Cell Membrane Metabolism, Cellular Structures Chemistry, Contrast Media Chemistry Metabolism, Gadolinium Chemistry, Humans, K562 Cells, Macromolecular Substances, Magnetic Resonance Imaging Methods, Molecular Structure, Proteins, Staining And Labeling Methods, Sulfhydryl Compounds Chemistry, }, references={Weissleder, R., Mahmood, U., (2001) Radiology, 219, pp. 316-33 Krestin, G.P., Bernsen, M.R., (2006) Eur. Radiol., 16, pp. 2383-2385 Pathak, A.P., Gimi, B., Glunde, K., Ackerstaff, E., Artemov, D., Bhujwalla, Z.M., (2004) Methods Enzymol., 386, pp. 3-60 Bulte, J.W.M., Kraitchman, D.L., (2004) NMR Biomed., 17, pp. 484-499 (2001) The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, Ed., , A. E. Merbach and E. Tóth, John Wiley & Sons, Chichester, UK Bulte, J.W., Zhang, S., Van Gelderen, P., Herynek, V., Jordan, E.K., Duncan, I.D., Frank, J.A., (1999) Proc. Natl. Acad. Sci. U. S. A., 96, pp. 15256-15261 Lewin, M., Carlesso, N., Tung, C.H., Tang, X.W., Cory, D., Scadden, D.T., Weissleder, R., (2000) Nat. Biotechnol., 18, pp. 410-414 Geninatti Crich, S., Biancone, L., Cantaluppi, V., Duò, D., Esposito, G., Russo, S., Camussi, G., Aime, S., (2004) Magn. Reson. Med., 51, pp. 938-944 Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B., (1999) Chem. Rev., 99, pp. 2293-2353 Aime, S., Cabella, C., Colombatto, S., Geninatti-Crich, S., Gianolio, E., Maggioni, F., (2002) J. Magn. Reson. Imaging, 16, pp. 394-406 Vuu, K., Xie, J., McDonald, M.A., Bernardo, M., Hunter, F., Zhang, Y., Li, K., Guccione, S., (2005) Bioconjugate Chem., 16, pp. 995-999 Biancone, L., Geninatti Crich, S., Cantaluppi, V., Mauriello Romanazzi, G., Russo, S., Scalabrino, E., Esposito, G., Camussi, G., (2007) NMR Biomed., 20, pp. 40-48 Laragione, T., Sonetto, V., Casoni, F., Massignan, T., Bianchi, G., Gianazza, E., Ghezzi, P., (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 14737-14741 Jiang, X.-M., Fitzgerald, M., Grant, C.M., Hogg, P.J., (1999) J. Biol. Chem., 274, pp. 2416-2423 Sahaf, B., Heydari, K., Herzenberg, L.A., Herzenberg, L.A., (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 4001-4005 Carrera, C., Digilio, G., Baroni, S., Burgio, D., Consol, S., Fedeli, F., Longo, D., Aime, S., (2007) Dalton Trans., pp. 4980-4987 Cabella, C., Geninatti Crich, S., Corpillo, D., Barge, A., Ghirelli, C., Bruno, E., Lorusso, V., Aime, S., (2006) Contrast Media Mol. Imaging, 1, pp. 23-29 Krestin, G. P., Bernsen, M. R., (2006) Eur. Radiol., 16, pp. 2383-2385 Pathak, A. P., Gimi, B., Glunde, K., Ackerstaff, E., Artemov, D., Bhujwalla, Z. M., (2004) Methods Enzymol., 386, pp. 3-60 Bulte, J. W. M., Kraitchman, D. L., (2004) NMR Biomed., 17, pp. 484-499 (2001) The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, Ed., , A. E. Merbach and E. T th, John Wiley & Sons, Chichester, UK Bulte, J. W., Zhang, S., Van Gelderen, P., Herynek, V., Jordan, E. K., Duncan, I. D., Frank, J. A., (1999) Proc. Natl. Acad. Sci. U. S. A., 96, pp. 15256-15261 Jiang, X. -M., Fitzgerald, M., Grant, C. M., Hogg, P. J., (1999) J. Biol. Chem., 274, pp. 2416-2423}, document_type={Journal Article, Research Support, Non-U. S. Gov'T, }, affiliation={Department of Environmental and Life Sciences, University of Eastern Piedmont "A. Avogadro", Via Bellni 25G, 15100 Alessandria, Italy. giuseppe.digilio@mfn.unipmn.it Department of Chemistry IFM, Center for Molecular Imaging, University of Turin, Via Nizza 52, 10125 Torino, Italy Istituto Biostrutture e Biommagini - CNR, Via Mezzocannone 16, 80143 Napoli, Italy}, ibbaffiliation={1}, } @article{IBB_ID_12405, author={Vaccaro M, Mangiapia G, Accardo A, Tesauro D, Gianolio E, Frielinghaus H, Morelli G, Paduano L}, title={Polymerized mixed aggregates containing gadolinium complex and CCK8 peptide}, date={2008 Dec}, journal={Colloid Polym Sci (ISSN: 0303-402x)}, year={2008}, fullvolume={377}, volume={377}, pages={1643--1652}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-55649090320&partnerID=40&md5=833f0591f91f86509c5e5262da50e313}, abstract={Two novel amphiphilic unimers containing an aliphatic hydrophobic chain (PDA) with two CΞC triple bonds and hydrophilic heads presenting the chelating agent DTPAGlu and the CCK8 bioactive peptide, respectively, have been prepared by solid phase synthesis. Aggregates obtained by mixing together PDA-DTPAGlu, or its Gd(III) complex, and PDA-L2-CCK8 in 70/30 molar ratio before and after a polymerization process carried out by UV irradiation have been structurally characterized by means of small angle neutron scattering. The relaxivity properties of aggregates containing Gadolinium complexes have also been investigated. Elongated mixed micelles have been observed, in which the relaxivity value r1p for each Gadolinium complex, measured at 20 MHz and 298 K, is around 12 mM-1 s-1. © Springer-Verlag 2008.}, keywords={Micelles, Peptides, Polymerizable, Sans, Surfactants, Abs Resins, Aggregates, Amines, Chelation, Colloids, Hand Held Computers, Hydrophobicity, Monomers, Neutron Scattering, Personal Digital Assistants, Surface Active Agents, Amphiphilic, Before And After, Bioactive Peptides, Cck8 Peptides, Chelating Agents, Gadolinium Complexes, Hydrophilic Heads, Hydrophobic Chains, Mixed Aggregates, Mixed Micelles, Molar Ratios, Phase Syntheses, Polymerization Processes, Relaxivity, Small-Angle Neutron Scatterings, Triple Bonds, Unimers, Uv Irradiations, Amphophile, Carbon, Cholecystokinin Octapeptide, Article, Chemical Bond, Chemical Structure, Contrast Enhancement, Controlled Study, Drug Structure, Fluorescence Analysis, Hydrophilicity, Nuclear Magnetic Resonance Imaging, Priority Journal, Solid Phase Synthesis, Ultraviolet Radiation, }, references={Weissleder, R., Mahmood, U., Molecular imaging (2001) Radiology, 219, pp. 316-333. , Oak Brook, IL, United State Aime, S., Cabella, C., Colombatto, S., Geninatti Crich, S., Gianolio, E., Maggioni, F., Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations (2002) J Magn Reson Imaging Field, 16, pp. 394-406 Aime, S., Fasano, M., Terreno, E., Botta, M., Protein-bound metal chelates (2001) Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, pp. 193-241. , In: Merbach A, Toth E (eds) Wiley, New York Gao, J., Nasongkla, N., Khemtong, C., cRGD-encoded, MRI-visible polymeric micelles for tumor-targeted drug delivery (2007) Nanotechnology for Cancer Therapy, pp. 465-475. , In: Amiji M (ed) CRC, Boca Raton 1 plate Accardo, A., Tesauro, D., Roscigno, P., Gianolio, E., Paduano, L., D'Errico, G., Pedone, C., Morelli, G., Physicochemical properties of mixed micellar aggregates containing CCK peptides and Gd complexes designed as tumor-specific contrast agents in MRI (2004) J Am Chem Soc, 126, pp. 3097-3107 Tesauro, D., Accardo, A., Gianolio, E., Paduano, L., Teixeira, J., Schillen, K., Aime, S., Morelli, G., Peptide derivatized lamellar aggregates as target-specific MRI contrast agents (2007) ChemBioChem, 8, pp. 950-955 Vaccaro, M., Mangiapia, G., Paduano, L., Gianolio, E., Accardo, A., Tesauro, D., Morelli, G., Structural and relaxometric characterization of peptide aggregates containing gadolinium complexes as potential selective contrast agents in MRI (2007) ChemPhysChem, 8, pp. 2526-2538 Evans, D.F., (1998) The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, , 2nd edn. Wiley, New York Zou, G., Fang, K., Xia, S., He, P., Elasticity of 10,12-pentacosadiynoic acid monolayer and the polymerized monolayer at varying pH and temperatures (2002) Langmuir, 18, pp. 6602-6605 Reubi, J.C., Schaer, J.-C., Waser, B., Cholecystokinin (CCK)-A and CCK-B/gastrin receptors in human tumors (1997) Cancer Res, 57, pp. 1377-1386 Anelli, P.L., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., L-Glutamic acid and L-lysine as useful building blocks for the preparation of bifunctional DTPA-like ligands (1999) Bioconjug Chem, 10, pp. 137-140 Chan, W.C., White, P.D., (2000) Basic Procedures. Fmoc Solid Phase Peptide Synthesis, pp. 41-76. , Oxford University Press, Oxford Edelhoch, H., Spectroscopic determination of tryptophan and tyrosine in proteins (1967) Biochemistry, 6, pp. 1948-1954 Pace, C.N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., How to measure and predict the molar absorption coefficient of a protein (1995) Protein Sci Field, 4, pp. 2411-2423 Birdi, K.S., Singh, H.N., Dalsager, S.U., Interaction of ionic micelles with the hydrophobic fluorescent probe 1-anilino-8-naphthalenesulfonate (1979) J Phys Chem, 83, pp. 2733-2737 De Vendittis, E., Palumbo, G., Parlato, G., Bocchini, V., A fluorimetric method for the estimation of the critical micelle concentration of surfactants (1981) Anal Biochem, 115, pp. 278-286 Lakowicz, J.R., (1983) Principles of Fluorescence Spectroscopy, , Springer, New York Wignall, G.D., Bates, F.S., Absolute calibration of small-angle neutron scattering data (1987) J Appl Crystallogr, 20, pp. 28-40 Russell, T.P., Lin, J.S., Spooner, S., Wignall, G.D., Intercalibration of small-angle x-ray and neutron scattering data (1988) J Appl Crystallogr, 21, pp. 629-638 Shinoda, K., Nakagawa, T., Tamamushi, B., Isemura, T., (1962) Colloidal Surfactants, Some Physicochemical Properties, , Academy, New York Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B., Gadolinium(III) Chelates as MRI contrast agents: Structure, dynamics, and applications (1999) Chem Rev (Washington, D. C.), 99, pp. 2293-2352 Lipari, G., Szabo, A., Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity (1982) J Am Chem Soc, 104, pp. 4546-4559 Torres, S., Martins, J.A., Andre, J.P., Geraldes, C.F.G.C., Merbach, A.E., Toth, E., Supramolecular assembly of an amphiphilic GdIII chelate: Tuning the reorientational correlation time and the water exchange rate (2006) Chem-Eur J, 12, pp. 940-948 Nicolle, G.M., Toth, E., Eisenwiener, K.-P., Macke, H.R., Merbach, A.E., From monomers to micelles: Investigation of the parameters influencing proton relaxivity (2002) JBIC, J Biol Inorg Chem, 7, pp. 757-769 Nicolle, G.M., Tóth, É., Schmitt-Willich, H., Radchel, B., Merbach, A.E., The impact of rigidity and water exchange on the relaxivity of a dendritic MRI contrast agent (2002) Chem - Eur J, 8, pp. 1040-1048 Kotlarchyk, M., Chen, S.H., Analysis of small angle neutron scattering spectra from polydisperse interacting colloids (1983) J Chem Phys, 79, pp. 2461-2469 Evans, D. F., (1998) The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, , 2nd edn. Wiley, New York Reubi, J. C., Schaer, J. -C., Waser, B., Cholecystokinin (CCK) -A and CCK-B/gastrin receptors in human tumors (1997) Cancer Res, 57, pp. 1377-1386 Anelli, P. L., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., L-Glutamic acid and L-lysine as useful building blocks for the preparation of bifunctional DTPA-like ligands (1999) Bioconjug Chem, 10, pp. 137-140 Chan, W. C., White, P. D., (2000) Basic Procedures. Fmoc Solid Phase Peptide Synthesis, pp. 41-76. , Oxford University Press, Oxford Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., How to measure and predict the molar absorption coefficient of a protein (1995) Protein Sci Field, 4, pp. 2411-2423 Birdi, K. S., Singh, H. N., Dalsager, S. U., Interaction of ionic micelles with the hydrophobic fluorescent probe 1-anilino-8-naphthalenesulfonate (1979) J Phys Chem, 83, pp. 2733-2737 Lakowicz, J. R., (1983) Principles of Fluorescence Spectroscopy, , Springer, New York Wignall, G. D., Bates, F. S., Absolute calibration of small-angle neutron scattering data (1987) J Appl Crystallogr, 20, pp. 28-40 Russell, T. P., Lin, J. S., Spooner, S., Wignall, G. D., Intercalibration of small-angle x-ray and neutron scattering data (1988) J Appl Crystallogr, 21, pp. 629-638 Nicolle, G. M., Toth, E., Eisenwiener, K. -P., Macke, H. R., Merbach, A. E., From monomers to micelles: Investigation of the parameters influencing proton relaxivity (2002) JBIC, J Biol Inorg Chem, 7, pp. 757-769 Nicolle, G. M., T th, ., Schmitt-Willich, H., Radchel, B., Merbach, A. E., The impact of rigidity and water exchange on the relaxivity of a dendritic MRI contrast agent (2002) Chem - Eur J, 8, pp. 1040-1048}, document_type={Journal Article, }, affiliation={Dipartimento di Chimica-CSGI, Università degli Studi di Napoli Federico II, via Cinthia, 80126 Naples, Italy Dipartimento di Scienze Biologiche-CIRPeB, Università degli Studi di Napoli Federico II, via Mezzocannone 16, 80134 Naples, Italy Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching bei München, Germany CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy J lich Centre for Neutron Science, Forschungszentrum J lich GmbH, Lichtenbergstrasse 1, 85747 Garching bei M nchen, Germany}, ibbaffiliation={1}, } @article{IBB_ID_9339, author={Vaccaro M, Mangiapia G, Paduano L, Gianolio E, Accardo A, Tesauro D, Morelli G}, title={Structural and relaxometric characterization of peptide aggregates containing gadolinium complexes as potential selective contrast agents in MRI}, date={2007 Dec 3}, journal={Chemphyschem (ISSN: 1439-4235, 1439-7641, 1439-7641electronic)}, year={2007}, fullvolume={563}, volume={563}, pages={2526--2538}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-36849004509&partnerID=40&md5=4a9443db3c7cd3e3adaac09d1a598bdb}, abstract={The structural and relaxometric characterization of a novel class of supramolecular aggregates, as potential tumor-specific contrast agents in magnetic resonance imaging (MRI), is reported. The aggregates are based on a new monomer with an upsilon shape (MonY) that contains, in the same molecule, all three fundamental tasks that are required: 1) a hydrophobic moiety that allows the formation of supramolecular aggregates; 2) the bioactive CCK8 peptide for target recognition; and 3) a chelating agent able to give stable gadolinium complexes. As indicated by dynamic light scattering and small-angle neutron scattering (SANS) measurements, MonY and its gadolinium complex MonY(Gd) aggregate in aqueous solution to give ellipsoidal micelles with a ratio between the micellar axes of ≈1.7 and an aggregation number Nagg of ≈30. There are no differences in the aggregation behavior of MonY and MonY(Gd), which indicates that the presence of metal ions, and therefore the reduction of the net charge, does not influence the aggregation behavior. When MonY or MonY(Gd) are blended with dioleoyl phosphatidylcholine (DOPC), the aggregation behavior is dictated by the tendency of DOPC to give liposomes. Only when the amount of MonY or MonY(Gd) is higher than 20% is the coexistence of liposomes and micelles observed. The thickness d of the bilayer is estimated by SANS to be ≈35-40 Å, whereas cryogenic transmission electron microscopy images show that the diameter of the liposomes ranges from ≈50 to 150 nm. Self-assembling micelles of MonY(Gd) present high relaxivity values (r 1p-15.03 mM-1 s-1) for each gadolinium complex in the aggregate. Liposomes containing MonY(Gd) inserted in the DOPC bilayer at a molar ratio of 20:80 present slightly lower relaxivity values (r1p = 12.7 mM-1 s-1), independently of their internal or external position in the liposome. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.}, keywords={Amphiphiles, Gadolinium, Imaging Agents, Magnetic Properties, Peptides, Contrast Medium, Article, Chemical Structure, Chemistry, Cryoelectron Microscopy, Neutron, Nuclear Magnetic Resonance Imaging, Temperature, Transmission Electron Microscopy, Molecular Structure, }, references={Wiener, E.C., Brechbiel, M.W., Brothers, H., Magin, R.L., Gansow, O.A., Tomalia, D.A., Lauterbur, P.C., (1994) Magn. Reson. Med, 31, pp. 1- Mohs, A.M., Wang, X., Goodrich, K.C., Zong, Y., Parker, D.L., Lu, Z.-R., (2004) Bioconjug. Chem, 15, pp. 1424-1430 Andre, J.P., Toth, E., Fischer, H., Seelig, A., Macke, H.R., Merbach, A.E., (1999) Chem. Eur. J, 5, pp. 2977-2983 Anelli, P.L., Lattuada, L., Lorusso, V., Schneider, M., Tournier, H., Uggeri, F., (2001) Magn. Reson. Mater. Phys. Biol. Med, 12, pp. 114-120 Mulder, W.J.M., Strijkers, G.J., Griffioen, A.W., van Bloois, L., Molema, G., Storm, G., Koning, G.A., Nicolay, K., (2004) Bioconjug. Chem, 15, pp. 799-806 Ferrari, M., (2005) Nat. Rev. Cancer, 5, pp. 161-171 Aloj, L., Morelli, G., (2004) Curr. Pharm. Des, 10, pp. 3009-3031 Kwekkeboom, D., Krenning, E.P., de Jong, M., (2000) J. Nucl. Med, 41, pp. 1704-1713 Amirbekian, V., Lipinski, M.J., Briley-Saebo, K.C., Amirbekian, S., Aguinaldo, J.G.S., Weinreb, D.B., Vucic, E., Fayad, Z.A., (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 961-966 Brandwijk, R.J.M.G.E., Mulder, W.J.M., Nicolay, K., Mayo, K.H., Thijssen, V.L.J.L., Griffioen, A.W., (2007) Bioconjug. Chem, 18, pp. 785-790 Accardo, A., Tesauro, D., Morelli, G., Gianolio, E., Aime, S., Vaccaro, M., Mangiapia, G., Schulen, K., (2007) J. Biol. Inorg. Chem, 12, pp. 267-276 Tesauro, D., Accardo, A., Gianolio, E., Paduano, L., Teixeira, J., Schulen, K., Aime, S., Morelli, G., (2007) ChemBioChem, 8, pp. 950-955 Evans, D.F., Wennerström, H., (1998) The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, p. 640. , 2nd ed, Wiley-VCH, New York Vaccaro, M., Accardo, A., Tesauro, D., Mangiapia, G., Loef, D., Schulen, K., Soederman, O., Paduano, L., (2006) Langmuir, 22, pp. 6635-6643 (2000) Fmoc Solid Phase Peptide Synthesis: A Practical Approach, p. 346. , Eds, W. C. Chan, P. D. White, Oxford University Press, Oxford Lichtenberg, D., Robson, R.J., Dennis, E.A., (1983) Biochim. Biophys. Acta Rev. Biomembr, 737, pp. 285-304 Gallova, J., Uhrikova, D., Islamov, A., Kuklin, A., Balgavy, P., (2004) Gen. Physiol. Biophys, 23, pp. 113-128 Kotlarchyk, M., Chen, S.H., (1983) J. Chem. Phys, 79, pp. 2461-2469 Brulet, A., Lairez, D., Lapp, A., Cotton, J.P., (2007) J. Appl. Crystallogr, 40, pp. 165-177 Kotlarchyk, M., Sheu, E.Y., Capel, M., (1992) Phys. Rev. A, 46, pp. 928-939 Almgren, M., (2000) Biochim. Biophys. Acta Biomembr, 1508, pp. 146-163 Diwu, Z., Lu, Y., Zhang, C., Klaubert, D.H., Haugland, R.P., (1997) Photochem. Pho tobiol, 66, pp. 424-431 Nakajima, A., (1976) J. Lumin, 11, pp. 429-432 Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B., (1999) Chem. Rev, 99, pp. 2293-2352 Koenig, S.H., Ahkong, Q.F., Brown III, R.D., Lafleur, M., Spiller, M., Unger, E., Tilcock, C., (1992) Magn. Reson. Med, 23, pp. 275-286 Tilcock, C., Ahkong, Q.F., Koenig, S.H., Brown III, R.D., Davis, M., Kabalka, G., (1992) Magn. Reson. Med, 27, pp. 44-51 Swift, T.J., Connick, R.E., (1962) J. Chem. Phys, 37, pp. 307-320 Aime, S., Botta, M., Fasano, M., Geninatti Crich, S., Terreno, E., (1999) Coord. Chem. Rev, pp. 321-333 Bloembergen, N., Morgan, L.O., (1961) J. Chem. Phys, 34, pp. 842-850 Lipari, G., Szabo, A., (1982) J. Am. Chem. Soc, 104, pp. 4546-4559 Anelli, P.L., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., (1999) Bioconjug. Chem, 10, pp. 137-140 Schmitt, L., Dietrich, C., Tampe, R., (1994) J. Am. Chem. Soc, 116, pp. 8485-8491 Barge, A., Cravotto, G., Gianolio, E., Fedeli, F., (2006) Contrast Media Mol. Imaging, 1, pp. 184-188 Edelhoch, H., (1967) Biochemistry, 6, pp. 1948-1954 Pace, C.N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., (1995) Protein Sci, 4, pp. 2411-2423 Siegert, A.J.F., (1943) MIT Radiation Laboratory, p. 465 (1993) Dynamic Light Scattering: The Method and Some Applications, p. 735. , Ed, W. Brown, Oxford University Press, Oxford Wignall, G.D., Bates, F.S., (1987) J. Appl. Crystallogr, 20, pp. 28-40 Russell, T.P., Lin, J.S., Spooner, S., Wignall, G.D., (1988) J. Appl. Crystallogr, 21, pp. 629-638 Heenan, R.K., Penfold, J., King, S.M., (1997) J. Appl. Crystallogr, 30, pp. 1140-1147 Birdi, K.S., Singh, H.N., Dalsager, S.U., (1979) J. Phys. Chem, 83, pp. 2733-2737 De Vendittis, E., Palumbo, G., Parlato, G., Bocchini, V., (1981) Anal. Biochem, 115, pp. 278-286 Wiener, E. C., Brechbiel, M. W., Brothers, H., Magin, R. L., Gansow, O. A., Tomalia, D. A., Lauterbur, P. C., (1994) Magn. Reson. Med, 31, pp. 1- Mohs, A. M., Wang, X., Goodrich, K. C., Zong, Y., Parker, D. L., Lu, Z. -R., (2004) Bioconjug. Chem, 15, pp. 1424-1430 Andre, J. P., Toth, E., Fischer, H., Seelig, A., Macke, H. R., Merbach, A. E., (1999) Chem. Eur. J, 5, pp. 2977-2983 Anelli, P. L., Lattuada, L., Lorusso, V., Schneider, M., Tournier, H., Uggeri, F., (2001) Magn. Reson. Mater. Phys. Biol. Med, 12, pp. 114-120 Mulder, W. J. M., Strijkers, G. J., Griffioen, A. W., van Bloois, L., Molema, G., Storm, G., Koning, G. A., Nicolay, K., (2004) Bioconjug. Chem, 15, pp. 799-806 Brandwijk, R. J. M. G. E., Mulder, W. J. M., Nicolay, K., Mayo, K. H., Thijssen, V. L. J. L., Griffioen, A. W., (2007) Bioconjug. Chem, 18, pp. 785-790 Evans, D. F., Wennerstr m, H., (1998) The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, p. 640. , 2nd ed, Wiley-VCH, New York (2000) Fmoc Solid Phase Peptide Synthesis: A Practical Approach, p. 346. , Eds, W. C. Chan, P. D. White, Oxford University Press, Oxford Koenig, S. H., Ahkong, Q. F., Brown III, R. D., Lafleur, M., Spiller, M., Unger, E., Tilcock, C., (1992) Magn. Reson. Med, 23, pp. 275-286 Swift, T. J., Connick, R. E., (1962) J. Chem. Phys, 37, pp. 307-320 Anelli, P. L., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., (1999) Bioconjug. Chem, 10, pp. 137-140 Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., (1995) Protein Sci, 4, pp. 2411-2423 Siegert, A. J. F., (1943) MIT Radiation Laboratory, p. 465 (1993) Dynamic Light Scattering: The Method and Some Applications, p. 735. , Ed, W. Brown, Oxford University Press, Oxford Wignall, G. D., Bates, F. S., (1987) J. Appl. Crystallogr, 20, pp. 28-40 Russell, T. P., Lin, J. S., Spooner, S., Wignall, G. D., (1988) J. Appl. Crystallogr, 21, pp. 629-638 Heenan, R. K., Penfold, J., King, S. M., (1997) J. Appl. Crystallogr, 30, pp. 1140-1147 Birdi, K. S., Singh, H. N., Dalsager, S. U., (1979) J. Phys. Chem, 83, pp. 2733-2737}, document_type={Journal Article, }, affiliation={Department of Chemistry, University of Naples Federico II, Via Cynthia, 80126 Naples, Italy CIRPeB, Department of Biological Sciences and IBB CNR, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy}, ibbaffiliation={1}, } @article{IBB_ID_47990, author={Tesauro D, Accardo A, Gianolio E, Paduano L, Teixeira J, Schillén K, Aime S, Morelli G}, title={Peptide derivatized lamellar aggregates as target-specific MRI contrast agents}, date={2007 May 25}, journal={Chembiochem (ISSN: 1439-4227, 1439-7633, 1439-7633electronic)}, year={2007}, fullvolume={580}, volume={580}, pages={950--955}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-34447512737&partnerID=40&md5=63e65a7460b1a124ded67fd2e2300198}, abstract={The relaxivity behaviour and the structural characterization of new supramolecular aggregates (bilayer structures and micelles) obtained by combining two different amphiphilic monomers are reported. One monomer, (C18)2DTPAGlu-Gd, contains a very stable gadolinium complex, and the other, DSPE-PEG2000-CCK8, contains the bioactive CCK8 peptide. Samples that contained only DSPE-PEG2000-CCK8, or up to 50% (C18)2DTPAGlu-Gd, aggregated as double-layer structures (lamellar aggregates) with a thickness of ∼80-100 Å, as evaluated by SANS measurement and Cryo-TEM imaging. A transition to micelle formation was observed when the amount of (C18)2DTPAGlu-Gd in the aggregate was increased. These were rod-like micelles ∼40 Å in radius and > 200 Å in length. The proton relaxivities for both lamellar aggregates and rod-like micelles were the same (17.2 mM-1 s-1), although the values were the results of different combinations of local and global contributions. The in vitro target selectivity of aggregates that contained the CCK-8 peptide was demonstrated by using nuclear medicine techniques. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.}, keywords={Complexes, Imaging Agents, Lamellar Aggregates, Peptides, Sans, Cholecystokinin A Receptor, Contrast Medium, Gadolinium Pentetate, Monomer, Peptide Derivative, Cholecystokinin Octapeptide, Organometallic Compound, Peptide Fragment, Article, In Vitro Study, Lamellar Body, Mass Spectrometry, Micellization, Nuclear Magnetic Resonance Imaging, Priority Journal, Protein Aggregation, Protein Expression, Protein Structure, Proton Transport, Reversed Phase High Performance Liquid Chromatography, Chemical Structure, Chemistry, Macromolecule, Methodology, Particle Size, Sensitivity And Specificity, Structure Activity Relation, Synthesis, Macromolecular Substances, Molecular Structure, Structure-Activity Relationship, }, references={Weissleder, R., Mahmood, U., (2001) Radiology, 219, pp. 316-33 (2001) The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, , Eds, A. E. Merbach, É. Tóth, Wiley, Chichester Tóth, E., Bolskar, R.D., Borel, A., González, G., Helm, L., Merbach, A.E., Sitharaman, B., Wilson, L.J., (2005) J. Am. Chem. Soc, 127, pp. 799-805 Accardo, A., Tesauro, D., Roscigno, P., Gianolio, E., Paduano, L., D'Errico, G., Pedone, C., Morelli, G., (2004) J. Am. Chem. Soc, 126, pp. 3097-3107 Mulder, W.J.M., Strijkers, G.J., Griffioen, A.W., van Bloois, L., Molema, G., Storm, G., Koning, G.A., Nicolay, K., (2004) Bioconjugate Chem, 15, pp. 799-806 Kobayashi, H., Brechbiel, M.W., (2005) Adv. Drug Delivery Rev, 57, pp. 2271-2286 Anelli, P.L., Lattuada, L., Lorusso, V., Schneider, M., Tournier, H., Uggeri, F., (2001) Magn. Reson. Mater. Phys. Biol. Med, 12, pp. 114-120 Aloj, L., Morelli, G., (2004) Curr Pharm Des, 10, pp. 3009-3031 Kwekkeboom, D., Krenning, E.P., De Jong, M., (2000) J. Nucl. Med, 41, pp. 1704-1713 Reubi, J.C., Schaer, J.-C., Waser, B., (1997) Cancer Res, 57, pp. 1377-1386 Allen, M.T., Hansen, C., Martin, F., Redemann, C., Yau-Young, A., (1991) Biochim. Biophys. Acta Biomembr, 1066, pp. 29-36 Chen, P.S., Toribara, T.Y., Warner, H., (1956) Anal. Chem, 28, pp. 1756-1758 DeCuyper, M., Lievens, S., Flo, G., Cokelaere, M., Peleman, C., Martins, F., Andrade Santana, M.H., (2004) Biosens. Bioelectron, 20, pp. 1157-1164 Vaccaro, M., Accardo, A., Tesauro, D., Mangiapia, G., Löf, D., Schillén, K., Söderman, O., Paduano, L., (2006) Langmuir, 22, pp. 6635-6643 Johnsson, M., Hansson, P., Edwards, K., (2001) J. Phys. Chem. B, 105, pp. 8420-8430 Johnsson, M., Edwards, K., (2003) Biophys. J, 85, pp. 3839-3847 Banci, L., Bertini, I., Luchinat, C., (1991) Nuclear and Electronic Relaxation, p. 91. , VCH, Weinheim Koenig, S.H., Brown, R.D., (1990) Prog. Nucl. Magn. Reson. Spectrosc, 22, pp. 487-567 Powell, D.H., Dhubhghaill, O.M.N., Pubanz, D., Helm, L., Lebedev, Y.S., Schlaepfer, W., Merbach, A.E., (1996) J. Am. Chem. Soc, 118, pp. 9333-9346 Aime, S., Botta, M., Fasano, M., Terreno, E., (1999) Acc. Chem. Res, 32, pp. 941-946 Solomon, I., (1955) Phys. Rev, 99, pp. 559-565 Bloembergen, N., (1957) J. Chem. Phys, 27, pp. 572-573 Bloembergen, N., Morgan, L.O., (1961) J. Chem. Phys, 34, pp. 842-850 Lipari, G., Szabo, A., (1982) J. Am. Chem. Soc, 104, pp. 4546-4559 Nicolle, G.M., Tóth, E., Eisenwiener, K.-P., Mäcke, H.R., Merbach, A.E., (2002) J. Biol. Inorg. Chem, 7, pp. 757-769 Torres, S., Martins, J.A., André, J.P., Geraldes, C.F.G.C., Merbach, A.E., Tóth, E., (2006) Chem. Eur. J, 12, pp. 940-948 Storrs, R.W., Tropper, F.D., Li, H.Y., Song, C.K., Kuniyoshi, J.K., Sipkins, D.A., Li, K.C.P., Bednarski, M.D., (1995) J. Am. Chem. Soc, 117, pp. 7301-7306 Aloj, L., Caracò, C., Panico, M., Zannetti, A., Del Vecchio, S., Tesauro, D., De Luca, S., Salvatore, M., (2004) J. Nucl. Med, 45, pp. 485-494 Anelli, P.L., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., (1999) Bioconjugate Chem, 10, pp. 137-140 Schmitt, L., Dietrich, C., Tampé, R., (1994) J. Am. Chem. Soc, 116, pp. 8485-8491 (2000) Fmoc Solid Phase Peptide Synthesis: A Practical Approach, , Eds, W. C. Chang, P. D. White, Oxford University Press Russell, T.P., Lin, J.S., Spooner, S., Wignall, G.D., (1988) J. Appl. Crystallogr, 21, pp. 629-638 Bellare, J.R., Davis, H.T., Scriven, L.E., Talmon, Y., (2005) J. Electron Microsc. Tech, 10, pp. 87-111 (2001) The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, , Eds, A. E. Merbach, . T th, Wiley, Chichester T th, E., Bolskar, R. D., Borel, A., Gonz lez, G., Helm, L., Merbach, A. E., Sitharaman, B., Wilson, L. J., (2005) J. Am. Chem. Soc, 127, pp. 799-805 Mulder, W. J. M., Strijkers, G. J., Griffioen, A. W., van Bloois, L., Molema, G., Storm, G., Koning, G. A., Nicolay, K., (2004) Bioconjugate Chem, 15, pp. 799-806 Anelli, P. L., Lattuada, L., Lorusso, V., Schneider, M., Tournier, H., Uggeri, F., (2001) Magn. Reson. Mater. Phys. Biol. Med, 12, pp. 114-120 Reubi, J. C., Schaer, J. -C., Waser, B., (1997) Cancer Res, 57, pp. 1377-1386 Allen, M. T., Hansen, C., Martin, F., Redemann, C., Yau-Young, A., (1991) Biochim. Biophys. Acta Biomembr, 1066, pp. 29-36 Chen, P. S., Toribara, T. Y., Warner, H., (1956) Anal. Chem, 28, pp. 1756-1758 Koenig, S. H., Brown, R. D., (1990) Prog. Nucl. Magn. Reson. Spectrosc, 22, pp. 487-567 Powell, D. H., Dhubhghaill, O. M. N., Pubanz, D., Helm, L., Lebedev, Y. S., Schlaepfer, W., Merbach, A. E., (1996) J. Am. Chem. Soc, 118, pp. 9333-9346 Nicolle, G. M., T th, E., Eisenwiener, K. -P., M cke, H. R., Merbach, A. E., (2002) J. Biol. Inorg. Chem, 7, pp. 757-769 Storrs, R. W., Tropper, F. D., Li, H. Y., Song, C. K., Kuniyoshi, J. K., Sipkins, D. A., Li, K. C. P., Bednarski, M. D., (1995) J. Am. Chem. Soc, 117, pp. 7301-7306 Aloj, L., Carac, C., Panico, M., Zannetti, A., Del Vecchio, S., Tesauro, D., De Luca, S., Salvatore, M., (2004) J. Nucl. Med, 45, pp. 485-494 Anelli, P. L., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., (1999) Bioconjugate Chem, 10, pp. 137-140 (2000) Fmoc Solid Phase Peptide Synthesis: A Practical Approach, , Eds, W. C. Chang, P. D. White, Oxford University Press Russell, T. P., Lin, J. S., Spooner, S., Wignall, G. D., (1988) J. Appl. Crystallogr, 21, pp. 629-638 Bellare, J. R., Davis, H. T., Scriven, L. E., Talmon, Y., (2005) J. Electron Microsc. Tech, 10, pp. 87-111}, document_type={Journal Article, }, affiliation={Department of Biological Sciences, CIRPeB University of Naples Federico II, IBB CNR, Via Mezzocannone 16, 80134 Naples, Italy Department of Chemistry, IFM, University of Turin, Via P. Giuria 7, 10125 Turin, Italy Laboratoire Léon Brillouin (LLB) EA-CNRS, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France Physical Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden Laboratoire L on Brillouin (LLB) EA-CNRS, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France}, ibbaffiliation={1}, } @article{IBB_ID_9308, author={Accardo A, Tesauro D, Morelli G, Gianolio E, Aime S, Vaccaro M, Mangiapia G, Paduano L, Schillén K}, title={High-relaxivity supramolecular aggregates containing peptides and Gd complexes as contrast agents in MRI}, date={2007 Feb}, journal={J Biol Inorg Chem (ISSN: 0949-8257, 1432-1327electronic, 0949-8257print)}, year={2007}, fullvolume={423}, volume={423}, pages={267--276}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-33846669975&partnerID=40&md5=d0092a7c2e63081666a1cbd2d0406bdf}, abstract={Mixed supramolecular aggregates, obtained by assembling together two amphiphilic monomers (C18H37)2NCO(CH 2)2CO(AdOO)5-G-CCK8 (AdOO is 8-amino-3,6-dioxaoctanoic acid, CCK8 is C-terminal octapeptide of cholecystokinin) and (C18H37)2NCO(CH 2)2COLys(DTPAGlu)CONH2 (DTPAGlu is N,N-bis[2-[bis(carboxyethyl)amino]ethyl]-l-glutamic acid), are characterized for their structural parameters by dynamic light scattering and for their relaxometric properties, in the absence and in the presence of 0.9 wt% NaCl. Two different aggregates (micelles and bilayer structures) are present in the absence of NaCl, while only bilayer structures are observed at physiological ionic strength. The presence of NaCl increases the ionic strength, promoting a decrease in the repulsions between the polar heads and among the aggregates in solution, thus supporting the formation of large-curvature aggregates such as bilayer structures like vesicles. In these conditions the closed, vesicular shape and the large size (hydrodynamic radius of about 300 Å) of the aggregates allow a high number of paramagnetic gadolinium complexes and bioactive peptides to be accommodated on the inner and external surfaces . The presence of the salt causes a variation in the structural arrangement of the molecules and a partial rigidification of the assembled Gd(III) complexes on the surface vesicles, reducing their internal motions and giving an approximately 15% higher relaxivity value (r 1p = 21.0 and 18.6 Mm-1 s-1 in the presence and in the absence of NaCl, respectively). The vesicles obtained, for the high relaxivity of each gadolidium complex and for the presence of a surface-exposed bioactive peptide, are very promising candidates as target-selective MRI contrast agents. © 2006 SBIC.}, keywords={C-Terminal Octapeptide Of Cholecystokinin, Dynamic Light Scattering, Gadolinium Complexes, Magnetic Resonance Imaging, Supramolecular Aggregates, Cholecystokinin Derivative, Contrast Medium, Glutamic Acid Derivative, Monomer, Sodium Chloride, Article, Complex Formation, Drug Structure, Ionic Strength, Micelle, Nuclear Magnetic Resonance Imaging, Priority Journal, Protein Aggregation, Structure Analysis, Chelating Agents, Image Enhancement, Kinetics, Pentetic Acid, Sincalide, Water, }, references={Weissleder R, Mahmood U (2001) Mol Imag Radiol 219:316-333Aime, S., Cabella, C., Colombatto, S., Geninatti Crich, S., Gianolio, E., Maggioni, F., (2002) J Magn Res Imag, 16, pp. 394-40 Glogard, C., Stensrud, G., Rovland, R., Fossheim, S.L., (2002) Int J Pharm, 233, pp. 131-140 Torres, S., Martins, J.A., Andre, J.P., Geraldes, C.F.G.C., Merbach, A.E., Toth, E., (2006) Chem Eur J, 12, pp. 940-948 Wiener, E.C., Brechbiel, M.W., Brothers, H., Magin, R.L., Gansow, O.A., Tomalia, D.A., Lauterbur, P.C., (1994) Magn Reson Med, 31, pp. 1-8 Accardo, A., Tesauro, D., Roscigno, P., Gianolio, E., Paduano, L., D'Errico, G., Pedone, C., Morelli, G., (2004) J Am Chem Soc, 126, pp. 3097-3107 Wank, S.A., (1995) Am J Physiol Gastrointest Liver Physiol, 269, pp. G628-G646 Anelli, P.L., Lattuada, L., Lorusso, V., Schneider, M., Tournier, H., Uggeri, F., (2001) MAGMA, 12, pp. 114-120 Vaccaro, M., Accardo, A., Tesauro, D., Mangiapia, G., Lof, D., Schillen, K., Soderman, O., Paduano, L., (2006) Langmuir, 22, pp. 6635-6643 Schmitt, L., Dietrich, C., (1994) J Am Chem Soc, 116, pp. 8485-8491 Chang, W.C., White, P.D., (2000) Fmoc solid phase peptide synthesis, , Oxford University Press, New York Birdi, K.S., Singh, H.N., Dalsager, S.U., (1979) J Phys Chem, 83, pp. 2733-2737 De Vendittis, E., Palumbo, G., Parlato, G., Bocchini, V., (1981) Anal Biochem, 115, pp. 278-286 Bloembergen, N., Morgan, L.O., (1961) J Chem Phys, 34, pp. 842-850 Banci, L., Bertini, I., Luchinat, C., (1991) Nuclear and electronic relaxation, 91. , VCH, Weinheim Swift, T.J., Connick, R.E.J., (1962) J Chem Phys, 37, pp. 307-312 Caravan, P., Ellison, J.J., Mc Murry, T.J., Lauffer, R.B., (1999) Chem Rev, 99, pp. 2293-2352 Koenig, S.H., Ahkong, Q.F., Brown, R.D., Lafleur, N., Spiller, N., Unger, E., Tilcock, C., (1992) Magn Reson Med, 23, pp. 275-286 Tilcock, C., Ahkong, Q.F., Koenig, S.H., Brown, R.D., Dawis, N., Kabalka, G., (1992) Magn Reson Med, 27, pp. 44-51 Powell, D.H., Ni Dhubhghaill, O.M., Pubanz, D., Helm, L., Lebedev, Y.S., Schlaepfer, W., Merbach, E.A., (1996) J Am Chem Soc, 118, pp. 9333-9346 Aime, S., Botta, M., Fedeli, F., Gianolio, E., Terreno, E., Anelli, P.L., (2001) Chem Eur J, 7, pp. 5261-5269 Aime, S., Chiaussa, M., Digilio, G., Gianolio, E., Terreno, E., (1999) J Biol Inorg Chem, 4, pp. 766-774 Lipari, G., Szabo, A., (1982) J Am Chem Soc, 104, pp. 4546-4559 Nicolle, G.M., Toth, E., Eisenwiener, K.P., Maecke, H.R., Merbach, A.E., (2002) J Biol Inorg Chem, 7, pp. 757-769 Wiener, E. C., Brechbiel, M. W., Brothers, H., Magin, R. L., Gansow, O. A., Tomalia, D. A., Lauterbur, P. C., (1994) Magn Reson Med, 31, pp. 1-8 Wank, S. A., (1995) Am J Physiol Gastrointest Liver Physiol, 269, pp. G628-G646 Anelli, P. L., Lattuada, L., Lorusso, V., Schneider, M., Tournier, H., Uggeri, F., (2001) MAGMA, 12, pp. 114-120 Chang, W. C., White, P. D., (2000) Fmoc solid phase peptide synthesis, , Oxford University Press, New York Birdi, K. S., Singh, H. N., Dalsager, S. U., (1979) J Phys Chem, 83, pp. 2733-2737 Swift, T. J., Connick, R. E. J., (1962) J Chem Phys, 37, pp. 307-312 Koenig, S. H., Ahkong, Q. F., Brown, R. D., Lafleur, N., Spiller, N., Unger, E., Tilcock, C., (1992) Magn Reson Med, 23, pp. 275-286 Powell, D. H., Ni Dhubhghaill, O. M., Pubanz, D., Helm, L., Lebedev, Y. S., Schlaepfer, W., Merbach, E. A., (1996) J Am Chem Soc, 118, pp. 9333-9346 Nicolle, G. M., Toth, E., Eisenwiener, K. P., Maecke, H. R., Merbach, A. E., (2002) J Biol Inorg Chem, 7, pp. 757-769}, document_type={Journal Article, }, affiliation={Centro Interuniversitario Per la Ricerca Sui Peptidi Bioattivi (CIRPeB), Department of Biological Science, University of Naples Federico II, Via Mezzocannone, 16, Naples 80134, Italy Department of Chemistry I.F.M., University of Turin, Via P. Giuria 7, Turin 10125, Italy Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Sesto Fiorentino (FI), Italy Physical Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, Lund 221 00, Sweden}, ibbaffiliation={1}, } @article{IBB_ID_11863, author={Morelli G, Accardo A, Tesauro D, Pedone C, Mangiapia G, Paduano L, Gianolio E}, title={Multicomponent aggregates containing the CCK8 bioactive peptide and Gd complexes as target-specific MRI contrast agents}, date={2005}, journal={Peptides 2004 Proceedings}, year={2005}, fullvolume={263}, volume={263}, pages={N/D--N/D}, url={}, abstract={}, keywords={, }, references={}, document_type={Journal Article, Abstract, Conference, }, affiliation={}, ibbaffiliation={1}, } @article{IBB_ID_9589, author={Accardo A, Tesauro D, Roscigno P, Gianolio E, Paduano L, D'Errico G, Pedone C, Morelli G}, title={Physicochemical Properties of Mixed Micellar Aggregates Containing CCK Peptides and Gd Complexes Designed as Tumor Specific Contrast Agents in MRI}, date={2004 Mar 17}, journal={J Am Chem Soc (ISSN: 0002-7863, 0002-2786, 1520-5126)}, year={2004}, fullvolume={452}, volume={452}, pages={3097--3107}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-1642312071&partnerID=40&md5=524991fa2836bcc13956135e07ee8013}, abstract={New amphiphilic molecules containing a bioactive peptide or a claw moiety have been prepared in order to obtain mixed micelles as target-specific contrast agents in magnetic resonance imaging. The first molecule, C 18H37CONH(AdOO)2-G-CCK8 (C18CCK8), contains a C18 hydrophobic moiety bound to the C-terminal cholecystokinin octapeptide amide (CCK 26-33 or CCK8). The second amphiphilic compound, C18H 37CONHLys(DTPAGlu)CONH2 (C18DTPAGlu) or its gadolinium complex, (C18DTPAGlu(Gd)), contains the same C18 hydrophobic moiety bound, through a lysine residue, to the DTPAGlu chelating agent. The mixed aggregates as well as the pure C18DTPAGlu aggregate, in the presence and absence of Gd, have been fully characterized by surface tension measurements, FT-PGSE-NMR, fluorescence quenching, and small-angle neutron scattering measurements. The structural characterization of the mixed aggregates C18DTPAGlu(Gd)-C18CCK8 indicates a spherical arrangement of the micelles with an external shell of ∼21 Å and an inner core of ∼20 Å. Both the DTPAGlu(Gd) complexes and the CCK8 peptides point toward the external surface. The measured values for relaxivity in saline medium at 20 MHz proton Larmor frequency and 25 °C are 18.7 mM-1 s-1. These values show a large enhancement in comparison with the isolated DTPAGlu(Gd) complex.}, keywords={Fluorescence, Hydrophobicity, Magnetic Resonance Imaging, Micelles, Quenching, Surface Tension, Tumors, Relaxivity, Tumor Specific Contrast Agents, Proteins, Cholecystokinin Octapeptide, Contrast Medium, Gadolinium, Aqueous Solution, Article, Carboxy Terminal Sequence, Chelation, Comparative Study, Complex Formation, Contrast Enhancement, Neutron Scattering, Nuclear Magnetic Resonance, Physical Chemistry, Structure Analysis, Surface Property, Glutamic Acid, Kinetics, Organometallic Compounds, Pentetic Acid, Radiation, Sincalide, }, references={Weissleder, R., Mahmood, U., (2001) Mol. Imaging Radiol., 219, p. 31 Aime, S., Cabella, C., Colombatto, S., Geninatti Crich, S., Gianolio, E., Maggioni, F., (2002) J. Magn. Reson. Imaging, 16, p. 394 Glogard, C., Stensrud, G., Hovland, R., Fossheim, S.L., Klaveness, J., (2002) Int. J. Pharm., 233, p. 131 Morel, S., Terreno, E., Ugazio, E., Aime, S., Gasco, M.R., (1998) Eur. J. Pharm. Biopharm., 45, p. 157 Anelli, P.L., Lattuada, L., Lorusso, V., Schneider, M., Tournier, H., Uggeri, F., (2001) Magn. Reson. Mater. Phys. Biol. Med., 12, p. 114 Wiener, E.C., Brechbiel, M.W., Brothers, H., Magin, R.L., Gansow, O.A., Tomalia, D.A., Lauterbur, P.C., (1994) Magn. Reson. Med., 3, p. 1 Aime, S., Botta, M., Garino, E., Geninatti Crich, S., Giovenzana, G., Pagliarin, R., Palmisano, G., Sisti, M., (2000) Chem. Eur. J., 6, p. 2609 Bligh, S.W., Harding, C.T., Sadler, P.J., Bulman, R.A., Bydder, G.M., Pennock, J.M., Kelly, J.D., Marriott, J.A., (1991) Magn. Reson. Med., 17, p. 516 Schmiedl, U., Ogan, M., Paajanen, H., Marotti, M., Crooks, L., Brito, E., Brasch, R.C., (1987) Radiology, 162, p. 205 Liu, S., Edward, D.S., (1999) Chem. Rev., 99, p. 2235 Torchilin, V.P., (2002) Adv. Drug Delivery, 54, p. 235 Andre, J.P., Toth, E., Fischer, H., Seelig, A., Macke, H.R., Merbach, A.E., (1999) Chem. Eur. J., 5, p. 2977 Silvente-Poirot, S., Dufresne, M., Vaysse, N., Fourmy, D., (1993) Eur. J. Biochem., 215, p. 513 Wank, S.A., (1995) Am. J. Physiol., 269, pp. G628 Reubi, J.C., Schaer, J.C., Waser, B., (1997) Cancer Res., 57, p. 1377 Anelli, P.L., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., (1999) Bioconjugate Chem., 10, p. 137 Aloj, L., Carraro, C., Zannetti, A., Del Vecchio, S., Tesauro, D., DeLuca, S., Panico, M., Salvatore, M.J., (2004) Nucl. Med., 45 (3). , in press Aime, S., Gianolio, E., Morelli, G., Tesauro, D., De Luca, S., Anelli, P.L., Manuscript in preparationChang, W.C., White, P.D., (2000) Fmoc Solid Phase Peptide Synthesis, , Oxford University Press: New York Arai, H., Murata, M.J., (1973) J. Colloid Interface Sci., 44, p. 475 Stilbs, P., (1987) NMR Spectrosc., 19, p. 1 Infelta, P.P., Gratzel, M., Thomas, J.K., (1975) J. Phys. Chem., 78, p. 190 Tachiya, M., (1975) Chem. Phys. Lett., 33, p. 289 Gehlen, M.H., De Schryver, F.C., (1993) Chem. Rev., 93, p. 199 Turro, N.J., Yekta, A., (1978) J. Am. Chem. Soc., 100, p. 5951 McNeil, R., Thomas, J.K., (1981) J. Colloid Interface Sci., 83, p. 57 Banci, L., Bertini, I., Luchinat, C., (1991) Nuclear and Electronic Relaxation, p. 91. , VCH: Weinheim Berti, D., Pini, F., Baglioni, P., Teixeira, J., (1999) J. Phys. Chem. B, 103, p. 1738 Hayter, J.B., Penfold, J., (1983) J. Colloid Polym. Sci., 261, p. 1072 Hayter, J.B., Hansen, J.B., (1991) Mol. Phys., 42, p. 651 Ragone, R., De Luca, S., Tesauro, D., Pedone, C., Morelli, G., (2001) Biopolymers, 56, p. 47 Jonstromer, M., Jonsson, B., Lindman, B., (1991) J. Phys. Chem., 95, p. 3293 Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B., (1999) Chem. Rev., 99, p. 2293 Powell, D.H., Ni Dhubhghaill, O.M., Pubanz, D., Helm, L., Lebedev, Y.S., Schlaepfer, W., Merbach, A.E., (1996) J. Am. Chem. Soc., 118, p. 9333 Tanford, C., (1974) J. Phys. Chem., 78, p. 3293 Hannak, R.B., Färber, G., Konrat, R., Kräutler, B., (1997) J. Am. Chem. Soc., 119, p. 2313 Anelli, P. L., Lattuada, L., Lorusso, V., Schneider, M., Tournier, H., Uggeri, F., (2001) Magn. Reson. Mater. Phys. Biol. Med., 12, p. 114 Wiener, E. C., Brechbiel, M. W., Brothers, H., Magin, R. L., Gansow, O. A., Tomalia, D. A., Lauterbur, P. C., (1994) Magn. Reson. Med., 3, p. 1 Bligh, S. W., Harding, C. T., Sadler, P. J., Bulman, R. A., Bydder, G. M., Pennock, J. M., Kelly, J. D., Marriott, J. A., (1991) Magn. Reson. Med., 17, p. 516 Torchilin, V. P., (2002) Adv. Drug Delivery, 54, p. 235 Andre, J. P., Toth, E., Fischer, H., Seelig, A., Macke, H. R., Merbach, A. E., (1999) Chem. Eur. J., 5, p. 2977 Wank, S. A., (1995) Am. J. Physiol., 269, pp. G628 Reubi, J. C., Schaer, J. C., Waser, B., (1997) Cancer Res., 57, p. 1377 Anelli, P. L., Fedeli, F., Gazzotti, O., Lattuada, L., Lux, G., Rebasti, F., (1999) Bioconjugate Chem., 10, p. 137 Infelta, P. P., Gratzel, M., Thomas, J. K., (1975) J. Phys. Chem., 78, p. 190 Gehlen, M. H., De Schryver, F. C., (1993) Chem. Rev., 93, p. 199 Turro, N. J., Yekta, A., (1978) J. Am. Chem. Soc., 100, p. 5951 Hayter, J. B., Penfold, J., (1983) J. Colloid Polym. Sci., 261, p. 1072 Hayter, J. B., Hansen, J. B., (1991) Mol. Phys., 42, p. 651 Powell, D. H., Ni Dhubhghaill, O. M., Pubanz, D., Helm, L., Lebedev, Y. S., Schlaepfer, W., Merbach, A. E., (1996) J. Am. Chem. Soc., 118, p. 9333 Hannak, R. B., F rber, G., Konrat, R., Kr utler, B., (1997) J. Am. Chem. Soc., 119, p. 2313}, document_type={Journal Article, }, affiliation={CIRPeB, Department of Biological Chemistry, University of Naples Federico II, Via Mezzocannone, 6, Naples, 1-80134, Italy Department of Chemistry, University of Naples Federico II, Via Cynthia, Naples, 1-80126, Italy}, ibbaffiliation={1}, } @article{IBB_ID_12410, author={Accardo A, Tesauro D, Roscigno P, Paduano L, Gianolio E, Morelli G, Benedetti E}, title={Characterization of multicomponent aggregate containing a bioactive peptide and a Gd complex}, date={2004}, journal={Peptide Revolution}, year={2004}, fullvolume={227}, volume={227}, pages={N/D--N/D}, url={}, abstract={}, keywords={, }, references={}, document_type={Journal Article, Abstract, Conference, }, affiliation={}, ibbaffiliation={1}, }